1
|
Cerro-Herreros E, Núñez-Manchón J, Naldaiz-Gastesi N, Carrascosa-Sàez M, García-Rey A, Losilla DP, González-Martínez I, Espinosa-Espinosa J, Moreno K, Poyatos-García J, Vilchez JJ, de Munain AL, Suelves M, Nogales-Gadea G, Llamusí B, Artero R. AntimiR treatment corrects myotonic dystrophy primary cell defects across several CTG repeat expansions with a dual mechanism of action. SCIENCE ADVANCES 2024; 10:eadn6525. [PMID: 39383229 PMCID: PMC11463307 DOI: 10.1126/sciadv.adn6525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
This study evaluated therapeutic antimiRs in primary myoblasts from patients with myotonic dystrophy type 1 (DM1). DM1 results from unstable CTG repeat expansions in the DMPK gene, leading to variable clinical manifestations by depleting muscleblind-like splicing regulator protein MBNL1. AntimiRs targeting natural repressors miR-23b and miR-218 boost MBNL1 expression but must be optimized for a better pharmacological profile in humans. In untreated cells, miR-23b and miR-218 were up-regulated, which correlated with CTG repeat size, supporting that active MBNL1 protein repression synergizes with the sequestration by CUG expansions in DMPK. AntimiR treatment improved RNA toxicity readouts and corrected regulated exon inclusions and myoblast defects such as fusion index and myotube area across CTG expansions. Unexpectedly, the treatment also reduced DMPK transcripts and ribonuclear foci. A leading antimiR reversed 68% of dysregulated genes. This study highlights the potential of antimiRs to treat various DM1 forms across a range of repeat sizes and genetic backgrounds by mitigating MBNL1 sequestration and enhancing protein synthesis.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Judit Núñez-Manchón
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain
- CIBERNED, Carlos III Institute, Spanish Ministry of Science and Innovation, Madrid, Spain
| | - Marc Carrascosa-Sàez
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Andrea García-Rey
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Diego Piqueras Losilla
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Irene González-Martínez
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| | - Jorge Espinosa-Espinosa
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Particular Internacional SEK (UISEK), Quito 170302, Ecuador
| | - Kevin Moreno
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
| | - Juan J. Vilchez
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
- Neuromuscular Referral Center, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Universitary and Polytechnic La Fe Hospital, Valencia, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain
- CIBERNED, Carlos III Institute, Spanish Ministry of Science and Innovation, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Mònica Suelves
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Beatriz Llamusí
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Rubén Artero
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
2
|
Almeida CF, Robriquet F, Vetter TA, Huang N, Neinast R, Hernandez-Rosario L, Rajakumar D, Arnold WD, McBride KL, Flanigan KM, Weiss RB, Wein N. Promising AAV.U7snRNAs vectors targeting DMPK improve DM1 hallmarks in patient-derived cell lines. Front Cell Dev Biol 2023; 11:1181040. [PMID: 37397246 PMCID: PMC10309041 DOI: 10.3389/fcell.2023.1181040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common form of muscular dystrophy in adults and affects mainly the skeletal muscle, heart, and brain. DM1 is caused by a CTG repeat expansion in the 3'UTR region of the DMPK gene that sequesters muscleblind-like proteins, blocking their splicing activity and forming nuclear RNA foci. Consequently, many genes have their splicing reversed to a fetal pattern. There is no treatment for DM1, but several approaches have been explored, including antisense oligonucleotides (ASOs) aiming to knock down DMPK expression or bind to the CTGs expansion. ASOs were shown to reduce RNA foci and restore the splicing pattern. However, ASOs have several limitations and although being safe treated DM1 patients did not demonstrate improvement in a human clinical trial. AAV-based gene therapies have the potential to overcome such limitations, providing longer and more stable expression of antisense sequences. In the present study, we designed different antisense sequences targeting exons 5 or 8 of DMPK and the CTG repeat tract aiming to knock down DMPK expression or promote steric hindrance, respectively. The antisense sequences were inserted in U7snRNAs, which were then vectorized in AAV8 particles. Patient-derived myoblasts treated with AAV8. U7snRNAs showed a significant reduction in the number of RNA foci and re-localization of muscle-blind protein. RNA-seq analysis revealed a global splicing correction in different patient-cell lines, without alteration in DMPK expression.
Collapse
Affiliation(s)
- Camila F. Almeida
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Florence Robriquet
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Tatyana A. Vetter
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nianyuan Huang
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Reid Neinast
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Dhanarajan Rajakumar
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
| | - W. David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO, United States
| | - Kim L. McBride
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Kevin M. Flanigan
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurology, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Robert B. Weiss
- Department of Human Genetics, The University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Nicolas Wein
- Center for Gene Therapy, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
The Splicing of the Mitochondrial Calcium Uniporter Genuine Activator MICU1 Is Driven by RBFOX2 Splicing Factor during Myogenic Differentiation. Int J Mol Sci 2022; 23:ijms23052517. [PMID: 35269658 PMCID: PMC8909990 DOI: 10.3390/ijms23052517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing, the process by which exons within a pre-mRNA transcript are differentially joined or skipped, is crucial in skeletal muscle since it is required both during myogenesis and in post-natal life to reprogram the transcripts of contractile proteins, metabolic enzymes, and transcription factors in functionally distinct muscle fiber types. The importance of such events is underlined by the numerosity of pathological conditions caused by alternative splicing aberrations. Importantly, many skeletal muscle Ca2+ homeostasis genes are also regulated by alternative splicing mechanisms, among which is the Mitochondrial Ca2+ Uniporter (MCU) genuine activator MICU1 which regulates MCU opening upon cell stimulation. We have previously shown that murine skeletal muscle MICU1 is subjected to alternative splicing, thereby generating a splice variant-which was named MICU1.1-that confers unique properties to the mitochondrial Ca2+ uptake and ensuring sufficient ATP production for muscle contraction. Here we extended the analysis of MICU1 alternative splicing to human tissues, finding two additional splicing variants that were characterized by their ability to regulate mitochondrial Ca2+ uptake. Furthermore, we found that MICU1 alternative splicing is induced during myogenesis by the splicing factor RBFOX2. These results highlight the complexity of the alternative splicing mechanisms in skeletal muscle and the regulation of mitochondrial Ca2+ among tissues.
