1
|
He Q, Guo X, Lv W, Cui J, Meng J, Gao X, Ma J, Zhou N, Cao Y. Follicular fluid lipidomics analysis reveals altered lipid signatures in patients with polycystic ovary syndrome. J OBSTET GYNAECOL 2024; 44:2378489. [PMID: 39016329 DOI: 10.1080/01443615.2024.2378489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND This research investigates the metabolic profiles of follicular fluid (FF) samples from patients with polycystic ovary syndrome (PCOS) undergoing in vitro fertilisation and aims to identify diagnostic and therapeutic biomarkers for PCOS through lipidomic analysis. METHODS We performed non-targeted lipid analysis of FF samples from women with PCOS (n = 6) and normal controls (n = 6) using ultra-high-performance liquid chromatography-tandem mass spectrometry. Differential lipids between the two groups were screened using multidimensional statistical analysis, followed by fold change analysis and t-tests to identify potential PCOS biomarkers. RESULTS Multivariate statistical analysis revealed significant differences in FF lipid levels between the PCOS and control groups. Five different lipids were selected as standards, with p < .05. Phosphatidylcholine (PC), the main differentially expressed lipid, was significantly increased in the FF of the POCS group and was closely related to other lipids. CONCLUSIONS Using ultra-high-performance liquid chromatography-tandem mass spectrometry, we investigated lipid biomarkers based on FF lipidomics to provide useful information for the discovery of diagnostic markers for PCOS. Our study identified five distinct lipids as potential markers of PCOS, with PC being the primary aberrant lipid found in the FF of patients with PCOS.
Collapse
Affiliation(s)
- Qing He
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
- Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| | - Xiaoli Guo
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wenqiang Lv
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Junchao Cui
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jing Meng
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Gao
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiachen Ma
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Nan Zhou
- College of Pharmacy, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yijuan Cao
- Affiliated Xuzhou Clinical College of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
- Center for Reproductive Medicine, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
2
|
Lee YZ, Cheng SH, Lin YF, Wu CC, Tsai YC. The Beneficial Effects of Lacticaseibacillus paracasei subsp. paracasei DSM 27449 in a Letrozole-Induced Polycystic Ovary Syndrome Rat Model. Int J Mol Sci 2024; 25:8706. [PMID: 39201391 PMCID: PMC11354393 DOI: 10.3390/ijms25168706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder affecting women of reproductive age globally. Emerging evidence suggests that the dysregulation of microRNAs (miRNAs) and gut dysbiosis are linked to the development of PCOS. In this study, the effects of Lacticaseibacillus paracasei subsp. paracasei DSM 27449 (DSM 27449) were investigated in a rat model of PCOS induced by letrozole. The administration of DSM 27449 resulted in improved ovarian function, reduced cystic follicles, and lower serum testosterone levels. Alterations in miRNA expressions and increased levels of the pro-apoptotic protein Bax in ovarian tissues were observed in PCOS-like rats. Notably, the administration of DSM 27449 restored the expression of miRNAs, including miR-30a-5p, miR-93-5p, and miR-223-3p, leading to enhanced ovarian function through the downregulation of Bax expressions in ovarian tissues. Additionally, 16S rRNA sequencing showed changes in the gut microbiome composition after letrozole induction. The strong correlation between specific bacterial genera and PCOS-related parameters suggested that the modulation of the gut microbiome by DSM 27449 was associated with the improvement of PCOS symptoms. These findings demonstrate the beneficial effects of DSM 27449 in ameliorating PCOS symptoms in letrozole-induced PCOS-like rats, suggesting that DSM 27449 may serve as a beneficial dietary supplement with the therapeutic potential for alleviating PCOS.
Collapse
Affiliation(s)
- Yan Zhang Lee
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shih-Hsuan Cheng
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Yu-Fen Lin
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Chien-Chen Wu
- Bened Biomedical Co., Ltd., Taipei 115011, Taiwan; (S.-H.C.); (Y.-F.L.); (C.-C.W.)
| | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Rashid G, Khan NA, Elsori D, Youness RA, Hassan H, Siwan D, Seth N, Kamal MA, Rizvi S, Babker AM, Hafez W. miRNA expression in PCOS: unveiling a paradigm shift toward biomarker discovery. Arch Gynecol Obstet 2024; 309:1707-1723. [PMID: 38316651 DOI: 10.1007/s00404-024-07379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disorder that affects a substantial percentage of women, estimated at around 9-21%. This condition can lead to anovulatory infertility in women of childbearing age and is often accompanied by various metabolic disturbances, including hyperandrogenism, insulin resistance, obesity, type-2 diabetes, and elevated cholesterol levels. The development of PCOS is influenced by a combination of epigenetic alterations, genetic mutations, and changes in the expression of non-coding RNAs, particularly microRNAs (miRNAs). MicroRNAs, commonly referred to as non-coding RNAs, are approximately 22 nucleotides in length and primarily function in post-transcriptional gene regulation, facilitating mRNA degradation and repressing translation. Their dynamic expression in different cells and tissues contributes to the regulation of various biological and cellular pathways. As a result, they have become pivotal biomarkers for various diseases, including PCOS, demonstrating intricate associations with diverse health conditions. The aberrant expression of miRNAs has been detected in the serum of women with PCOS, with overexpression and dysregulation of these miRNAs playing a central role in the atypical expression of endocrine hormones linked to PCOS. This review takes a comprehensive approach to explore the upregulation and downregulation of various miRNAs present in ovarian follicular cells, granulosa cells, and theca cells of women diagnosed with PCOS. Furthermore, it discusses the potential for a theragnostic approach using miRNAs to better understand and manage PCOS.
Collapse
Affiliation(s)
- Gowhar Rashid
- Department of Medical Lab Technology, Amity Medical School, Amity University Haryana, Gurugram, India.
| | - Nihad Ashraf Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, Delhi, 110025, India
| | | | - Rana A Youness
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University, Cairo, Egypt
| | - Homa Hassan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Namrata Seth
- Department of Biotechnology, Indian Institute of Science and Technology, Bhopal, 462066, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saliha Rizvi
- Department of Biotechnology, Era University, Lucknow, India
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Wael Hafez
- The Medical Research Division, Department of Internal Medicine, the National Research Centre, Cairo, Egypt
| |
Collapse
|
4
|
Arefnezhad R, Roghani-Shahraki H, Motedayyen H, Rezaei Tazangi F. Function of MicroRNAs in Normal and Abnormal Ovarian Activities: A Review Focus on MicroRNA-21. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2024; 18:94-99. [PMID: 38368510 PMCID: PMC10875309 DOI: 10.22074/ijfs.2023.1985792.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/28/2023] [Accepted: 07/22/2023] [Indexed: 02/19/2024]
Abstract
Some failures in ovary function, like folliculogenesis and oogenesis, can give rise to various infertility-associated problems, including polycystic ovary syndrome (PCOS) and premature ovarian insufficiency (POI). PCOS influences 8 to 20% of women; while POI occurs in at least 1% of all women. Regrettably, the current therapies for these diseases have not sufficiently been effective, and finding a suitable strategy is still a puzzle. One of the helpful strategies for managing and treating these disorders is understanding the contributing pathogenesis and mechanisms. Recently, it has been declared that abnormal expression of microRNAs (miRNAs), as a subset of non-coding RNAs, is involved in the pathogenesis of reproductive diseases. Among the miRNAs, the roles of miRNA-21 in the pathogenesis of PCOS and POI have been highlighted in some documents; hence, the purpose of this mini-review was to summarize the evidences in conjunction with the functions of this miRNA and other effective microRNAs in the normal or abnormal functions of the ovary (i.e., PCOS and POI) with a mechanistic insight.
Collapse
Affiliation(s)
- Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran.
