1
|
Zhang F, Qi L, Zhao M, Han S, Zhang H, Wang G. Global research landscape on the genetics of congenital heart disease: A bibliometric and visualized analysis via VOSviewer and CiteSpace. Medicine (Baltimore) 2024; 103:e40261. [PMID: 39470501 PMCID: PMC11521071 DOI: 10.1097/md.0000000000040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Genetic factors play a significant role in the development of congenital heart disease (CHD). Many studies on the genetics of CHD have been published worldwide; however, no research has assessed and mapped the global research landscape of these studies. This bibliometric and visualized study aimed to delineate research hotspots and trends in the field of CHD genetics. Scientific papers on the genetics of CHD from January 1, 1950, to December 31, 2023, were obtained by searching the Web of Science Core Collection. The bibliometric metadata of each chosen research paper were extracted, analyzed, and visualized using tools such as Microsoft Excel 2021, VOSviewer, and CiteSpace. The final analysis included 5317 papers discussing the genetics of CHD. The countries and journals that published the highest number of papers were the United States (n = 2118), and American Journal of Medical Genetics Part A (n = 332), respectively. In addition to CHD and genetics, keywords such as tetralogy of Fallot, ventricular septal defect, and atrial septal defect appeared most frequently among 8365 keywords. Eight clusters were formed to categorize the keywords. Keywords such as case-control study, whole genome sequencing, and whole exome sequencing in clusters 6, 7, and 8, respectively, had the latest average publication year among all clusters. To the best of our knowledge, this is the first bibliometric analysis of CHD genetics studies. Tetralogy of Fallot, ventricular septal defect, and atrial septal defect are global research topics. The interactions between environmental and genetic factors in the pathogenesis of CHD, genetic etiology of CHD-associated pulmonary arterial hypertension, and molecular genetics of CHD via high-throughput genomic technology are possible areas of future research on the genetics of CHD.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Lei Qi
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Mingxue Zhao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Shuming Han
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Haoran Zhang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
| | - Guangxin Wang
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, Shandong Province, China
- Innovation Center of Intelligent Diagnosis, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
2
|
Kalisch-Smith JI, Ehtisham-Uddin N, Rodriguez-Caro H. Feto-placental and coronary endothelial genes implicated in miscarriage, congenital heart disease and stillbirth, a systematic review and meta-analysis. Placenta 2024; 156:55-66. [PMID: 39276426 DOI: 10.1016/j.placenta.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The first trimester placenta is very rarely investigated for placental vascular formation in developmental or diseased contexts. Defects in placental formation can cause heart defects in the fetus, and vice versa. Determining the causality is therefore difficult as both organs develop concurrently and express many of the same genes. Here, we performed a systematic review to determine feto-placental and coronary endothelial genes implicated in miscarriages, stillbirth and congenital heart defects (CHD) from human genome wide screening studies. 4 single cell RNAseq datasets from human first/early second trimester cardiac and placental samples were queried to generate a list of 1187 endothelial genes. This broad list was cross-referenced with genes implicated in the pregnancy disorders above. 39 papers reported feto-placental and cardiac coronary endothelial genes, totalling 612 variants. Vascular gene variants were attributed to the incidence of miscarriage (8 %), CHD (4 %) and stillbirth (3 %). The most common genes for CHD (NOTCH, DST, FBN1, JAG1, CHD4), miscarriage (COL1A1, HERC1), and stillbirth (AKAP9, MYLK), were involved in blood vessel and cardiac valve formation, with roles in endothelial differentiation, angiogenesis, extracellular matrix signaling, growth factor binding and cell adhesion. NOTCH1, AKAP12, CHD4, LAMC1 and SOS1 showed greater relative risk ratios with CHD. Many of the vascular genes identified were expressed highly in both placental and heart EC populations. Both feto-placental and cardiac vascular genes are likely to result in poor endothelial cell development and function during human pregnancy that leads to higher risk of miscarriage, congenital heart disease and stillbirth.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK.