Collapse
|
4
|
Cellular Senescence and Aging in Myotonic Dystrophy. Int J Mol Sci 2022; 23:ijms23042339. [PMID: 35216455 PMCID: PMC8877951 DOI: 10.3390/ijms23042339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 01/10/2023] Open
Abstract
Myotonic dystrophy (DM) is a dominantly inherited multisystemic disorder affecting various organs, such as skeletal muscle, heart, the nervous system, and the eye. Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are caused by expanded CTG and CCTG repeats, respectively. In both forms, the mutant transcripts containing expanded repeats aggregate as nuclear foci and sequester several RNA-binding proteins, resulting in alternative splicing dysregulation. Although certain alternative splicing events are linked to the clinical DM phenotypes, the molecular mechanisms underlying multiple DM symptoms remain unclear. Interestingly, multi-systemic DM manifestations, including muscle weakness, cognitive impairment, cataract, and frontal baldness, resemble premature aging. Furthermore, cellular senescence, a critical contributor to aging, is suggested to play a key role in DM cellular pathophysiology. In particular, several senescence inducers including telomere shortening, mitochondrial dysfunction, and oxidative stress and senescence biomarkers such as cell cycle inhibitors, senescence-associated secretory phenotype, chromatin reorganization, and microRNA have been implicated in DM pathogenesis. In this review, we focus on the clinical similarities between DM and aging, and summarize the involvement of cellular senescence in DM and the potential application of anti-aging DM therapies.
Collapse
|
5
|
Belluati A, Craciun I, Palivan CG. Bioactive Catalytic Nanocompartments Integrated into Cell Physiology and Their Amplification of a Native Signaling Cascade. ACS NANO 2020; 14:12101-12112. [PMID: 32869973 DOI: 10.1021/acsnano.0c05574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioactive nanomaterials have the potential to overcome the limitations of classical pharmacological approaches by taking advantage of native pathways to influence cell behavior, interacting with them and eliciting responses. Herein, we propose a cascade system mediated by two catalytic nanocompartments (CNC) with biological activity. Activated by nitric oxide (NO) produced by inducible nitric oxidase synthase (iNOS), soluble guanylyl cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), a second messenger that modulates a broad range of physiological functions. As alterations in cGMP signaling are implicated in a multitude of pathologies, its signaling cascade represents a viable target for therapeutic intervention. Following along this line, we encapsulated iNOS and sGC in two separate polymeric compartments that function in unison to produce NO and cGMP. Their action was tested in vitro by monitoring the derived changes in cytoplasmic calcium concentrations of HeLa and differentiated C2C12 myocytes, where the produced second messenger influenced the cellular homeostasis.
Collapse
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
6
|
Santoro M, Piacentini R, Perna A, Pisano E, Severino A, Modoni A, Grassi C, Silvestri G. Resveratrol corrects aberrant splicing of RYR1 pre-mRNA and Ca 2+ signal in myotonic dystrophy type 1 myotubes. Neural Regen Res 2020; 15:1757-1766. [PMID: 32209783 PMCID: PMC7437583 DOI: 10.4103/1673-5374.276336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a spliceopathy related to the mis-splicing of several genes caused by sequestration of nuclear transcriptional RNA-binding factors from non-coding CUG repeats of DMPK pre-mRNAs. Dysregulation of ryanodine receptor 1 (RYR1), sarcoplasmatic/endoplasmatic Ca2+-ATPase (SERCA) and α1S subunit of voltage-gated Ca2+ channels (Cav1.1) is related to Ca2+ homeostasis and excitation-contraction coupling impairment. Though no pharmacological treatment for DM1 exists, aberrant splicing correction represents one major therapeutic target for this disease. Resveratrol (RES, 3,5,4′-trihydroxy-trans-stilbene) is a promising pharmacological tools for DM1 treatment for its ability to directly bind the DNA and RNA influencing gene expression and alternative splicing. Herein, we analyzed the therapeutic effects of RES in DM1 myotubes in a pilot study including cultured myotubes from two DM1 patients and two healthy controls. Our results indicated that RES treatment corrected the aberrant splicing of RYR1, and this event appeared associated with restoring of depolarization-induced Ca2+ release from RYR1 dependent on the electro-mechanical coupling between RYR1 and Cav1.1. Interestingly, immunoblotting studies showed that RES treatment was associated with a reduction in the levels of CUGBP Elav-like family member 1, while RYR1, Cav1.1 and SERCA1 protein levels were unchanged. Finally, RES treatment did not induce any major changes either in the amount of ribonuclear foci or sequestration of muscleblind-like splicing regulator 1. Overall, the results of this pilot study would support RES as an attractive compound for future clinical trials in DM1. Ethical approval was obtained from the Ethical Committee of IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy (rs9879/14) on May 20, 2014.
Collapse
Affiliation(s)
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessia Perna
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eugenia Pisano
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Severino
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Anna Modoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Silvestri
- Department of Neuroscience, Università Cattolica del Sacro Cuore; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Ahn C, Jung EM, An BS, Hong EJ, Yoo YM, Jeung EB. The Protective Role of Calbindin-D 9k on Endoplasmic Reticulum Stress-Induced Beta Cell Death. Int J Mol Sci 2019; 20:ijms20215317. [PMID: 31731478 PMCID: PMC6862009 DOI: 10.3390/ijms20215317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/16/2022] Open
Abstract
Intracellular calcium ion content is tightly regulated for the maintenance of cellular functions and cell survival. Calbindin-D9k (CaBP-9k) is responsible for regulating the distribution of cytosolic free-calcium ions. In this study, we aimed to investigate the effect of CaBP-9k on cell survival in pancreatic beta cells. Six-month-old wildtype CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice were used to compare the pathological phenotypes of calcium-binding protein-deleted mice. Subsequently, the endoplasmic reticulum (ER) stress reducer tauroursodeoxycholic acid (TUDCA) was administered to wildtype and CaBP-9k KO mice. In vitro assessment of the role of CaBP-9k was performed following CaBP-9k overexpression and treatment with the ER stress inducer thapsigargin. Six-month-old CaBP-9k KO mice showed reduced islet volume and up-regulation of cell death markers resulting from ER stress, which led to pancreatic beta cell death. TUDCA treatment recovered islet volume, serum insulin level, and abdominal fat storage by CaBP-9k ablation. CaBP-9k overexpression elevated insulin secretion and recovered thapsigargin-induced ER stress in the INS-1E cell line. The results of this study show that CaBP-9k can protect pancreatic beta cell survival from ER stress and contribute to glucose homeostasis, which can reduce the risk of type 1 diabetes and provide the molecular basis for calcium supplementation to diabetic patients.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea;
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Suite 401Veterinary Medicine Bldg., Yuseong, Daejeon 34134, Korea;
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Korea; (C.A.); (E.-M.J.); (Y.-M.Y.)