| | - Fatemeh Rezaei Tazangi
- Department of Anatomy, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
5
|
Sabry R, Gallo JF, Rooney C, Scandlan OLM, Davis OS, Amin S, Faghih M, Karnis M, Neal MS, Favetta LA. Genetic and Epigenetic Profiles of Polycystic Ovarian Syndrome and In Vitro Bisphenol Exposure in a Human Granulosa Cell Model. Biomedicines 2024; 12:237. [PMID: 38275408 PMCID: PMC10813104 DOI: 10.3390/biomedicines12010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Higher levels of bisphenols are found in granulosa cells of women with polycystic ovary syndrome (PCOS), posing the question: Is bisphenol exposure linked to PCOS pathophysiology? Human granulosa cells were obtained from women with and without PCOS, and genes and microRNAs associated with PCOS were investigated. The first phase compared healthy women and those with PCOS, revealing distinct patterns: PCOS subjects had lower 11β-HSD1 (p = 0.0217) and CYP11A1 (p = 0.0114) levels and elevated miR-21 expression (p = 0.02535), elucidating the molecular landscape of PCOS, and emphasizing key players in its pathogenesis. The second phase focused on healthy women, examining the impact of bisphenols (BPA, BPS, BPF) on the same genes. Results revealed alterations in gene expression profiles, with BPS exposure increasing 11β-HSD1 (p = 0.02821) and miR-21 (p = 0.01515) expression, with the latest mirroring patterns in women with PCOS. BPA exposure led to elevated androgen receptor (AR) expression (p = 0.0298), while BPF exposure was associated with higher levels of miR-155. Of particular interest was the parallel epigenetic expression profile between BPS and PCOS, suggesting a potential link. These results contribute valuable insights into the nuanced impact of bisphenol exposure on granulosa cell genes, allowing the study to speculate potential shared mechanisms with the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Reem Sabry
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Jenna F. Gallo
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
| | - Charlie Rooney
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Olivia L. M. Scandlan
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Ola S. Davis
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| | - Shilpa Amin
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mehrnoosh Faghih
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Megan Karnis
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael S. Neal
- ONE Fertility, Burlington, ON L7N 3T1, Canada; (S.A.); (M.F.); (M.K.); (M.S.N.)
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.S.); (J.F.G.); (C.R.); (O.L.M.S.); (O.S.D.)
| |
Collapse
|
6
|
Nasser JS, Altahoo N, Almosawi S, Alhermi A, Butler AE. The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review. Int J Mol Sci 2024; 25:903. [PMID: 38255975 PMCID: PMC10815174 DOI: 10.3390/ijms25020903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4-20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several diseases and could possibly explain their underlying pathophysiology. MiRNAs have been extensively studied for their potential diagnostic, prognostic, and therapeutic uses in many diseases, such as type 2 diabetes, obesity, cardiovascular disease, PCOS, and endometriosis. In women with PCOS, miRNAs were found to be abnormally expressed in theca cells, follicular fluid, granulosa cells, peripheral blood leukocytes, serum, and adipose tissue when compared to those without PCOS, making miRNAs a useful potential biomarker for the disease. Key pathways involved in PCOS, such as folliculogenesis, steroidogenesis, and cellular adhesion, are regulated by miRNA. This also highlights their importance as potential prognostic markers. In addition, recent evidence suggests a role for miRNAs in regulating the circadian rhythm (CR). CR is crucial for regulating reproduction through the various functions of the hypothalamic-pituitary-gonadal (HPG) axis and the ovaries. A disordered CR affects reproductive outcomes by inducing insulin resistance, oxidative stress, and systemic inflammation. Moreover, miRNAs were demonstrated to interact with lncRNA and circRNAs, which are thought to play a role in the pathogenesis of PCOS. This review discusses what is currently understood about miRNAs in PCOS, the cellular pathways involved, and their potential role as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jenan Sh. Nasser
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Noor Altahoo
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Sayed Almosawi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Abrar Alhermi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|
7
|
