1
|
Boboryko D, Olejnik-Wojciechowska J, Baranowska M, Bratborska AW, Skórka P, Pawlik A. Biological therapy for psoriatic arthritis: current state and future perspectives. Rheumatol Int 2024; 44:2711-2725. [PMID: 39311915 DOI: 10.1007/s00296-024-05722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024]
Abstract
Psoriatic arthritis is a medical condition that lies at the intersection of various fields of medicine, and its therapy always requires a comprehensive, holistic approach. Biological disease-modifying antirheumatic drugs (bDMARDs) constitute an extremely effective treatment method for PsA, provided that appropriate principles for patient qualification for the drug are followed, along with subsequent monitoring of the response to treatment. Based on their mechanisms of action, four main groups of bDMARDs used in PsA can be distinguished (TNF inhibitors, IL-12/23 and IL-23 inhibitors, IL-17 inhibitors, CTLA4 agonists). Clinical trials are ongoing in search of registration for additional bDMARDs, and the tasks for doctors and scientists worldwide include patient education, increasing treatment accessibility, and optimizing its costs.
Collapse
Affiliation(s)
- Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland
| | | | - Magdalena Baranowska
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland
| | | | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, 70-111, Poland.
| |
Collapse
|
2
|
Yin L, Qi Y, Jiang Y. Pharmacological Mechanism of Mume Fructus in the Treatment of Triple-Negative Breast Cancer Based on Network Pharmacology. Appl Biochem Biotechnol 2024; 196:7974-7993. [PMID: 38668843 DOI: 10.1007/s12010-024-04948-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Our study aims to find the relevant mechanism of Mume Fructus in the treatment of triple-negative breast cancer (TNBC) by network pharmacology analysis and experimental validation. The effective compounds of Mume Fructus and TNBC-related target genes were imported into Cytoscape to construct a Mume Fructus-effective compounds-disease target network. The common targets of Mume Fructus and TNBC were determined by drawing Venn diagrams. Then, the intersection targets were transferred to the STRING database to construct a protein-protein interaction (PPI) network. To investigate the mechanism of Mume Fructus in treatment of TNBC, breast cancer cell (MDA-MB-231) was treated with Mume Fructus and/or transfected with small interference RNA-PKM2(siPKM2). CCK-8 assay, cell clonal formation assay, transwell, flow cytometry, qRT-PCR, and western blotting were performed. Eight effective compounds and 145 target genes were obtained, and the Mume Fructus- effective compounds-disease target network was constructed. Then through the analysis of the PPI network, we obtained 10 hub genes including JUN, MAPK1, RELA, AKT1, FOS, ESR1, IL6, MAPK8, RXRA, and MYC. KEGG enrichment analysis showed that JUN, MAPK1, RELA, FOS, ESR1, IL6, MAPK8, and RXRA were enriched in the Th17 cell differentiation signaling pathway. Loss of PKM2 and Mume Fructus both inhibited the malignant phenotype of MDA-MB-231 cells. And siPKM2 further aggravated the Mume Fructus inhibition of malignancy of breast cancer cells. Network pharmacology analysis suggests that Mume Fructus has multiple therapeutic targets for TNBC and may play a therapeutic role by modulating the immune microenvironment of breast cancer.
Collapse
Affiliation(s)
- Lei Yin
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yan Qi
- Operating Theater of the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Yuting Jiang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, China.
| |
Collapse
|
3
|
Li H, Liu D, Li K, Wang Y, Zhang G, Qi L, Xie K. Pancreatic stellate cells and the interleukin family: Linking fibrosis and immunity to pancreatic ductal adenocarcinoma (Review). Mol Med Rep 2024; 30:159. [PMID: 38994764 PMCID: PMC11258612 DOI: 10.3892/mmr.2024.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer‑associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.