- Correspondence:
| |
Collapse
|
8
|
Bosè F, Renna LV, Fossati B, Arpa G, Labate V, Milani V, Botta A, Micaglio E, Meola G, Cardani R. TNNT2 Missplicing in Skeletal Muscle as a Cardiac Biomarker in Myotonic Dystrophy Type 1 but Not in Myotonic Dystrophy Type 2. Front Neurol 2019; 10:992. [PMID: 31611837 PMCID: PMC6776629 DOI: 10.3389/fneur.2019.00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Cardiac involvement is one of the most important manifestations of the multisystemic phenotype of patients affected by myotonic dystrophy (DM) and represents the second cause of premature death. Molecular mechanisms responsible for DM cardiac defects are still unclear; however, missplicing of the cardiac isoform of troponin T (TNNT2) and of the cardiac sodium channel (SCN5A) genes might contribute to the reduced myocardial function and conduction abnormalities seen in DM patients. Since, in DM skeletal muscle, the TNNT2 gene shows the same aberrant splicing pattern observed in cardiac muscle, the principal aim of this work was to verify if the TNNT2 aberrant fetal isoform expression could be secondary to myopathic changes or could reflect the DM cardiac phenotype. Analysis of alternative splicing of TNNT2 and of several genes involved in DM pathology has been performed on muscle biopsies from patients affected by DM type 1 (DM1) or type 2 (DM2) with or without cardiac involvement. Our analysis shows that missplicing of muscle-specific genes is higher in DM1 and DM2 than in regenerating control muscles, indicating that these missplicing could be effectively important in DM skeletal muscle pathology. When considering the TNNT2 gene, missplicing appears to be more evident in DM1 than in DM2 muscles since, in DM2, the TNNT2 fetal isoform appears to be less expressed than the adult isoform. This evidence does not seem to be related to less severe muscle histopathological alterations that appear to be similar in DM1 and DM2 muscles. These results seem to indicate that the more severe TNNT2 missplicing observed in DM1 could not be related only to myopathic changes but could reflect the more severe general phenotype compared to DM2, including cardiac problems that appear to be more severe and frequent in DM1 than in DM2 patients. Moreover, TNNT2 missplicing significantly correlates with the QRS cardiac parameter in DM1 but not in DM2 patients, indicating that this splicing event has good potential to function as a biomarker of DM1 severity and it should be considered in pharmacological clinical trials to monitor the possible effects of different therapeutic approaches on skeletal muscle tissues.
Collapse
Affiliation(s)
- Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Neurorehabilitation Sciences, Casa Cura Policlinico (CCP), Milan, Italy
| | - Giovanni Arpa
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valentina Labate
- University Cardiology Unit, IRCCS-Policlinico San Donato, Milan, Italy
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, Milan, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Emanuele Micaglio
- Department of Arrhythmology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS-Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
9
|
Renna LV, Bosè F, Brigonzi E, Fossati B, Meola G, Cardani R. Aberrant insulin receptor expression is associated with insulin resistance and skeletal muscle atrophy in myotonic dystrophies. PLoS One 2019; 14:e0214254. [PMID: 30901379 PMCID: PMC6430513 DOI: 10.1371/journal.pone.0214254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant multisystemic disorders linked to two different genetic loci and characterized by several features including myotonia, muscle atrophy and insulin resistance. The aberrant alternative splicing of insulin receptor (IR) gene and post-receptor signalling abnormalities have been associated with insulin resistance, however the precise molecular defects that cause metabolic dysfunctions are still unknown. Thus, the aims of this study were to investigate in DM skeletal muscle biopsies if beyond INSR missplicing, altered IR protein expression could play a role in insulin resistance and to verify if the lack of insulin pathway activation could contribute to skeletal muscle wasting. Our analysis showed that DM skeletal muscle exhibits a lower expression of the insulin receptor in type 1 fibers which can contribute to the defective activation of the insulin pathway. Moreover, the aberrant insulin signalling activation leads to a lower activation of mTOR and to an increase in MuRF1 and Atrogin-1/MAFbx expression, possible explaining DM skeletal muscle fiber atrophy. Taken together our data indicate that the defective insulin signalling activation can contribute to skeletal muscle features in DM patients and are probably linked to an aberrant specific-fiber type expression of the insulin receptor.
Collapse
Affiliation(s)
- Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Elisa Brigonzi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
- * E-mail:
| |
Collapse
|
10
|
Kumar R, Deshmukh PS, Sharma S, Banerjee B. Activation of endoplasmic reticulum stress in rat brain following low-intensity microwave exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9314-9321. [PMID: 30721430 DOI: 10.1007/s11356-019-04377-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
The present study was designed to explore the effects of low-intensity microwave radiation on endoplasmic reticulum stress and unfolded protein response. Experiments were performed on male Wistar rats exposed to microwave radiation for 30 days at 900 MHz, 1800 MHz, and 2450 MHz frequencies on four groups of animal: sham-exposed group, 900 MHz exposed (SAR 5.84 × 10-4 W/kg), 1800 MHz exposed (SAR 5.94 × 10-4 W/kg), and 2450 MHz exposed (SAR 6.7 × 10-4 W/kg) groups. Expressions of mRNA were estimated at the end of exposure in rat brain by real-time quantitative PCR. Microwave exposure at 900, 1800, and 2450 MHz with respective SAR values as mentioned above significantly (< 0.05) altered mRNA expression of transcription factors ATF4, CHOP, and XBP1 in accordance with increasing microwave frequency. The result of the present study reveals that low-intensity microwave exposure at frequencies 900, 1800, and 2450 MHz induces endoplasmic reticulum stress and unfolded protein response.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Pravin S Deshmukh
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, University of Delhi, Delhi, India
| | - BasuDev Banerjee
- Department of Biochemistry, University College of Medical Sciences, University of Delhi, Delhi, India.