| | - Nusaybah Ehtisham-Uddin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK
| | - Helena Rodriguez-Caro
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX3 7TY, UK; Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
3
|
Manyama M, Al Sayegh D, Al-Sulaiti K, Almasri M, Sharma O, El Jerbi A, Al-Riyami Z, Sarada PK, Gupta S, Al-Saloos H, Al-Shafai KN. Congenital heart defects and consanguinity: An analysis of the Sidra cardiac registry data in Qatar. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 17:100529. [PMID: 39711761 PMCID: PMC11657160 DOI: 10.1016/j.ijcchd.2024.100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 12/24/2024] Open
Affiliation(s)
| | | | | | | | - Omna Sharma
- Weill Cornell Medicine – Qatar, Doha - Qatar
| | | | | | | | | | - Hesham Al-Saloos
- Weill Cornell Medicine – Qatar, Doha - Qatar
- Sidra Medicine, Doha - Qatar
| | | |
Collapse
|
4
|
Abiib S, Khodjet-El-khil H, El-Akouri K, Bux RI, Rezoug Z, Abualainin W, Alkowari M, Musa SO, Al Mulla M, Al Saleh R, Shahbeck N, Farag M, Ismail SI, Al Sulaiman R, Ben-Omran T, Al-Thani A, Al-Shafai M. Qatar's genetic counseling landscape: Current insights and future prospects. GENETICS IN MEDICINE OPEN 2024; 2:101866. [PMID: 39712968 PMCID: PMC11658542 DOI: 10.1016/j.gimo.2024.101866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 12/24/2024]
Abstract
Genetic counseling is a dynamic and rapidly growing field. In Qatar, the significance of genetic counseling is underscored by the distinctive demographic characteristics of the population, including elevated rates of consanguinity and larger family sizes, contributing to the increased incidence of many genetic conditions. This emphasizes the crucial role of genetic counseling in addressing the specific needs of the community. Over the past decade, key health care institutions in Qatar, such as Hamad Medical Corporation and Sidra Medicine, have significantly expanded genetic counseling services encompassing premarital, reproductive, prenatal, pediatric, adult, and cancer care. This multifaceted approach reflects Qatar's health care system's commitment to addressing various aspects of genetic health and well-being across different life stages. A pivotal milestone in the field's development in Qatar was the establishment of a genetic counseling master's program at Qatar University in 2018, showcasing the country's dedication to fostering indigenous expertise in genetic counseling with the necessary competencies and cultural sensitivity to address the unique genetic counseling needs of the population. The recognition of genetic counseling as a profession and the licensure by the Ministry of Public Health in Qatar is another key achievement to ensure the high quality of service and protection of the profession. Contributing to global genetic knowledge, various academic and research entities in Qatar are conducting genetic/genomic/genetic counseling research toward advancing precision medicine in the country, and initiatives such as the Qatar Biobank and Qatar Genome Program have played a major role in catalyzing these efforts.
Collapse
Affiliation(s)
- Sumaya Abiib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Houssein Khodjet-El-khil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Karen El-Akouri
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Reem Ibrahim Bux
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Zoulikha Rezoug
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wafa Abualainin
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Moza Alkowari
- Diagnostic Genomic Division, Hamad Medical Corporation, Doha, Qatar
| | - Sara Osman Musa
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Mariam Al Mulla
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Rehab Al Saleh
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Noora Shahbeck
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Maria Farag
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Said I. Ismail
- Qatar Genome Program, Qatar Foundation Research, Doha, Qatar
| | - Reem Al Sulaiman
- Department of Medical Oncology, National Center of Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Adult and Pediatric Medical Genetics, Hamad Medical Corporation, Doha, Qatar
- Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Asma Al-Thani
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
5
|
Wang Z, Liu XY, Yang CX, Zhou HM, Li YJ, Qiu XB, Huang RT, Cen SS, Wang Y, Xu YJ, Qiu HY, Yang YQ. Discovery and functional investigation of BMP4 as a new causative gene for human congenital heart disease. Am J Transl Res 2024; 16:2034-2048. [PMID: 38883374 PMCID: PMC11170606 DOI: 10.62347/dgcd4269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVE Aggregating evidence highlights the strong genetic basis underpinning congenital heart disease (CHD). Here BMP4 was chosen as a prime candidate gene causative of human CHD predominantly because BMP4 was amply expressed in the embryonic hearts and knockout of Bmp4 in mice led to embryonic demise mainly from multiple cardiovascular developmental malformations. The aim of this retrospective investigation was to discover a novel BMP4 mutation underlying human CHD and explore its functional impact. METHODS A sequencing examination of BMP4 was implemented in 212 index patients suffering from CHD and 236 unrelated non-CHD individuals as well as the family members available from the proband carrying a discovered BMP4 mutation. The impacts of the discovered CHD-causing mutation on the expression of NKX2-5 and TBX20 induced by BMP4 were measured by employing a dual-luciferase analysis system. RESULTS A new heterozygous BMP4 mutation, NM_001202.6:c.318T>G;p.(Tyr106*), was found in a female proband affected with familial CHD. Genetic research of the mutation carrier's relatives unveiled that the truncating mutation was in co-segregation with CHD in the pedigree. The nonsense mutation was absent from 236 unrelated non-CHD control persons. Quantitative biologic measurement revealed that Tyr106*-mutant BMP4 failed to induce the expression of NKX2-5 and TBX20, two genes whose expression is lost in CHD. CONCLUSION The current findings indicate BMP4 as a new gene predisposing to human CHD, allowing for improved prenatal genetic counseling along with personalized treatment of CHD patients.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Cardiovascular Medicine, Women and Children's Hospital of Ningbo University Ningbo 315012, Zhejiang, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China