Collapse
Affiliation(s)
- Haichao Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Donglian Liu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Kaishu Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yichen Wang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Gengqiang Zhang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Ling Qi
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
4
|
Campione E, Zarabian N, Cosio T, Borselli C, Artosi F, Cont R, Sorge R, Shumak RG, Costanza G, Rivieccio A, Gaziano R, Bianchi L. Apremilast as a Potential Targeted Therapy for Metabolic Syndrome in Patients with Psoriasis: An Observational Analysis. Pharmaceuticals (Basel) 2024; 17:989. [PMID: 39204094 PMCID: PMC11357209 DOI: 10.3390/ph17080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Psoriasis (PsO) is a chronic inflammatory dermatosis that often presents with erythematous, sharply demarcated lesions. Although psoriasis is primarily a dermatological disease, its immune-mediated pathogenesis produces systemic effects and is closely associated with various comorbid conditions such as cardiovascular disease (CVD), metabolic syndrome (MetS), and diabetes mellitus type II (DMII). Apremilast, an oral phosphodiesterase 4 (PDE-4) inhibitor, has shown promise in treating moderate-to-severe psoriasis and is associated with potential cardiometabolic benefits. In a 12-month prospective observational study involving 137 patients with moderate-to-severe psoriasis, we assessed changes in psoriasis clinimetric scores and metabolic profiles from baseline (T0) to 52 weeks (T1) to evaluate the efficacy of apremilast. After 52 weeks of apremilast treatment, we documented a statistically significant decrease in low-density lipoprotein (LDL) and total cholesterol, triglycerides, and glucose levels. Our findings even suggest a potential synergistic effect among patients treated with apremilast, alongside concomitant statin and/or insulin therapy. Although the results of our study must be validated on a larger scale, the use of apremilast in the treatment of psoriatic patients with cardio-metabolic comorbidities yields promising results.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| | - Nikkia Zarabian
- School of Medicine and Health Sciences, George Washington University, 2300 I St NW, Washington, DC 20052, USA;
| | - Terenzio Cosio
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (R.G.)
- Dynamyc Research Team 7380, Université de Paris-Est-Créteil, 94000 Créteil, France
| | - Cristiana Borselli
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| | - Fabio Artosi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| | - Riccardo Cont
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| | - Roberto Sorge
- Laboratory of Biometry, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Ruslana Gaeta Shumak
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| | - Gaetana Costanza
- Unit of Virology, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy;
| | - Antonia Rivieccio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (R.G.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.B.); (F.A.); (R.C.); (R.G.S.); (A.R.); (L.B.)
| |
Collapse
|
5
|
Theune WC, Chen J, Theune EV, Ye X, Ménoret A, Vella AT, Wang K. Interleukin-17 directly stimulates tumor infiltrating Tregs to prevent cancer development. Front Immunol 2024; 15:1408710. [PMID: 38947320 PMCID: PMC11211274 DOI: 10.3389/fimmu.2024.1408710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Background Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.
Collapse
Affiliation(s)
- William C. Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Ju Chen
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
- The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Eileen Victoria Theune
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Xiaoyang Ye
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kepeng Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
6
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Mamand DR, Bazaz S, Mohammad DK, Saher O, Wiklander OPB, Sadeghi B, Hassan M, El-Andaloussi S, Abedi-Valugerdi M. Tumor cell derived osteopontin and prostaglandin E2 synergistically promote the expansion of myeloid derived suppressor cells during the tumor immune escape phase. Int Immunopharmacol 2024; 129:111584. [PMID: 38364741 DOI: 10.1016/j.intimp.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.