| |
Collapse
|
11
|
Spitalieri P, Talarico RV, Murdocca M, Fontana L, Marcaurelio M, Campione E, Massa R, Meola G, Serafino A, Novelli G, Sangiuolo F, Botta A. Generation and Neuronal Differentiation of hiPSCs From Patients With Myotonic Dystrophy Type 2. Front Physiol 2018; 9:967. [PMID: 30100878 PMCID: PMC6074094 DOI: 10.3389/fphys.2018.00967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 02/03/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs)-patient specific are an innovative tool to reproduce a model of disease in vitro and summarize the pathological phenotype and the disease etiopathology. Myotonic dystrophy type 2 (DM2) is caused by an unstable (CCTG)n expansion in intron 1 of the CNBP gene, leading to a progressive multisystemic disease with muscle, heart and central nervous dysfunctions. The pathogenesis of CNS involvement in DM2 is poorly understood since no cellular or animal models fully recapitulate the molecular and clinical neurodegenerative phenotype of patients. In this study, we generated for the first time, two DM2 and two wild type hiPSC lines from dermal fibroblasts by polycistronic lentiviral vector (hSTEMCCA-loxP) expressing OCT4, SOX2, KLF4, and cMYC genes and containing loxP-sites, excisable by Cre recombinase. Specific morphological, molecular and immunocytochemical markers have confirmed the stemness of DM2 and wild type-derived hiPSCs. These cells are able to differentiate into neuronal population (NP) expressing tissue specific markers. hiPSCs-derived NP cells maintain (CCTG)n repeat expansion and intranuclear RNA foci exhibiting sequestration of MBNL1 protein, which are pathognomonic of the disease. DM2 hiPSCs represent an important tool for the study of CNS pathogenesis in patients, opening new perspectives for the development of cell-based therapies in the field of personalized medicine and drug screening.
Collapse
Affiliation(s)
- Paola Spitalieri
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Rosa V Talarico
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Michela Murdocca
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luana Fontana
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marzia Marcaurelio
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Elena Campione
- Division of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Roberto Massa
- Division of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Meola
- Department of Biomedical Science for Health, Policlinico San Donato (IRCCS), University of Milan, Milan, Italy
| | - Annalucia Serafino
- Institute of Translational Pharmacology, Italian National Research Council, Rome, Italy
| | - Giuseppe Novelli
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Istituto Neurologico Mediterraneo (IRCCS), Pozzilli, Italy
| | - Federica Sangiuolo
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Botta
- Medical Genetics Section, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
12
|
Ahn C, Kang HS, Lee JH, Hong EJ, Jung EM, Yoo YM, Jeung EB. Bisphenol A and octylphenol exacerbate type 1 diabetes mellitus by disrupting calcium homeostasis in mouse pancreas. Toxicol Lett 2018; 295:162-172. [PMID: 29935216 DOI: 10.1016/j.toxlet.2018.06.1071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/14/2018] [Accepted: 06/17/2018] [Indexed: 12/17/2022]
Abstract
In pancreatic β cells, which produce and secrete insulin, Ca2+ signals contribute to insulin production and secretion. Bisphenol A (BPA) and octylphenol (OP) are reported to increase plasma insulin levels and insulin transcription factors, but regulation of plasma glucose levels did not decrease proportionally to the insulin increase. We hypothesized that BPA and OP disrupt calcium homeostasis resulting in insulin resistance through induction of endoplasmic reticulum (ER) stress. BPA and OP treatment leads to survival of pancreatic β cells against streptozotocin, but despite an increased insulin level, serum glucose regulation is not properly regulated. The expression of genes involved in transporting calcium ions to the cytosol and ER decreased while the expression of those affecting the removal of calcium from the cytosol and ER increased. Depletion of calcium from the ER leads to ER stress and can induce insulin resistance. Insulin resistance is also confirmed by insulin-responsive gene, such as glucose transporter 4 (GLUT4) and IRS2, expression. Taken together, these results imply that disruption of calcium homeostasis by BPA and OP induces ER stress and leads to insulin resistance, especially in a streptozotocin (STZ) -induced type 1 diabetes mellitus model.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Hong-Seok Kang
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Eui-Ju Hong
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea.
| |
Collapse
|
13
|
André LM, Ausems CRM, Wansink DG, Wieringa B. Abnormalities in Skeletal Muscle Myogenesis, Growth, and Regeneration in Myotonic Dystrophy. Front Neurol 2018; 9:368. [PMID: 29892259 PMCID: PMC5985300 DOI: 10.3389/fneur.2018.00368] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and 2 (DM2) are autosomal dominant degenerative neuromuscular disorders characterized by progressive skeletal muscle weakness, atrophy, and myotonia with progeroid features. Although both DM1 and DM2 are characterized by skeletal muscle dysfunction and also share other clinical features, the diseases differ in the muscle groups that are affected. In DM1, distal muscles are mainly affected, whereas in DM2 problems are mostly found in proximal muscles. In addition, manifestation in DM1 is generally more severe, with possible congenital or childhood-onset of disease and prominent CNS involvement. DM1 and DM2 are caused by expansion of (CTG•CAG)n and (CCTG•CAGG)n repeats in the 3' non-coding region of DMPK and in intron 1 of CNBP, respectively, and in overlapping antisense genes. This critical review will focus on the pleiotropic problems that occur during development, growth, regeneration, and aging of skeletal muscle in patients who inherited these expansions. The current best-accepted idea is that most muscle symptoms can be explained by pathomechanistic effects of repeat expansion on RNA-mediated pathways. However, aberrations in DNA replication and transcription of the DM loci or in protein translation and proteome homeostasis could also affect the control of proliferation and differentiation of muscle progenitor cells or the maintenance and physiological integrity of muscle fibers during a patient's lifetime. Here, we will discuss these molecular and cellular processes and summarize current knowledge about the role of embryonic and adult muscle-resident stem cells in growth, homeostasis, regeneration, and premature aging of healthy and diseased muscle tissue. Of particular interest is that also progenitor cells from extramuscular sources, such as pericytes and mesoangioblasts, can participate in myogenic differentiation. We will examine the potential of all these types of cells in the application of regenerative medicine for muscular dystrophies and evaluate new possibilities for their use in future therapy of DM.