Chelegahi AM, Ebrahimi SO, Reiisi S, Nezamnia M. A glance into the roles of microRNAs (exosomal and non-exosomal) in polycystic ovary syndrome. Obstet Gynecol Sci 2024; 67:30-48. [PMID: 38050353 DOI: 10.5468/ogs.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a common endocrine disorder in women of reproductive age. The clinical symptoms include hyperandrogenism, chronic anovulation, and multiple ovarian cysts. PCOS is strongly associated with obesity and insulin resistance. MicroRNAs (miRNAs) are a group of short non-coding RNAs that play a role in the post-transcriptional regulation of gene expression and translational inhibition. They play a vital role in the regulation of multiple metabolic and hormonal processes as well as in oocyte maturation and folliculogenesis in the female reproductive system. miRNAs can be used as diagnostic biomarkers or therapeutic targets because of their stability. The encapsulation of miRNAs in extracellular vesicles or exosomes contributes to their stability. Exosomes are constantly secreted by many cells and size of about 30 to 150 nm. Enveloping miRNAs exosomes can release them for cellular communication. The induced transfer of miRNAs by exosomes is a novel process of genetic exchange between cells. Many studies have shown that along with non-exosomal miRNAs, different types of exosomal miRNAs derived from the serum and follicular fluid can play an essential role in PCOS pathogenesis. These miRNAs are involved in follicular development and various functions in granulosa cells, apoptosis, cell proliferation, and follicular atresia. The present study aimed to comprehensively review the evidence on miRNAs and their affected pathways under both non-exosomal and exosomal circumstances, primarily focusing on the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Afsane Masoudi Chelegahi
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
8
|
Liu Y, Shi X, Xu B, Wang Z, Chen Y, Deng M. Differential expression of plasma‑derived exosomal miRNAs in polycystic ovary syndrome as a circulating biomarker. Biomed Rep 2023; 19:92. [PMID: 37901874 PMCID: PMC10603371 DOI: 10.3892/br.2023.1674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023] Open
Abstract
Identifying biomarkers with high sensitivity and stability is helpful for the timely and accurate diagnosis, and effective management of polycystic ovary syndrome (PCOS), a long-term, progressive endocrine disorder. Circulating microRNAs (miRNAs/miRs) are being increasingly recognized as promising biomarkers given the stability and enrichment of miRNAs in exosomes. The high sensitivity of the reverse transcription-quantitative PCR (RT-qPCR) has enabled accurate quantification of miRNAs and small fragments, present in a low abundance, in the circulation. In the present study, the potential of miRNAs in the diagnosis of PCOS was evaluated. Exosomal miRNAs were extracted and screened, and three miRNAs (miR-4488, miR-151a-5p, and miR-223-3p) were found to be differentially expressed between the PCOS group and age-matched controls by sequencing analysis. RT-qPCR was performed on a clinically confirmed PCOS cohort (n=107) and a non-PCOS control cohort (n=101) from South China to validate the PCOS-related RNA sequencing results. miR-151a-5p and miR-4488 expression levels were significantly upregulated, and miR-223-3p expression was downregulated in the PCOS cohort compared with the control cohort (P<0.05). The areas under the receiver operating characteristic curve were 0.889, 0.871, and 0.664 for miR-4488, miR-151a-5p, and miR-223-3p, respectively. Combining anti-Müllerian hormone levels with the three miRNAs resulted in an AUC of 0.967, and higher sensitivity and specificity. These results suggest that miRNAs may prove useful in the early diagnosis and effective management of PCOS, and that these three miRNAs may be involved in the pathogenesis of PCOS. In addition, bioinformatics analysis showed that these three exosomal miRNAs were involved in key signaling pathways related to cancer.
Collapse
Affiliation(s)
- Yanfei Liu
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zheijiang 310008, P.R. China
| | - Xinyan Shi
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zheijiang 310008, P.R. China
| | - Bing Xu
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zheijiang 310008, P.R. China
| | - Zhen Wang
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zheijiang 310008, P.R. China
| | - Yu Chen
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zheijiang 310008, P.R. China
| | - Miao Deng
- Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, Zheijiang 310008, P.R. China
| |
Collapse
|
9
|
Zhang Z, Shi C, Wang Z. The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front Physiol 2023; 14:1279469. [PMID: 38028777 PMCID: PMC10657906 DOI: 10.3389/fphys.2023.1279469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Polycystic ovary syndrome is a very common disease of gynecological endocrine, accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health, but its etiology and pathogenesis are not completely clear. Recently, the contribution of exosomes to the diagnosis and treatment of various diseases in the biomedical field has attracted much attention, including PCOS. Exosomes are extracellular vesicles secreted by cells, containing various biologically active molecules such as cell-specific proteins, lipids, and nucleic acids. They are important signaling regulators in vivo and widely participate in various physiopathological processes. They are new targets for disease diagnosis and treatment. Considering the important role of non-coding RNAs during the development and treatment of PCOS, this article takes exosomal miRNAs as the breakthrough point for elucidating the physiological functions and therapeutic potential of exosomes during the development and treatment of PCOS through analyzing the effects of exosomal miRNAs on ovarian follicle development, hormone secretion, oxidative stress, inflammatory response and insulin resistance, thus providing new research directions and theoretical basis for PCOS pathogenesis, clinical diagnosis and prognosis improvement.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