Collapse
Affiliation(s)
- Doste R Mamand
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, SE-141 83 Stockholm, Sweden; College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Erbil 44002, Iraq
| | - Osama Saher
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Oscar P B Wiklander
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Experimental Cancer Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Sweden
| | - Samir El-Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
8
|
永 胜, 郭 玉, 陈 晓, 许 玉, 胡 英. [Mechanism of IL-17 Signaling Pathway in Spleen Inflammatory Response Induced by Altitude Hypoxia in Mice]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:118-124. [PMID: 38322537 PMCID: PMC10839503 DOI: 10.12182/20240160208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 02/08/2024]
Abstract
Objective To explore the mechanism of spleen tissue inflammatory response induced by altitude hypoxia in mice. Methods C57BL/6 mice were randomly assigned to a plain, i.e., low-altitude, normoxia group and an altitude hypoxia group, with 5 mice in each group. In the plain normoxia group, the mice were kept in a normoxic environment at the altitude of 400 m above sea level (with an oxygen concentration of 19.88%). The mice in the altitude hypoxia group were kept in an environment at the altitude of 4200 m above sea level (with an oxygen concentration of 14.23%) to establish the animal model of altitude hypoxia. On day 30, spleen tissues were collected to determine the splenic index. HE staining was performed to observe the histopathological changes in the spleen tissues of the mice. Real time fluorogenic quantitative PCR (RT-qPCR) and Western blot were conducted to determine the mRNA and protein expressions of interleukin (IL)-6, IL-12, and IL-1β in the spleen tissue of the mice. High-throughput transcriptome sequencing was performed with RNA sequencing (RNA-seq). KEGG enrichment analysis was performed for the differentially expressed genes (DEGs). The DEGs in the key pathways were verified by RT-qPCR. Results Compared with the plain normoxia group, the mice exposed to high-altitude hypoxic environment had decreased spleen index (P<0.05) and exhibited such pathological changes as decreased white pulp, enlarged germinal center, blurred edge, and venous congestion. The mRNA and protein expression levels of IL-6, IL-12, and IL-1β in the spleen tissue of mice in the altitude hypoxia group were up-regulated (P<0.05). According to the results of transcriptome sequencing and KEGG pathway enrichment analysis, 4218 DEGs were enriched in 178 enrichment pathways (P<0.05). DEGs were significantly enriched in multiple pathways associated with immunity and inflammation, such as T cell receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway (P<0.05) in the spleen of mice exposed to high-altitude hypoxic environment. Among them, IL-17 signaling pathway and the downstream inflammatory factors were highly up-regulated (P<0.05). Compared with the plain normoxia group, the mRNA expression levels of key genes in the IL-17 signaling pathway, including IL-17, IL-17R, and mitogen-activated protein kinase genes (MAPKs), and the downstream inflammatory factors, including matrix metallopeptidase 9 (MMP9), S100 calcium binding protein A8 gene (S100A8), S100 calcium binding protein A9 gene (S100A9), and tumor necrosis factor α (TNF-α), were up-regulated or down-regulated (P<0.05) in the altitude hypoxia group. According to the validation of RT-qPCR results, the mRNA expression levels of DEGs were consistent with the RNA-seq results. Conclusion Altitude hypoxia can induce inflammatory response in the mouse spleen tissue by activating IL-17 signaling pathway and promoting the release of downstream inflammatory factors.