| | - Hui-Min Zhou
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine Shanghai 200065, China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200030, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200127, China
| | - Shu-Shu Cen
- Health Science Center, Ningbo University Ningbo 315211, Zhejiang, China
| | - Yuan Wang
- Health Science Center, Ningbo University Ningbo 315211, Zhejiang, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China
| | - Hai-Yan Qiu
- Department of Cardiovascular Medicine, Women and Children's Hospital of Ningbo University Ningbo 315012, Zhejiang, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People's Hospital, Fudan University Shanghai 200240, China
| |
Collapse
|
6
|
Abhinav P, Li YJ, Huang RT, Liu XY, Gu JN, Yang CX, Xu YJ, Wang J, Yang YQ. Somatic GATA4 mutation contributes to tetralogy of Fallot. Exp Ther Med 2024; 27:91. [PMID: 38274337 PMCID: PMC10809308 DOI: 10.3892/etm.2024.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Tetralogy of Fallot (TOF) is the most prevalent cyanotic congenital heart pathology and causes infant morbidity and mortality worldwide. GATA-binding protein 4 (GATA4) serves as a pivotal transcriptional factor for embryonic cardiogenesis and germline GATA4 mutations are causally linked to TOF. However, the effects of somatic GATA4 mutations on the pathogenesis of TOF remain to be ascertained. In the present study, sequencing assay of GATA4 was performed utilizing genomic DNA derived from resected heart tissue specimens as well as matched peripheral blood specimens of 62 patients with non-familial TOF who underwent surgical treatment for TOF. Sequencing of GATA4 was also performed using the heart tissue specimens as well as matched peripheral venous blood samples of 68 sporadic cases who underwent heart valve displacement because of rheumatic heart disorder and the peripheral venous whole blood samples of 216 healthy subjects. The function of the mutant was explored by dual-luciferase activity analysis. Consequently, a new GATA4 mutation, NM_002052.5:c.708T>G;p.(Tyr236*), was found in the heart tissue of one patient with TOF. No mutation was detected in the heart tissue of the 68 cases suffering from rheumatic heart disorder or in the venous blood samples of all 346 individuals. GATA4 mutant failed to transactivate its target gene, myosin heavy chain 6. Additionally, this mutation nullified the synergistic transactivation between GATA4 and T-box transcription factor 5 or NK2 homeobox 5, two genes causative for TOF. Somatic GATA4 mutation predisposes TOF, highlighting the significant contribution of somatic variations to the molecular pathogenesis underpinning TOF.
Collapse
Affiliation(s)
- Pradhan Abhinav
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Juan Wang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
- Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
7
|
Dong BB, Li YJ, Liu XY, Huang RT, Yang CX, Xu YJ, Lv HT, Yang YQ. Discovery of BMP10 as a new gene underpinning congenital heart defects. Am J Transl Res 2024; 16:109-125. [PMID: 38322548 PMCID: PMC10839403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE Aggregating evidence convincingly establishes the predominant genetic basis underlying congenital heart defects (CHD), though the heritable determinants contributing to CHD in the majority of cases remain elusive. In the current investigation, BMP10 was selected as a prime candidate gene for human CHD mainly due to cardiovascular developmental abnormalities in Bmp10-knockout animals. The objective of this retrospective study was to identify a new BMP10 mutation responsible for CHD and characterize the functional effect of the identified CHD-causing BMP10 mutation. METHODS Sequencing assay of BMP10 was fulfilled in a cohort of 276 probands with various CHD and a total of 288 non-CHD volunteers. The available family members from the proband harboring an identified BMP10 mutation were also BMP10-genotyped. The effect of the identified CHD-causative BMP10 mutation on the transactivation of TBX20 and NKX2.5 by BMP10 was quantitatively analyzed in maintained HeLa cells utilizing a dual-luciferase reporter assay system. RESULTS A novel heterozygous BMP10 mutation, NM_014482.3:c.247G>T;p.(Glu83*), was identified in one proband with patent ductus arteriosus (PDA), which was confirmed to co-segregate with the PDA phenotype in the mutation carrier's family. The nonsense mutation was not observed in 288 non-CHD volunteers. Functional analysis unveiled that Glu83*-mutant BMP10 had no transactivation on its two representative target genes TBX20 and NKX2.5, which were both reported to cause CHD. CONCLUSION These findings provide strong evidence indicating that genetically compromised BMP10 predisposes human beings to CHD, which sheds light on the new molecular mechanism that underlies CHD and allows for antenatal genetic counseling and individualized precise management of CHD.
Collapse
Affiliation(s)
- Bin-Bin Dong
- Department of Cardiology, Children’s Hospital of Soochow UniversitySuzhou 215003, Jiangsu, China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Hai-Tao Lv
- Department of Cardiology, Children’s Hospital of Soochow UniversitySuzhou 215003, Jiangsu, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| |
Collapse
|