Collapse
Affiliation(s)
- Laurène M André
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - C Rosanne M Ausems
- Department of Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bé Wieringa
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
14
|
Thomas JD, Oliveira R, Sznajder ŁJ, Swanson MS. Myotonic Dystrophy and Developmental Regulation of RNA Processing. Compr Physiol 2018; 8:509-553. [PMID: 29687899 PMCID: PMC11323716 DOI: 10.1002/cphy.c170002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Myotonic dystrophy (DM) is a multisystemic disorder caused by microsatellite expansion mutations in two unrelated genes leading to similar, yet distinct, diseases. DM disease presentation is highly variable and distinguished by differences in age-of-onset and symptom severity. In the most severe form, DM presents with congenital onset and profound developmental defects. At the molecular level, DM pathogenesis is characterized by a toxic RNA gain-of-function mechanism that involves the transcription of noncoding microsatellite expansions. These mutant RNAs disrupt key cellular pathways, including RNA processing, localization, and translation. In DM, these toxic RNA effects are predominantly mediated through the modulation of the muscleblind-like and CUGBP and ETR-3-like factor families of RNA binding proteins (RBPs). Dysfunction of these RBPs results in widespread RNA processing defects culminating in the expression of developmentally inappropriate protein isoforms in adult tissues. The tissue that is the focus of this review, skeletal muscle, is particularly sensitive to mutant RNA-responsive perturbations, as patients display a variety of developmental, structural, and functional defects in muscle. Here, we provide a comprehensive overview of DM1 and DM2 clinical presentation and pathology as well as the underlying cellular and molecular defects associated with DM disease onset and progression. Additionally, fundamental aspects of skeletal muscle development altered in DM are highlighted together with ongoing and potential therapeutic avenues to treat this muscular dystrophy. © 2018 American Physiological Society. Compr Physiol 8:509-553, 2018.
Collapse
Affiliation(s)
- James D. Thomas
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Ruan Oliveira
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Łukasz J. Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
15
|
Kalra S, Montanaro F, Denning C. Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies? J Neuromuscul Dis 2018; 3:309-332. [PMID: 27854224 PMCID: PMC5123622 DOI: 10.3233/jnd-150133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Muscular dystrophies (MDs) are clinically and molecularly a highly heterogeneous group of single-gene disorders that primarily affect striated muscles. Cardiac disease is present in several MDs where it is an important contributor to morbidity and mortality. Careful monitoring of cardiac issues is necessary but current management of cardiac involvement does not effectively protect from disease progression and cardiac failure. There is a critical need to gain new knowledge on the diverse molecular underpinnings of cardiac disease in MDs in order to guide cardiac treatment development and assist in reaching a clearer consensus on cardiac disease management in the clinic. Animal models are available for the majority of MDs and have been invaluable tools in probing disease mechanisms and in pre-clinical screens. However, there are recognized genetic, physiological, and structural differences between human and animal hearts that impact disease progression, manifestation, and response to pharmacological interventions. Therefore, there is a need to develop parallel human systems to model cardiac disease in MDs. This review discusses the current status of cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSC) to model cardiac disease, with a focus on Duchenne muscular dystrophy (DMD) and myotonic dystrophy (DM1). We seek to provide a balanced view of opportunities and limitations offered by this system in elucidating disease mechanisms pertinent to human cardiac physiology and as a platform for treatment development or refinement.
Collapse
Affiliation(s)
- Spandan Kalra
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| | - Federica Montanaro
- Dubowitz Neuromuscular Centre, Department of Molecular Neurosciences, University College London - Institute of Child Health, London, UK
| | - Chris Denning
- Department of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
16
|
Provenzano C, Cappella M, Valaperta R, Cardani R, Meola G, Martelli F, Cardinali B, Falcone G. CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:337-348. [PMID: 29246312 PMCID: PMC5684470 DOI: 10.1016/j.omtn.2017.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3′ untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.
Collapse
Affiliation(s)
- Claudia Provenzano
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy
| | - Marisa Cappella
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy; DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Rea Valaperta
- Molecular Biology Laboratory, Policlinico San Donato-IRCCS, San Donato Milanese, Milan, Italy
| | - Rosanna Cardani
- Muscle Histopathology and Molecular Biology Laboratory, Policlinico San Donato-IRCCS, San Donato Milanese, Milan, Italy
| | - Giovanni Meola
- Department of Neurology, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy; Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, Policlinico San Donato-IRCCS, San Donato Milanese, Milan, Italy
| | - Beatrice Cardinali
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy.
| | - Germana Falcone
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
17
|
Li S, Wang Y, Zhao H, He Y, Li J, Jiang G, Xing M. NF-κB-mediated inflammation correlates with calcium overload under arsenic trioxide-induced myocardial damage in Gallus gallus. CHEMOSPHERE 2017; 185:618-627. [PMID: 28728119 DOI: 10.1016/j.chemosphere.2017.07.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Arsenic is a known environmental pollutant and highly hazardous toxin to human health. Due to the biological accumulation, arsenic produces a variety of cardiovascular diseases. However, the exact mechanism is still unclear. Here, our objective was to evaluate myocardial damage and determine the potential mechanism under arsenic exposure in chickens. Arsenic trioxide (As2O3) (1.25 mg/kg BW, corresponding 15 mg/kg feed) was administered as basal diet to male Hy-line chickens (one-day-old) for 4, 8 and 12 weeks. The results showed that As2O3-induced histological and ultrastructural damage in heart accompanied with significantly Ca2+ overload and increased the activities of myocardial enzymes. Moreover, As2O3 exposure significantly increased (P < 0.05) the mRNA levels of ITPR3, PMCA, TRPC1, TRPC3, STIM1, ORAI1 and pro-inflammatory genes, while the mRNA levels of ITPR1, ITPR2, RyR1, RyR3, SERCA, SLC8A1, CACNA1S and interleukin-10 were decreased (P < 0.05) by As2O3 exposure at 4, 8 and 12 weeks as compared with the corresponding control group. Western blot results showed that As2O3 exposure decreased the expression of SERCA and SLC8A1 protein, while the expression of TNF-α, NF-κB, iNOS and PMCA1 increased compared with the corresponding control group. Additionally, correlation analysis and protein-protein interaction prediction shown that NF-κB-mediated inflammatory response have a function correlation with calcium (Ca) regulation-related genes. In conclusion, this study indicated that As2O3-induced inflammatory response might dependent on Ca overload in myocardial damage of chickens. Our work has implications for the development of potential therapeutic approaches by resisting Ca overload for arsenic-induced myocardial damage.