Collapse
Affiliation(s)
- 胜 永
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉静 郭
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 晓晨 陈
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 玉珍 许
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| | - 英 胡
- 青海大学医学院基础医学部 免疫学教研室 (西宁 810016)Department of Immunology, School of Basic Medicine, Qinghai University School of Medical, Xining 810016, China
| |
Collapse
|
9
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
10
|
He J, Lei Y, Li X, Wu B, Tang Y. Exploring the prognostic value of S100A11 and its association with immune infiltration in breast cancer. Sci Rep 2023; 13:22922. [PMID: 38129538 PMCID: PMC10739898 DOI: 10.1038/s41598-023-50160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer (BC) is a severe danger to women's lives and health globally. S100A11 is aberrantly expressed in many carcinomas and serves a crucial function in cancer development. However, the role of S100A11 in BC is unclear. In this study, we utilized multiple databases and online tools, including the TCGA database, cBioPortal, and STRING, to evaluate the significance of S100A11 in BC prognosis and immune infiltration. We found that S100A11 was considerably more abundant in BC tissues. Survival analysis indicated that individuals with S100A11 high expression of BC had shorter overall survival. Multivariate Cox regression analysis revealed that high S100A11 expression independently influenced the poor outcome of patients with BC (HR = 1.738, 95%CI 1.197-2.524). Our nomogram incorporating five factors, including S100A11, age, clinical stage, N, and M, was developed to anticipate the survival probability in BC prognosis. The model demonstrated good consistency and accuracy. Furthermore, the mutation rete of S100A11 was 14%. Survival analysis suggested that breast cancer patients with S100A11 mutation had a worse prognosis. KEGG pathway enrichment analysis revealed that S100A11 may be mainly involved in the IL-17 signaling pathway. Finally, we discovered a correlation between S100A11 expression and immune cell infiltration on BC. S100A11 expression was positively associated with 17 immune checkpoint-related genes. In conclusion, this study indicates that S100A11 may contribute to a worse prognosis for BC and potentially has a significant impact through its influence on immune cell infiltration and the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Junfang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuxi Lei
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiabin Li
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, 646000, Sichuan, China
| | - Bin Wu
- Departments of Breast Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yan Tang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
11
|
Liu B, Qian Y, Li Y, Shen X, Ye D, Mao Y, Sun X. Circulating levels of cytokines and risk of inflammatory bowel disease: evidence from genetic data. Front Immunol 2023; 14:1310086. [PMID: 38149258 PMCID: PMC10750389 DOI: 10.3389/fimmu.2023.1310086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background Prior epidemiological studies have established a correlation between inflammatory cytokines and inflammatory bowel disease (IBD). However, the nature of this relationship remains uncertain. Mendelian randomization (MR) study has the advantages of avoiding confounding and reverse causality compared with traditional observational research. Objective We aimed to evaluate whether genetically determined circulating levels of cytokines are associated with the risk of IBD by using the MR approach. Materials and methods We selected genetic variants associated with circulating levels of 28 cytokines at the genome-wide significance level from a genome-wide association study (GWAS) including 8,293 individuals. Summary-level data for IBD (including Crohn's disease and ulcerative colitis) were obtained from the International Inflammatory Bowel Disease Genetics Consortium and UK Biobank. We performed the primary analysis using the inverse-variance weighted method, as well as sensitivity analyses to test the stability of our results. We subsequently replicated the results of IBD in the UK Biobank dataset. A reverse MR analysis was also conducted to evaluate the possibility of reverse causation. Results Genetically predicted elevated levels of interleukin-17 (IL-17) and monokine induced by interferon-gamma (MIG) were associated with an increased risk of IBD[odds ratio (OR): 1.52, 95% confidence interval (CI):1.10-2.08, P =0.010 for IL-17 and OR: 1.58, 95% CI: 1.24-2.00, P = 1.60×10-4 for MIG]. Moreover, we observed suggestive associations between β-NGF and MIP-1β with the risk of Crohn's disease (OR: 0.71, 95% CI: 0.52-0.98, P = 0.039) and ulcerative colitis (OR: 1.08, 95% CI: 1.01-1.15, P= 0.019). In the reverse MR study, there was no evidence of causal effects of IBD and these cytokines. Conclusion Our study suggests the potential causal associations of IL-17 and MIG with IBD. Further studies are needed to determine whether IL-17 and MIG or their downstream effectors could be useful in the management of IBD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yu Qian