Fan H, Zhou D, Zhang X, Jiang M, Kong X, Xue T, Gao L, Lu D, Tao C, Wang L. hsa_circRNA_BECN1 acts as a ceRNA to promote polycystic ovary syndrome progression by sponging the miR-619-5p/Rab5b axis. Mol Hum Reprod 2023; 29:gaad036. [PMID: 37882757 DOI: 10.1093/molehr/gaad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease that affects women of reproductive age. It is also a significant cause of infertility. Circular RNAs have been found to have a crucial role in the development and progression of reproductive system diseases. In this study, we focused on circ_BECN1 and aimed to investigate its role and mechanism in PCOS, providing a foundation for early diagnosis and treatment of this condition. Our findings revealed an upregulation of circ_BECN1 expression in the ovarian granulosa cells (GCs) of PCOS patients. Additionally, the silencing of circ_BECN1 resulted in inhibited proliferation and enhanced apoptosis of the human ovarian granulosa-like tumor cell line (KGN), therefore implicating circ_BECN1 in the cell cycle process. Through a dual-luciferase reporting assay, we determined that circ_BECN1 acts as a sponge for miR-619-5p and that Rab5b is the target gene of miR-619-5p. Moreover, the expression of Rab5b was found to be upregulated in the ovarian tissue of PCOS patients. Knocking down circ_BECN1 resulted in decreased Rab5b expression, which was then restored by using a miR-619-5p inhibitor. Additionally, rescue experiments demonstrated that overexpressing Rab5b reversed the effects of circ_BECN1 knockdown on cell proliferation and apoptosis in KGN cells. In summary, our findings indicate that circ_BECN1 is upregulated in PCOS GCs and promotes cell growth and cell cycle progression, and reduces cell apoptosis by modulating the miR-619-5p/Rab5b axis. Therefore, circ_BECN1 may serve as a potential therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Hairui Fan
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Dongjie Zhou
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Xiaomei Zhang
- California Excellent Fertility (CEF), Anaheim, CA, USA
| | - Min Jiang
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Xiang Kong
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Tongmin Xue
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| | - Chenyue Tao
- School of Nursing School of Public Health, Yangzhou University, Yangzhou, China
| | - Liping Wang
- Department of Biobank, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Okuka N, Schuh V, Krammer U, Polovina S, Sumarac-Dumanovic M, Milinkovic N, Velickovic K, Djordjevic B, Haslberger A, Ivanovic ND. Epigenetic Aspects of a New Probiotic Concept-A Pilot Study. Life (Basel) 2023; 13:1912. [PMID: 37763315 PMCID: PMC10533075 DOI: 10.3390/life13091912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Several studies report the important role of an altered gut microbiota in the development of obesity, highlighting the potential use of probiotics in the treatment of obesity. The aim of this study is to investigate the effect of a novel probiotic approach on the expression of specific miRNAs and mRNAs associated with obesity in combination with the hypocholesterolemic octacosanol. Twenty overweight/obese women participated in a randomized, placebo-controlled, double-blind study and were randomly divided into two groups: the intervention group (daily one capsule containing Lactobacillus plantarum 299v (DSM9843), Saccharomyces cerevisiae var. boulardii, and 40 mg octacosanol; N = 12) and the placebo group (N = 8). Changes in lipid parameters and expression of miRNAs and mRNAs were assessed before (T0) and after the 12-week intervention (T1). After the intervention, the expression of miR-155-5p (9.38 ± 0.85 vs. 8.38 ± 1.06, p = 0.05) and miR-24-3p (3.42 ± 0.38 vs. 2.71 ± 0.97, p = 0.031) showed significant decreases in the intervention group when compared to the control group. At T1, the expression of miR-155-5p (8.69 ± 1.31 vs. 9.3 ± 0.85, p = 0.04), miR-125b-5p (5.41 ± 1.18 vs. 5.99 ± 1.36, p = 0.049), and TNF-α (10.24 ± 1.66 vs. 11.36 ± 1.12, p = 0.009) were significantly decreased in the intervention group. No changes in lipids and anthropometric parameters were observed. The novel probiotic approach had a positive effect on regulating the expression of certain miRNAs and mRNAs important for regulating inflammation and adipogenesis, which are essential for obesity onset and control.