Collapse
Affiliation(s)
- Siwen Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yu Wang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ying He
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Jinglun Li
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- Department of Physiology, College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
18
|
Renna LV, Bosè F, Iachettini S, Fossati B, Saraceno L, Milani V, Colombo R, Meola G, Cardani R. Receptor and post-receptor abnormalities contribute to insulin resistance in myotonic dystrophy type 1 and type 2 skeletal muscle. PLoS One 2017; 12:e0184987. [PMID: 28915272 PMCID: PMC5600405 DOI: 10.1371/journal.pone.0184987] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant multisystemic disorders caused by expansion of microsatellite repeats. In both forms, the mutant transcripts accumulate in nuclear foci altering the function of alternative splicing regulators which are necessary for the physiological mRNA processing. Missplicing of insulin receptor (IR) gene (INSR) has been associated with insulin resistance, however, it cannot be excluded that post-receptor signalling abnormalities could also contribute to this feature in DM. We have analysed the insulin pathway in skeletal muscle biopsies and in myotube cultures from DM patients to assess whether downstream metabolism might be dysregulated and to better characterize the mechanism inducing insulin resistance. DM skeletal muscle exhibits alterations of basal phosphorylation levels of Akt/PKB, p70S6K, GSK3β and ERK1/2, suggesting that these changes might be accompanied by a lack of further insulin stimulation. Alterations of insulin pathway have been confirmed on control and DM myotubes expressing fetal INSR isoform (INSR-A). The results indicate that insulin action appears to be lower in DM than in control myotubes in terms of protein activation and glucose uptake. Our data indicate that post-receptor signalling abnormalities might contribute to DM insulin resistance regardless the alteration of INSR splicing.
Collapse
Affiliation(s)
- Laura Valentina Renna
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Francesca Bosè
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Sara Iachettini
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Barbara Fossati
- Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Lorenzo Saraceno
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Valentina Milani
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - Roberto Colombo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Giovanni Meola
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Neurology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS-Policlinico San Donato, San Donato Milanese, Milan, Italy
| |
Collapse
|
19
|
Shao D, Zhu X, Sun W, Huo L, Chen W, Wang H, Liu B, Pan P. Investigation of the molecular mechanisms underlying myotonic dystrophy types 1 and 2 cataracts using microRNA‑target gene networks. Mol Med Rep 2017; 16:3737-3744. [PMID: 28731161 PMCID: PMC5646950 DOI: 10.3892/mmr.2017.7059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate the molecular mechanisms of myotonic dystrophy (DM) 1 and 2 cataracts using bioinformatics methods. A microarray dataset (E‑MEXP‑3365) downloaded from the Array Express database included lens epithelial samples of DM1 and DM2 cataract patients (n=3/group) and non‑DM lens epithelial samples as a control (n=4). Differentially expressed genes (DEGs) were identified between DM1 and control samples, and between DM2 and control samples. Pathway enrichment analyses were performed for the DEGs. Potential micro (mi)RNAs regulating these DEGs were predicted. An miRNA‑target gene network was constructed for DM1 and DM2. The study identified 223 DEGs in DM1, and 303 DEGs in DM2. DM1 and DM2 shared 172 DEGs. The DEGs in DM1 were enriched with calcium, Wnt and axon guidance signaling pathways. The DEGs in DM2 were linked by adherens junction signaling pathways. miRNA (miR)‑197, miR‑29b and miR‑29c were included in the network modules of DM1. miR‑197, miR‑29c and miR‑29a were involved in the network modules of DM2. It is therefore hypothesized that these signaling pathways and miRNAs underlie DM1 and DM2 cataracts, and may represent potential therapeutic targets for the treatment of this disorder.
Collapse
Affiliation(s)
- Dewang Shao
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Xiaoquan Zhu
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Sun
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Lu Huo
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| | - Wei Chen
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Hua Wang
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Bing Liu
- Department of Ophthalmology, Air Force General Hospital, Beijing 100089, P.R. China
| | - Peng Pan
- Department of Ophthalmology, Air Force Aviation Medicine Research Institute Affiliated Hospital, Beijing 100089, P.R. China
| |
Collapse
|
20
|
Agrawal A, Rathor R, Suryakumar G. Oxidative protein modification alters proteostasis under acute hypobaric hypoxia in skeletal muscles: a comprehensive in vivo study. Cell Stress Chaperones 2017; 22:429-443. [PMID: 28425050 PMCID: PMC5425375 DOI: 10.1007/s12192-017-0795-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
While numerous maladies are associated with hypobaric hypoxia, muscle protein loss is an important under studied topic. Hence, the present study was designed to investigate the mechanism of muscle protein loss at HH. SD rats were divided into normoxic rats, while remaining rats were exposed to simulated hypoxia equivalent to 282-torr pressure (equal to an altitude of 7620 m, 8% oxygen), at 25 °C for 6, 12, and 24 h. Post-exposure rats were sacrificed and analysis was performed. Ergo, muscle loss-related changes were observed at 12 and 24 h post-HH exposure. An increased reactive oxygen species production and decreased thiol content was observed in HH-exposed rats. This disturbance caused substantial protein oxidative modification in the form of protein carbonyl content and advanced oxidation protein products. The analysis showed increase levels of bityrosine, oxidized tryptophan, lysine conjugate, lysine conjugate with MDA, protein hydroperoxide, and protein-MDA product. These changes were also in agreement with increase in lipid hydroperoxides and MDA content. HSP-70 and HSP-60 were upregulated significantly, and this finding is corroborated with increase in ER stress biomarker, GRP-78. Overloading of cells with misfolded proteins further activated degradative machinery. Consequently, pro-apoptotic signaling cascade, caspase-3, and C/EBP homologous protein were also activated in 24-h HH exposure. Release of tryptophan and tyrosine was also increased with 24-h HH exposure, indicated protein degradation. Elevation in resting intracellular calcium ion, [Ca2+]i, was also observed at 12- and 24-h HH exposure. The present study provides a detailed mechanistic representation of muscle protein loss during HH exposure.