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yanan Li
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiangting Shen
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Ding Ye
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| |
Collapse
|
12
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
13
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
14
|
Hong K, Yang Q, Yin H, Zhang J, Yu B. SDR16C5 promotes proliferation and migration and inhibits apoptosis in pancreatic cancer. Open Life Sci 2023; 18:20220630. [PMID: 37360782 PMCID: PMC10290281 DOI: 10.1515/biol-2022-0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Pancreatic cancer (PAAD) is usually found when it is already in its advanced stage, which has limited options available for treatment and poor overall survival. The SDR16C5 gene is necessary for embryonic and adult tissue differentiation, development, and apoptosis, and it also participates in immune response and regulates energy metabolism. However, the role of SDR16C5 in PAAD remains unclear. In this study, we find that SDR16C5 was highly expressed in multiple tumors including PAAD. Furthermore, higher expression of SDR16C5 was significantly associated with poorer survival. We also find that the knockdown of SDR16C5 can inhibit PAAD cell proliferation and promote cell apoptosis by repressing Bcl-2, cleaved caspase 3, and cleaved caspase 9 protein expression. Moreover, silencing SDR16C5 inhibits the migration of PANC-1 and SW1990 cells by interrupting epithelial-mesenchymal transition. KEGG pathway analysis and immunofluorescence staining indicate that SDR16C5 is associated with immunity and may also participate in the development of PAAD through the IL-17 signaling pathway. Collectively, our findings provide evidence that SDR16C5 is overexpressed in PAAD patients and promotes its proliferation, migration, invasion, and apoptosis-inhibition of PAAD cells. Thus, SDR16C5 may be a potential prognostic and therapeutic target.
Collapse
Affiliation(s)
- Kunqiao Hong
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
- NHC Key Laboratory of Pulmonary Immune-related Disease, Guizhou Provincial People’s Hospital, Guiyang City, Guizhou Province, China
| | - Haisen Yin
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianwei Zhang
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baoping Yu
- Department of Gastroenterology, Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Kiran S, Mandal M, Rakib A, Bajwa A, Singh UP. miR-10a-3p modulates adiposity and suppresses adipose inflammation through TGF-β1/Smad3 signaling pathway. Front Immunol 2023; 14:1213415. [PMID: 37334370 PMCID: PMC10272755 DOI: 10.3389/fimmu.2023.1213415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Background Obesity is a multifactorial disease characterized by an enhanced amount of fat and energy storage in adipose tissue (AT). Obesity appears to promote and maintain low-grade chronic inflammation by activating a subset of inflammatory T cells, macrophages, and other immune cells that infiltrate the AT. Maintenance of AT inflammation during obesity involves regulation by microRNAs (miRs), which also regulate the expression of genes implicated in adipocyte differentiation. This study aims to use ex vivo and in vitro approaches to evaluate the role and mechanism of miR-10a-3p in adipose inflammation and adipogenesis. Methods Wild-type BL/6 mice were placed on normal (ND) and high-fat diet (HFD) for 12 weeks and their obesity phenotype, inflammatory genes, and miRs expression were examined in the AT. We also used differentiated 3T3-L1 adipocytes for mechanistic in vitro studies. Results Microarray analysis allowed us to identify an altered set of miRs in the AT immune cells and Ingenuity pathway analysis (IPA) prediction demonstrated that miR-10a-3p expression was downregulated in AT immune cells in the HFD group as compared to ND. A molecular mimic of miR-10a-3p reduced expression of inflammatory M1 macrophages, cytokines, and chemokines, including transforming growth factor-beta 1 (TGF-β1), transcription factor Krüppel-like factor 4 (KLF4), and interleukin 17F (IL-17F) and induced expression of forkhead box P3 (FoxP3) in the immune cells isolated from AT of HFD-fed mice as compared to ND. In differentiated 3T3-L1 adipocytes, the miR-10a-3p mimics also reduced expression of proinflammatory genes and lipid accumulation, which plays a role in the dysregulation of AT function. In these cells, overexpression of miR-10a-3p reduced the expression of TGF-β1, Smad3, CHOP-10, and fatty acid synthase (FASN), relative to the control scramble miRs. Conclusion Our findings suggest that miR-10a-3p mimic mediates the TGF-β1/Smad3 signaling to improve metabolic markers and adipose inflammation. This study provides a new opportunity for the development of miR-10a-3p as a novel therapeutic for adipose inflammation, and its associated metabolic disorders.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mousumi Mandal
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ahmed Rakib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
16