Collapse
Affiliation(s)
- Nina Okuka
- Department of Bromatology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | | | | | - Snezana Polovina
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Mirjana Sumarac-Dumanovic
- School of Medicine, University of Belgrade, Clinic for Endocrinology, Diabetes and Diseases of Metabolism, 11000 Belgrade, Serbia
| | - Neda Milinkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Faculty of Biology, University of Belgrade; 11000 Belgrade, Serbia
| | - Brizita Djordjevic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Nevena Dj. Ivanovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Wang W, Ge L, Zhang L, Liu L, Zhang X, Ma X. MicroRNA-16 represses granulosa cell proliferation in polycystic ovarian syndrome through inhibition of the PI3K/Akt pathway by downregulation of Apelin13. HUM FERTIL 2023; 26:611-621. [PMID: 34854361 DOI: 10.1080/14647273.2021.1998661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/09/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to uncover the specific role of micro RNA-16 (miR-16) in granulosa cell function in polycystic ovarian syndrome (PCOS). After sample collection, the expression levels of miR-16 and Apelin13 in the granulosa cells of PCOS patients and controls were determined. Subsequently, miR-16 mimic, miR-16 inhibitor, pcDNA3.1-Apelin13, sh-Apelin13, and their corresponding negative controls were transfected into granulosa cell lines (KGN and SVOG) to monitor alterations in miR-16 expression, Apelin13, and PI3K/Akt signalling pathway-related proteins (p-Akt and Akt). MTT assay was used to detect cell viability, clone formation assay to detect cell proliferation, and flow cytometry to detect cell apoptosis rate. In addition, a luciferase assay was performed to test the targeting relationship between miR-16 and Apelin13. After miR-16 overexpression or Apelin13 knockdown was achieved in granulosa cells, granulosa cell proliferation was suppressed and cell apoptosis was enhanced. Additionally, Apelin13 is a potential target of miR-16. Functionally, overexpression of Apelin13 could partly reverse the effect of miR-16 overexpression on granulosa cell proliferation and apoptosis. Moreover, inhibits granulosa cell proliferation and enhances blocking the PI3K/Akt pathway by suppressing Apelin13. Our study revealed miR-16 regulates Apelin13 to mediate the PI3K/Akt signalling pathway and, thereby mediates PCOS progression.
Collapse
Affiliation(s)
- Wei Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Liang Ge
- Department of Anesthesiology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Lili Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Lin Liu
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| | - Xiaoling Ma
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Key Laboratory for Reproductive Medicine and Embryo, Lanzhou, China
| |
Collapse
|
13
|
Jiang X, Zhang Z, Hou M, Yang X, Cui L. Plasma exosomes and contained MiRNAs affect the reproductive phenotype in polycystic ovary syndrome. FASEB J 2023; 37:e22960. [PMID: 37335566 DOI: 10.1096/fj.202201940rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/01/2023] [Accepted: 04/25/2023] [Indexed: 06/21/2023]
Abstract
Anovulation is the main feature of infertile women with polycystic ovary syndrome (PCOS), and there is very limited understanding of the role of plasma exosomes and miRNAs in it. To identify the effect of PCOS patients' plasma exosomes and exosomal miRNAs, we isolated plasma exosomes of PCOS patients and normal women and injected into 8-week-old ICR female mice via tail vein. The changes in estrus cycle, serum hormone levels, and ovarian morphology were observed. KGN cells were cultured and transfected with mimics and inhibitors of differentially expressed exosomal miRNAs (miR-18a-3p, miR-20b-5p, miR-106a-5p, miR-126-3p, and miR-146a-5p) and then tested for steroid hormone synthesis, proliferation, and apoptosis. The results showed that female ICR mice injected with plasma exosomes from PCOS patients presented ovarian oligo-cyclicity. Hormone synthesis and proliferation of granulosa cells were affected by differentially expressed PCOS plasma-derived exosomal miRNAs, of which miR-126-3p having the most evident effect. MiR-126-3p affected the proliferation of granulosa cells by inhibiting PDGFRβ and its downstream PI3K-AKT pathway. Our results demonstrated plasma exosomes and contained miRNAs in PCOS patients affect the estrus cycle of mice, hormone secretion, and proliferation of granulosa cells. This study provides a novel understanding about the function of plasma exosomes and exosomal miRNAs in PCOS.