Collapse
Affiliation(s)
- Akanksha Agrawal
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi -54, India
| | - Richa Rathor
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi -54, India.
| | - Geetha Suryakumar
- Cellular Biochemistry Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi -54, India
| |
Collapse
|
21
|
Arandel L, Polay Espinoza M, Matloka M, Bazinet A, De Dea Diniz D, Naouar N, Rau F, Jollet A, Edom-Vovard F, Mamchaoui K, Tarnopolsky M, Puymirat J, Battail C, Boland A, Deleuze JF, Mouly V, Klein AF, Furling D. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech 2017; 10:487-497. [PMID: 28188264 PMCID: PMC5399563 DOI: 10.1242/dmm.027367] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. Summary: Myotonic dystrophy muscle cell models displaying characteristic disease-associated molecular features can be used to investigate molecular pathophysiological mechanisms and evaluate therapeutic approaches.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Micaela Polay Espinoza
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Magdalena Matloka
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Audrey Bazinet
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Damily De Dea Diniz
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Naïra Naouar
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Frédérique Rau
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Arnaud Jollet
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Frédérique Edom-Vovard
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Kamel Mamchaoui
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Mark Tarnopolsky
- McMaster University Medical Center, Departments of Pediatrics and Medicine, 1200 Main St W., Hamilton, Ontario, Canada, L8N 3Z5
| | - Jack Puymirat
- CHU de Quebec, site Enfant-Jésus, Université Laval, Québec, Canada G1J 1Z4
| | - Christophe Battail
- Centre National de Génotypage, Institut de Génomique, CEA, 91000 Evry, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, 91000 Evry, France
| | | | - Vincent Mouly
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Arnaud F Klein
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Denis Furling
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| |
Collapse
|
22
|
Zhang Z, Liu M, Guan Z, Yang J, Liu Z, Xu S. Disbalance of calcium regulation-related genes in broiler hearts induced by selenium deficiency. Avian Pathol 2017; 46:265-271. [DOI: 10.1080/03079457.2016.1259528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Man Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Zhenqiong Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
23
|
Ahn C, Lee D, Lee JH, Yang H, An BS, Jeung EB. Calbindin-D9k Ablation Disrupt Glucose/Pancreatic Insulin Homeostasis. PLoS One 2016; 11:e0164527. [PMID: 27736926 PMCID: PMC5063278 DOI: 10.1371/journal.pone.0164527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
It has been proposed that cellular Ca2+ signals activate hormone secretion. In pancreatic β cells, which produce insulin, Ca2+ signals have been known to contribute to insulin secretion. Prior to this study, we confirmed that insulin-secreting β cells express CaBP-9k, and assumed that CaBP-9k play a role in β cell insulin synthesis or secretion. Using CaBP-9k knock out (KO) mice, we demonstrated that ablation of CaBP-9k causes reducing insulin secretion and increasing serum glucose. To compare the role of CaBP-9k with pathophysiological conditions, we exposed wild-type and CaBP-9k KO mice to hypoxic conditions for 10 days. Hypoxia induced endoplasmic reticulum (ER) stress, increasing both insulin signaling and insulin resistance. By exposing hypoxia, CaBP-9k KO mice showed an increased level of ER stress marker protein relative to wild type mice. Without hypoxic conditions, CaBP-9K ablation regulates calcium channels and causes ER stress in a CaBP-9K specific manner. Ablation of CaBP-9k also showed decreased levels of sulfonylurea receptor1 (SUR1) and inward-rectifier potassium ion channel 6.2 (Kir6.2), which are insulin secretion marker genes. Overall, the results of the present study demonstrated that CaBP-9k regulates synthesis of insulin and is part of the insulin-secreting calcium signaling.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Dongoh Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hyun Yang
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of National Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, Vilchez JJ, Llamusi B, Artero R. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model. Dis Model Mech 2016; 8:679-90. [PMID: 26092529 PMCID: PMC4486854 DOI: 10.1242/dmm.018127] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis.
Collapse
Affiliation(s)
- Ariadna Bargiela
- Translational Genomics Group, Department of Genetics, University of Valencia, Burjassot 46100, Spain INCLIVA Health Research Institute, Valencia 46010, Spain
| | - Estefanía Cerro-Herreros
- Translational Genomics Group, Department of Genetics, University of Valencia, Burjassot 46100, Spain INCLIVA Health Research Institute, Valencia 46010, Spain
| | - Juan M Fernandez-Costa
- Translational Genomics Group, Department of Genetics, University of Valencia, Burjassot 46100, Spain
| | - Juan J Vilchez
- Neurology Section, Hospital Universitari La Fe, Valencia 46026, Spain Department of Internal Medicine, University of Valencia, Valencia 46010, Spain Centro de Investigaciones Biomedicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute Carlos III, Ministry of Economy and Competitiveness, Madrid 28049, Spain
| | | | - Ruben Artero
- Translational Genomics Group, Department of Genetics, University of Valencia, Burjassot 46100, Spain INCLIVA Health Research Institute, Valencia 46010, Spain
| |
Collapse
|
25
|
Ravel-Chapuis A, Klein Gunnewiek A, Bélanger G, Crawford Parks TE, Côté J, Jasmin BJ. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients. Mol Biol Cell 2016; 27:1728-39. [PMID: 27030674 PMCID: PMC4884064 DOI: 10.1091/mbc.e15-06-0356] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/25/2016] [Indexed: 11/11/2022] Open
Abstract
Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUG(exp)) in the DMPK mRNA 3'UTR. CUG(exp)-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1- and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type-specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUG(exp) mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1.
Collapse
Affiliation(s)
- Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Amanda Klein Gunnewiek
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Guy Bélanger
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
26
|
Pantic B, Borgia D, Giunco S, Malena A, Kiyono T, Salvatori S, De Rossi A, Giardina E, Sangiuolo F, Pegoraro E, Vergani L, Botta A. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts. Exp Cell Res 2016; 342:39-51. [PMID: 26905645 DOI: 10.1016/j.yexcr.2016.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/29/2022]
Abstract
Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro.
Collapse
Affiliation(s)
- Boris Pantic
- Department of Neurosciences, University of Padua, Italy.
| | - Doriana Borgia
- Department of Neurosciences, University of Padua, Italy.
| | - Silvia Giunco
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy.
| | - Adriana Malena
- Department of Neurosciences, University of Padua, Italy.