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect colorectal cancer development and associated inflammation. Front Oncol 2023; 13:1158261. [PMID: 37228491 PMCID: PMC10203952 DOI: 10.3389/fonc.2023.1158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few μL of plasma sample. Results Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Qianru Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowicz
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | | | | | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
Cicmil S, Cicmil A, Pavlic V, Krunić J, Sladoje Puhalo D, Bokonjić D, Čolić M. Periodontal Disease in Young Adults as a Risk Factor for Subclinical Atherosclerosis: A Clinical, Biochemical and Immunological Study. J Clin Med 2023; 12:jcm12062197. [PMID: 36983201 PMCID: PMC10051366 DOI: 10.3390/jcm12062197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Although a strong relationship between periodontal disease (PD) and atherosclerosis was shown in adults, little data are published in younger PD patients. Therefore, this study aimed to investigate and correlate clinical parameters of PD, pro- and immunoregulatory cytokines in gingival crevicular fluid (GCF) and serum, biochemical and hematological parameters associated with atherosclerosis risk, and carotid intima-media thickness (IMT) in our younger study participants (n = 78) (mean age 35.92 ± 3.36 years) who were divided into two equal groups: subjects with and without PD. PD patients had higher values of IMT, hs-CRP, triglycerides, total cholesterol, and LDL; most proinflammatory and Th1/Th17-associated cytokines in GCF; and IL-8, IL-12, IL-18, and IL-17A in serum compared to subjects without PD. These cytokines in GCF positively correlated with most clinical periodontal parameters. Clinical periodontal parameters, TNF-α and IL-8 in GCF and IL-17A, hs-CRP, and LDL in serum, had more significant predictive roles in developing subclinical atherosclerosis (IMT ≥ 0.75 mm) in comparison with other cytokines, fibrinogen, and other lipid status parameters. Hs-CRP correlated better with the proinflammatory cytokines than the parameters of lipid status. Except for serum IL-17A, there was no significant association of clinical and immunological PD parameters with lipid status. Overall, these results suggest that dyslipidemia and PD status seem to be independent risk factors for subclinical atherosclerosis in our younger PD population.
Collapse
Affiliation(s)
- Smiljka Cicmil
- Department of Oral Rehabilitation, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
- Correspondence:
| | - Ana Cicmil
- Department of Oral Rehabilitation, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
| | - Verica Pavlic
- Department of Periodontology and Oral Medicine, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina
- Department of Periodontology and Oral Medicine, The Republic of Srpska, Institute of Dentistry, 78000 Banja Luka, Bosnia and Herzegovina
| | - Jelena Krunić
- Department of Dental Pathology, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
| | - Dragana Sladoje Puhalo
- Department of Biochemistry, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
| | - Dejan Bokonjić
- Department of Pediatrics, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
| | - Miodrag Čolić
- Center for Biomedical Sciences, Faculty of Medicine Foca, University of East Sarajevo, 73300 Foca, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| |
Collapse
|
18
|
Narbutt J, Niedźwiedź M, Lesiak A, Ceryn J, Skibińska M. Secukinumab for the Treatment of Psoriasis in Pediatrics: Patient Selection and Acceptability. Patient Prefer Adherence 2023; 17:421-431. [PMID: 36815128 PMCID: PMC9940655 DOI: 10.2147/ppa.s350753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Psoriasis (PsO) is a chronic, systemic, immune-mediated inflammatory skin disease affecting 1% to 5% population worldwide. In one-third of patients, the first symptoms of PsO manifest in childhood, with a mean age of nine years. Psoriasis in children under 16 years of age constitutes 4% of dermatological problems in this age group. Chronic inflammation of the skin observed in PsO is associated with a development of potentially serious comorbidities, including psoriatic arthritis, hypertension, metabolic syndrome, cardiovascular diseases, inflammatory bowel disease, depression and anxiety. It is reported that among children with psoriasis between 5 and 16 years of age health-related quality of life is reduced by 30.5%. Early diagnosis and effective treatment are crucial in pediatric psoriatic patients to avoid future complications and stigmatization. Treatment for psoriasis consists of a range of topical medications, phototherapy and non-biologic and biologic systemic therapies. Approved biologics for PsO in pediatric patients include etanercept, adalimumab, ustekinumab, ixekizumab and secukinumab. Secukinumab, a recombinant, fully human monoclonal antibody targeting IL-17A, was approved by the EMA (2020) and FDA (2021) in pediatric patients above 6 years of age for the treatment of moderate to severe plaque psoriasis who are candidates for systemic therapy. This review discusses the selection and acceptability of secukinumab in children with psoriasis.
