1
|
Wang Y, Jiao P, Wu C, Wang C, Shi K, Gao X, Guan S, Ma Y. ZmNF-YB10, a maize NF-Y transcription factor, positively regulates drought and salt stress response in Arabidopsis thaliana. GM CROPS & FOOD 2025; 16:28-45. [PMID: 39718137 DOI: 10.1080/21645698.2024.2438421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Maize (Zea mays L.) is a major food and feed crop and an important raw material for energy, chemicals, and livestock. The NF-Y family of transcription factors in maize plays a crucial role in the regulation of plant development and response to environmental stress. In this study, we successfully cloned and characterized the maize NF-Y transcription factor gene ZmNF-YB10. We used bioinformatics, quantitative fluorescence PCR, and other techniques to analyze the basic properties of the gene, its tissue expression specificity, and its role in response to drought, salt, and other stresses. The results indicated that the gene was 1209 base pairs (bp) in length, with a coding sequence (CDS) region of 618 bp, encoding a polypeptide composed of 205 amino acid residues. This polypeptide has a theoretical isoelectric point of 5.85 and features a conserved structural domain unique to the NF-Y family. Quantitative fluorescence PCR results demonstrated that the ZmNF-YB10 gene was differentially upregulated under drought and salt stress treatments but exhibited a negatively regulated expression pattern under alkali and cold stress treatments. Transgenic Arabidopsis thaliana subjected to drought and salt stress in soil showed greener leaves than wild-type A. thaliana. In addition, the overexpression lines showed reduced levels of hydrogen peroxide (H2O2), superoxide (O2-), and malondialdehyde (MDA) and increased activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Western blot analysis revealed a distinct band at 21.8 kDa. Salt and drought tolerance analyses conducted in E. coli BL21 indicated a positive regulation. In yeast cells, ZmNF-YB10 exhibited a biological function that enhances salt and drought tolerance. Protein interactions were observed among the ZmNF-YB10, ZmNF-YC2, and ZmNF-YC4 genes. It is hypothesized that the ZmNF-YB10, ZmNF-YC2, and ZmNF-YC4 genes may play a role in the response to abiotic stresses, such as drought and salt tolerance, in maize.
Collapse
Affiliation(s)
- Yimeng Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chenyang Wu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Chunlai Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ke Shi
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xiaoqi Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Chinnaswamy A, Sakthivel SK, Channappa M, Ramanathan V, Shivalingamurthy SG, Peter SC, Kumar R, Kumar RA, Dhansu P, Meena MR, Raju G, Boominathan P, Markandan M, Muthukrishnan A. Overexpression of an NF-YB gene family member, EaNF-YB2, enhances drought tolerance in sugarcane (Saccharum Spp. Hybrid). BMC PLANT BIOLOGY 2024; 24:1246. [PMID: 39722010 DOI: 10.1186/s12870-024-05932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Drought is one of main critical factors that limits sugarcane productivity and juice quality in tropical regions. The unprecedented changes in climate such as monsoon failure, increase in temperature and other factors warrant the need for development of stress tolerant cultivars to sustain sugar production. Plant Nuclear factor (NF-Y) is one of the major classes of transcription factors that have a major role in plant development and abiotic stress response. In our previous studies, we found that under drought conditions, the nuclear factor NF-YB2 was highly expressed in Erianthus arundinaceus, an abiotic stress tolerant wild genus of Saccharum species. In this study, the coding sequence of NF-YB2 gene was isolated from Erianthus arundinaceus and overexpressed in sugarcane to develop drought tolerant lines. RESULTS : EaNF-YB2 overexpressing sugarcane (OE) lines had higher relative water content, chlorophyll content and photosynthetic efficiency compared to non-transgenic (NT) control. In addition, overexpressing lines had higher activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR), and higher proline content, lower malondialdehyde (MDA) and peroxide (H2O2) contents. The expression studies revealed that EaNF-YB2 expression was significantly higher in OE lines than NT control under drought stress. The OE lines had an elevated expression of abiotic stress responsive genes such as BRICK, HSP 70, DREB2, EDH45, and LEA3. The morphological analysis revealed that OE lines exhibited less wilting than NT under drought conditions. CONCLUSION This study provides insights into the role of the EaNF-YB2 gene in drought tolerance in sugarcane. Based on the findings of this study, the EaNF-YB2 gene can be potentially exploited to produce drought tolerant sugarcane cultivars to sustain sugarcane production under water deficit conditions.