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.
| | | | - Anita De Rossi
- Department of Surgery, Oncology and Gastroenterology, Section of Oncology and Immunology, University of Padua, Padua, Italy; Unit of Viral Oncology, Istituto Oncologico Veneto (IOV)-IRCCS, Padua, Italy.
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy.
| | - Federica Sangiuolo
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy.
| | - Elena Pegoraro
- Department of Neurosciences, University of Padua, Italy.
| | | | - Annalisa Botta
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Italy.
| |
Collapse
|
27
|
Gurianova V, Stroy D, Ciccocioppo R, Gasparova I, Petrovic D, Soucek M, Dosenko V, Kruzliak P. Stress response factors as hub-regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochem Funct 2015; 33:509-18. [PMID: 26659949 DOI: 10.1002/cbf.3151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/21/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are important regulators of heart function and then an intriguing therapeutic target for plenty of diseases. The problem raised is that many data in this area are contradictory, thus limiting the use of miRNA-based therapy. The goal of this review is to describe the hub-mechanisms regulating the biogenesis and function of miRNAs, which could help in clarifying some contradictions in the miRNA world. With this scope, we analyse an array of factors, including several known agents of stress response, mediators of epigenetic changes, regulators of alternative splicing, RNA editing, protein synthesis and folding and proteolytic systems. All these factors are important in cardiovascular function and most of them regulate miRNA biogenesis, but their influence on miRNAs was shown for non-cardiac cells or some specific cardiac pathologies. Finally, we consider that studying the stress response factors, which are upstream regulators of miRNA biogenesis, in the diseased heart could help in (1) explaining some contradictions concerning miRNAs in heart pathology, (2) making the role of miRNAs in pathogenesis of cardiovascular disease more clear, and therefore, (3) getting powerful targets for its molecular therapy.
Collapse
Affiliation(s)
- Veronika Gurianova
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Dmytro Stroy
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Rachele Ciccocioppo
- Clinica Medica I; Fondazione IRCCS Policlinico San Matteo, Università degli Studi di Pavia, Italy
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Daniel Petrovic
- Institute of Histology and Embryology, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Miroslav Soucek
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Victor Dosenko
- Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Peter Kruzliak
- Second Department of Internal Medicine, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic.,Laboratory of Structural Biology and Proteomics, Faculty of Pharmacy, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
28
|
Functional analysis of SERCA1b, a highly expressed SERCA1 variant in myotonic dystrophy type 1 muscle. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2042-7. [DOI: 10.1016/j.bbadis.2015.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 01/17/2023]
|
29
|
Ahn C, An BS, Jeung EB. Streptozotocin induces endoplasmic reticulum stress and apoptosis via disruption of calcium homeostasis in mouse pancreas. Mol Cell Endocrinol 2015; 412:302-8. [PMID: 26003140 DOI: 10.1016/j.mce.2015.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/02/2015] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
Abstract
Calcium homeostasis refers to the regulation of calcium ion concentration in the body. This concentration is tightly controlled by a stabilizing system consisting of calcium channels and calcium buffering proteins. Calcium homeostasis is crucial for cell survival. Various forms of cell death (e.g., necrosis and apoptosis) also share calcium signaling pathways and molecular effectors. Calcium acts not only as a ubiquitous second messenger involved in apoptosis along with various cell death inducers but also a regulator for the synthesis of enzymes/hormones such as insulin. We hypothesized that streptozotocin disrupts calcium homeostasis and the altered intracellular calcium levels may induce cell death. After streptozotocin administration, blood glucose level was increased while insulin levels decreased. The expression of insulin response markers also decreased relative to the vehicle group. L-type voltage-gated calcium channel expression and sarcoplasmic reticulum Ca(2+) ATPase were increased by streptozotocin. Calcium buffering protein calbindin-D9k and calmodulin family members were also increased. The expression of genes involved in transporting calcium ions to the endoplasmic reticulum (ER) was decrease while the expression of those affecting the removal of calcium from the ER was increased. Depletion of calcium from the ER leads to ER-stress and can induce apoptosis. In the streptozotocin-treatment group, apoptosis markers were increased. Taken together, these results imply that the disruption of calcium homeostasis by streptozotocin induces ER-stress and leads to the apoptosis of pancreatic cells. Additionally, findings from this study suggest that imbalances in calcium homeostasis could promote pancreatic beta cell death and result in type I diabetes.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 362-763, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science, College of National Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam-do 627-706, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 362-763, Republic of Korea.
| |
Collapse
|
30
|
Wojciechowska M, Olejniczak M, Galka-Marciniak P, Jazurek M, Krzyzosiak WJ. RAN translation and frameshifting as translational challenges at simple repeats of human neurodegenerative disorders. Nucleic Acids Res 2014; 42:11849-64. [PMID: 25217582 PMCID: PMC4231732 DOI: 10.1093/nar/gku794] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repeat-associated disorders caused by expansions of short sequences have been classified as coding and noncoding and are thought to be caused by protein gain-of-function and RNA gain-of-function mechanisms, respectively. The boundary between such classifications has recently been blurred by the discovery of repeat-associated non-AUG (RAN) translation reported in spinocerebellar ataxia type 8, myotonic dystrophy type 1, fragile X tremor/ataxia syndrome and C9ORF72 amyotrophic lateral sclerosis and frontotemporal dementia. This noncanonical translation requires no AUG start codon and can initiate in multiple frames of CAG, CGG and GGGGCC repeats of the sense and antisense strands of disease-relevant transcripts. RNA structures formed by the repeats have been suggested as possible triggers; however, the precise mechanism of the translation initiation remains elusive. Templates containing expansions of microsatellites have also been shown to challenge translation elongation, as frameshifting has been recognized across CAG repeats in spinocerebellar ataxia type 3 and Huntington's disease. Determining the critical requirements for RAN translation and frameshifting is essential to decipher the mechanisms that govern these processes. The contribution of unusual translation products to pathogenesis needs to be better understood. In this review, we present current knowledge regarding RAN translation and frameshifting and discuss the proposed mechanisms of translational challenges imposed by simple repeat expansions.
Collapse
Affiliation(s)
- Marzena Wojciechowska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Marta Olejniczak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Paulina Galka-Marciniak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|