Collapse
Affiliation(s)
- Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, Poland
| | - Michał Niedźwiedź
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Lesiak
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, Poland
| | - Justyna Ceryn
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, Poland
- International Doctoral School of the Medical University of Lodz, Lodz, Poland
| | - Małgorzata Skibińska
- Department of Dermatology, Pediatric Dermatology and Dermatological Oncology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Tossetta G, Fantone S, Gesuita R, Di Renzo GC, Meyyazhagan A, Tersigni C, Scambia G, Di Simone N, Marzioni D. HtrA1 in Gestational Diabetes Mellitus: A Possible Biomarker? Diagnostics (Basel) 2022; 12:2705. [PMID: 36359548 PMCID: PMC9689498 DOI: 10.3390/diagnostics12112705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND The high-temperature requirement A 1 (HtrA1) is a multidomain secretory protein with serine-protease activity, expressed in many tissues, including placenta, where its expression is higher in the first trimester, suggesting an association of this serine protease in early phases of human placenta development. In this study, we evaluated maternal serum HtrA1 levels in the first and third trimester of gestation. In particular, we evaluated a possible role of HtrA1 as an early marker of gestational diabetes mellitus (GDM) in the first trimester of gestation. METHODS We evaluated HtrA1 serum levels in the third trimester (36-40 weeks) in normal pregnancies (n = 20) and GDM pregnancies (n = 20) by using ELISA analysis. Secondly, we performed the same analysis by using the first trimester sera (10-12 weeks) of healthy pregnant women that will develop a normal pregnancy (n = 210) or GDM (n = 28) during pregnancy. RESULTS We found that HtrA1 serum levels in the third trimester were higher in pregnancies complicated by GDM. Interestingly, higher HtrA1 serum levels were also found in the first trimester in women developing GDM later during the second-third trimester. No significant differences in terms of maternal age and gestational age were found between cases and controls. Women with GDM shown significantly higher pre-pregnancy BMI values compared to controls. Moreover, the probability of GDM occurrence significantly increased with increasing HtrA1 levels and BMI values. The ROC curve showed a good accuracy in predicting GDM, with an AUC of 0.74 (95%CI: 0.64-0.92). CONCLUSIONS These results suggest an important role of HtrA1 as an early predictive marker of GDM in the first trimester of gestation, showing a significative clinical relevance for prevention of this disease.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Rosaria Gesuita
- Centre of Epidemiology and Biostatistics, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics, Gynecology and Perinatology, IE Sechenov First State University, 119991 Moscow, Russia
- Wayne State University Medical School and Perinatal Research Branch, NIH-NICHD, Detroit, MI 48201, USA
| | - Arun Meyyazhagan
- Wayne State University Medical School and Perinatal Research Branch, NIH-NICHD, Detroit, MI 48201, USA
| | - Chiara Tersigni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, 00168 Roma, Italy
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Nicoletta Di Simone
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|