Collapse
Affiliation(s)
- Appunu Chinnaswamy
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| | - Surya Krishna Sakthivel
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Mahadevaiah Channappa
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
- Division of Vegetable Crops, Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Suresha Giriyapur Shivalingamurthy
- Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Swathik Clarancia Peter
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Ravinder Kumar
- ICAR-SBI Regional Research Centre, Karnal, Haryana, 132001, India
| | - Raja Arun Kumar
- Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Pooja Dhansu
- ICAR-SBI Regional Research Centre, Karnal, Haryana, 132001, India
| | - Mintu Ram Meena
- ICAR-SBI Regional Research Centre, Karnal, Haryana, 132001, India
| | - Gomathi Raju
- Division of Crop Production, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Parasuraman Boominathan
- Department of Plant Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Manickavasagam Markandan
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Arun Muthukrishnan
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
3
|
le Roux J, Jacob R, Fischer R, van der Vyver C. Identification and expression analysis of nuclear factor Y transcription factor genes under drought, cold and Eldana infestation in sugarcane (Saccharum spp. hybrid). Genes Genomics 2024; 46:927-940. [PMID: 38877289 PMCID: PMC11329523 DOI: 10.1007/s13258-024-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND The Nuclear Factor Y (NF-Y) transcription factor (TF) gene family plays a crucial role in plant development and response to stress. Limited information is available on this gene family in sugarcane. OBJECTIVES To identify sugarcane NF-Y genes through bioinformatic analysis and phylogenetic association and investigate the expression of these genes in response to abiotic and biotic stress. METHODS Sugarcane NF-Y genes were identified using comparative genomics from functionally annotated Poaceae and Arabidopsis species. Quantitative PCR and transcriptome analysis assigned preliminary functional roles to these genes in response to water deficit, cold and African sugarcane borer (Eldana saccharina) infestation. RESULTS We identify 21 NF-Y genes in sugarcane. Phylogenetic analysis revealed three main branches representing the subunits with potential discrepancies present in the assignment of numerical names of some NF-Y putative orthologs across the different species. Gene expression analysis indicated that three genes, ShNF-YA1, A3 and B3 were upregulated and two genes, NF-YA4 and A7 were downregulated, while three genes were upregulated, ShNF-YB2, B3 and C4, in the plants exposed to water deficit and cold stress, respectively. Functional involvement of NF-Y genes in the biotic stress response were also detected where three genes, ShNF-YA6, A3 and A7 were downregulated in the early resistant (cv. N33) response to Eldana infestation whilst only ShNF-YA6 was downregulated in the susceptible (cv. N11) early response. CONCLUSIONS Our research findings establish a foundation for investigating the function of ShNF-Ys and offer candidate genes for stress-resistant breeding and improvement in sugarcane.
Collapse
Affiliation(s)
- Jancke le Roux
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Robyn Jacob
- South African Sugarcane Research Institute (SASRI), KwaZulu-Natal, P/Bag X02, Mount Edgecombe, Durban, 4300, South Africa
| | - Riëtte Fischer
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa
| | - Christell van der Vyver
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602, South Africa.
| |
Collapse
|
4
|
Yin K, Liu Y, Liu Z, Zhao R, Zhang Y, Yan C, Zhao Z, Feng B, Zhang X, An K, Li J, Liu J, Dong K, Yao J, Zhao N, Zhou X, Chen S. Populus euphratica CPK21 Interacts with NF-YC3 to Enhance Cadmium Tolerance in Arabidopsis. Int J Mol Sci 2024; 25:7214. [PMID: 39000320 PMCID: PMC11240976 DOI: 10.3390/ijms25137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The toxic metal cadmium (Cd) poses a serious threat to plant growth and human health. Populus euphratica calcium-dependent protein kinase 21 (CPK21) has previously been shown to attenuate Cd toxicity by reducing Cd accumulation, enhancing antioxidant defense and improving water balance in transgenic Arabidopsis. Here, we confirmed a protein-protein interaction between PeCPK21 and Arabidopsis nuclear transcription factor YC3 (AtNF-YC3) by yeast two-hybrid and bimolecular fluorescence complementation assays. AtNF-YC3 was induced by Cd and strongly expressed in PeCPK21-overexpressed plants. Overexpression of AtNF-YC3 in Arabidopsis reduced the Cd inhibition of root length, fresh weight and membrane stability under Cd stress conditions (100 µM, 7 d), suggesting that AtNF-YC3 appears to contribute to the improvement of Cd stress tolerance. AtNF-YC3 improved Cd tolerance by limiting Cd uptake and accumulation, activating antioxidant enzymes and reducing hydrogen peroxide (H2O2) production under Cd stress. We conclude that PeCPK21 interacts with AtNF-YC3 to limit Cd accumulation and enhance the reactive oxygen species (ROS) scavenging system and thereby positively regulate plant adaptation to Cd environments. This study highlights the interaction between PeCPK21 and AtNF-YC3 under Cd stress conditions, which can be utilized to improve Cd tolerance in higher plants.
Collapse
Affiliation(s)
- Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Yi Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Bing Feng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Xiaomeng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Keyue An
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Kaiyue Dong
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China;
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China; (K.Y.); (Y.L.); (Z.L.); (R.Z.); (Y.Z.); (C.Y.); (Z.Z.); (B.F.); (X.Z.); (K.A.); (J.L.); (J.L.); (K.D.); (N.Z.); (X.Z.)
| |
Collapse
|
5
|
Wang L, Zhao X, Zheng R, Huang Y, Zhang C, Zhang MM, Lan S, Liu ZJ. Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense. Int J Mol Sci 2024; 25:3031. [PMID: 38474276 DOI: 10.3390/ijms25053031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Cymbidium sinense, a type of orchid plant, is more drought-resistant and ornamental than other terrestrial orchids. Research has shown that many members of the NUCLEAR FACTOR Y (NF-Y) transcription factor family are responsive to plant growth, development, and abiotic stress. However, the mechanism of the NF-Y gene family's response to abiotic stress in orchids has not yet been reported. In this study, phylogenetic analysis allowed for 27 CsNF-Y genes to be identified (5 CsNF-YAs, 9 CsNF-YBs, and 13 CsNF-YC subunits), and the CsNF-Ys were homologous to those in Arabidopsis and Oryza. Protein structure analysis revealed that different subfamilies contained different motifs, but all of them contained Motif 2. Secondary and tertiary protein structure analysis indicated that the CsNF-YB and CsNF-YC subfamilies had a high content of alpha helix structures. Cis-element analysis showed that elements related to drought stress were mainly concentrated in the CsNF-YB and CsNF-YC subfamilies, with CsNF-YB3 and CsNF-YC12 having the highest content. The results of a transcriptome analysis showed that there was a trend of downregulation of almost all CsNF-Ys in leaves under drought stress, while in roots, most members of the CsNF-YB subfamily showed a trend of upregulation. Additionally, seven genes were selected for real-time reverse transcription quantitative PCR (qRT-PCR) experiments. The results were generally consistent with those of the transcriptome analysis. The regulatory roles of CsNF-YB 1, 2, and 4 were particularly evident in the roots. The findings of our study may make a great contribution to the understanding of the role of CsNF-Ys in stress-related metabolic processes.
Collapse
Affiliation(s)
- Linying Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiyue Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng-Meng Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Mohanan MV, Thelakat Sasikumar SP, Jayanarayanan AN, Selvarajan D, Ramanathan V, Shivalingamurthy SG, Raju G, Govind H, Chinnaswamy A. Transgenic sugarcane overexpressing Glyoxalase III improved germination and biomass production at formative stage under salinity and water-deficit stress conditions. 3 Biotech 2024; 14:52. [PMID: 38274846 PMCID: PMC10805895 DOI: 10.1007/s13205-023-03856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
The glyoxalase system, involving Glyoxalase I (GlyI) and Glyoxalase II (Gly II), plays a vital role in abiotic stress tolerance in plants. A novel enzyme Glyoxalase III (Gly III) was found recently from bacteria, yeast, and plant species. This enzyme provides a new way to detoxify Methylglyoxal (MG), a cytotoxic α-oxoaldehyde, which, in excess, can cause complete cell destruction by forming Reactive Oxygen Species (ROS) and Advanced Glycation End products (AGEs) or DNA/RNA mutation. In this background, the current study examined sugarcane transgenic events that exhibit an increase in expression of EaGly III, to assess their performance in terms of germination and biomass production during formative stage under stress conditions. Southern blot analysis outcomes confirmed the integration of transgene in the transgenic plants. The results from quantitative RT-PCR analyses confirmed high expression levels of EaGly III in transgenic events compared to wild type (WT) under salinity (100 and 200 mM NaCl) and drought (withholding watering) conditions. Transgenic events exhibited enhanced biomass productivity ranged between 0.141 Kg/pot and 0.395 Kg/pot under 200 mM salinity and 0.262 Kg/pot and 0.666 Kg/pot under drought stress. Further, transgenic events observed significantly higher germination rates under salinity and drought conditions compared to that of WT. Subcellular localization prediction by EaGlyIII-GFP fusion expression in sugarcane callus showed that it is distributed across the cytoplasm, thus indicating its widespread activity within the cell. These results strongly suggest that enhancing EaGly III activity is a useful strategy to improve the salinity and drought-tolerance in sugarcane as well as other crops.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Valarmathi Ramanathan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | | | - Gomathi Raju
- Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India
| |
Collapse
|
7
|
Vignesh P, Mahadevaiah C, Selvamuthu K, Mahadeva Swamy HK, Sreenivasa V, Appunu C. Comparative genome-wide characterization of salt responsive micro RNA and their targets through integrated small RNA and de novo transcriptome profiling in sugarcane and its wild relative Erianthus arundinaceus. 3 Biotech 2024; 14:24. [PMID: 38162015 PMCID: PMC10756875 DOI: 10.1007/s13205-023-03867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Soil salinity and saline irrigation water are major constraints in sugarcane affecting the production of cane and sugar yield. To understand the salinity induced responses and to identify novel genomic resources, integrated de novo transcriptome and small RNA sequencing in sugarcane wild relative, Erianthus arundinaceus salt tolerant accession IND 99-907 and salt-sensitive sugarcane genotype Co 97010 were performed. A total of 362 known miRNAs belonging to 62 families and 353 miRNAs belonging to 63 families were abundant in IND 99-907 and Co 97010 respectively. The miRNA families such as miR156, miR160, miR166, miR167, miR169, miR171, miR395, miR399, miR437 and miR5568 were the most abundant with more than ten members in both genotypes. The differential expression analysis of miRNA reveals that 221 known miRNAs belonging to 48 families and 130 known miRNAs belonging to 42 families were differentially expressed in IND 99-907 and Co 97010 respectively. A total of 12,693 and 7982 miRNA targets against the monoploid mosaic genome and a total of 15,031 and 12,152 miRNA targets against the de novo transcriptome were identified for differentially expressed known miRNAs of IND 99-907 and Co 97010 respectively. The gene ontology (GO) enrichment analysis of the miRNA targets revealed that 24, 12 and 14 enriched GO terms (FDR < 0.05) for biological process, molecular function and cellular component respectively. These miRNAs have many targets that associated in regulation of biotic and abiotic stresses. Thus, the genomic resources generated through this study are useful for sugarcane crop improvement through biotechnological and advanced breeding approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03867-7.
Collapse
Affiliation(s)
- Palanisamy Vignesh
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Channappa Mahadevaiah
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
- ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake Post, Bangalore, 560089 India
| | - Kannan Selvamuthu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Venkatarayappa Sreenivasa
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
8
|
Narayan JA, Manoj VM, Nerkar G, Chakravarthi M, Dharshini S, Subramonian N, Premachandran MN, Valarmathi R, Kumar RA, Gomathi R, Surendar KK, Hemaprabha G, Appunu C. Transgenic sugarcane with higher levels of BRK1 showed improved drought tolerance. PLANT CELL REPORTS 2023; 42:1611-1628. [PMID: 37578541 DOI: 10.1007/s00299-023-03056-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
KEY MESSAGE Transgenic sugarcane overexpressing BRK1 showed improved tolerance to drought stress through modulation of actin polymerization and formation of interlocking marginal lobes in epidermal leaf cells, a typical feature associated with BRK1 expression under drought stress. BRICK1 (BRK1) genes promote leaf epidermal cell morphogenesis and division in plants that involves local actin polymerization. Although the changes in actin filament organization during drought have been reported, the role of BRK in stress tolerance remains unknown. In our previous work, the drought-tolerant Erianthus arundinaceus exhibited high levels of the BRK gene expression under drought stress. Therefore, in the present study, the drought-responsive gene, BRK1 from Saccharum spontaneum, was transformed into sugarcane to test if it conferred drought tolerance in the commercial sugarcane cultivar Co 86032. The transgenic lines were subjected to drought stress, and analyzed using physiological parameters for drought stress. The drought-induced BRK1-overexpressing lines of sugarcane exhibited significantly higher transgene expression compared with the wild-type control and also showed improved physiological parameters. In addition, the formation of interlocking marginal lobes in the epidermal leaf cells, a typical feature associated with BRK1 expression, was observed in all transgenic BRK1 lines during drought stress. This is the first report to suggest that BRK1 plays a role in sugarcane acclimation to drought stress and may prove to be a potential candidate in genetic engineering of plants for enhanced biomass production under drought stress conditions.
Collapse
Affiliation(s)
- J Ashwin Narayan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - V M Manoj
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - Gauri Nerkar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - M Chakravarthi
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, SP, CEP 13565-905, Brazil
| | - S Dharshini
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - N Subramonian
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - M N Premachandran
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - R Valarmathi
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - R Arun Kumar
- Division of Crop Production, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - R Gomathi
- Division of Crop Production, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - K Krisha Surendar
- Deprtament of Plant Physiology, Paddy Breeding Station, Tamil Nadu Agricultural University (TNAU), Tamil Nadu, Coimbatore, 641003, India
| | - G Hemaprabha
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India
| | - C Appunu
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute (SBI), Tamil Nadu, Coimbatore, 641007, India.
| |
Collapse
|