Collapse
Affiliation(s)
- Xiao Jiang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhirong Zhang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Min Hou
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xiaohe Yang
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Linlin Cui
- Center for Reproductive Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Udesen PB, Sørensen AE, Svendsen R, Frisk NLS, Hess AL, Aziz M, Wissing MLM, Englund ALM, Dalgaard LT. Circulating miRNAs in Women with Polycystic Ovary Syndrome: A Longitudinal Cohort Study. Cells 2023; 12:cells12070983. [PMID: 37048055 PMCID: PMC10093401 DOI: 10.3390/cells12070983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Women with polycystic ovary syndrome (PCOS) often change their metabolic profile over time to decrease levels of androgens while often gaining a propensity for the development of the metabolic syndrome. Recent discoveries indicate that microRNAs (miRNAs) play a role in the development of PCOS and constitute potential biomarkers for PCOS. We aimed to identify miRNAs associated with the development of an impaired metabolic profile in women with PCOS, in a follow-up study, compared with women without PCOS. METHODS AND MATERIALS Clinical measurements of PCOS status and metabolic disease were obtained twice 6 years apart in a cohort of 46 women with PCOS and nine controls. All participants were evaluated for degree of metabolic disease (hypertension, dyslipidemia, central obesity, and impaired glucose tolerance). MiRNA levels were measured using Taqman® Array cards of 96 pre-selected miRNAs associated with PCOS and/or metabolic disease. RESULTS Women with PCOS decreased their levels of androgens during follow-up. Twenty-six of the miRNAs were significantly changed in circulation in women with PCOS during the follow-up, and twenty-four of them had decreased, while levels did not change in the control group. Four miRNAs were significantly different at baseline between healthy controls and women with PCOS; miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p, which were decreased in PCOS. After follow-up, miR-28-3p, miR-139-5p, and miR-376a-3p increased in PCOS women to the levels observed in healthy controls. Of these, miR-139-5p correlated with total testosterone levels (rho = 0.50, padj = 0.013), while miR-376-3p correlated significantly with the waist-hip ratio at follow-up (rho = 0.43, padj = 0.01). Predicted targets of miR-103-3p, miR-139-5p, miR-28-3p, and miR-376a-3p were enriched in pathways associated with Insulin/IGF signaling, interleukin signaling, the GNRH receptor pathways, and other signaling pathways. MiRNAs altered during follow-up in PCOS patients were enriched in pathways related to immune regulation, gonadotropin-releasing hormone signaling, tyrosine kinase signaling, and WNT signaling. CONCLUSIONS These studies indicate that miRNAs associated with PCOS and androgen metabolism overall decrease during a 6-year follow-up, reflecting the phenotypic change in PCOS individuals towards a less hyperandrogenic profile.
Collapse
Affiliation(s)
- Pernille B Udesen
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Anja E Sørensen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Rikke Svendsen
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Nanna L S Frisk
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Anne L Hess
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mubeena Aziz
- Department of Gynecology and Obstetrics, Amager/Hvidovre Hospital, Kettegaards Allé 30, 2650 Hvidovre, Denmark
| | | | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Lykkebækvej 14, 4600 Koege, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
15
|
Heidarzadehpilehrood R, Pirhoushiaran M, Binti Osman M, Abdul Hamid H, Ling KH. Weighted Gene Co-Expression Network Analysis (WGCNA) Discovered Novel Long Non-Coding RNAs for Polycystic Ovary Syndrome. Biomedicines 2023; 11:biomedicines11020518. [PMID: 36831054 PMCID: PMC9953234 DOI: 10.3390/biomedicines11020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) affects reproductive-age women. This condition causes infertility, insulin resistance, obesity, and heart difficulties. The molecular basis and mechanism of PCOS might potentially generate effective treatments. Long non-coding RNAs (lncRNAs) show control over multifactorial disorders' growth and incidence. Numerous studies have emphasized its significance and alterations in PCOS. We used bioinformatic methods to find novel dysregulated lncRNAs in PCOS. To achieve this objective, the gene expression profile of GSE48301, comprising PCOS patients and normal control tissue samples, was evaluated using the R limma package with the following cut-off criterion: p-value < 0.05. Firstly, weighted gene co-expression network analysis (WGCNA) was used to determine the co-expression genes of lncRNAs; subsequently, hub gene identification and pathway enrichment analysis were used. With the defined criteria, nine novel dysregulated lncRNAs were identified. In WGCNA, different colors represent different modules. In the current study, WGCNA resulted in turquoise, gray, blue, and black co-expression modules with dysregulated lncRNAs. The pathway enrichment analysis of these co-expressed modules revealed enrichment in PCOS-associated pathways, including gene expression, signal transduction, metabolism, and apoptosis. In addition, CCT7, EFTUD2, ESR1, JUN, NDUFAB1, CTTNB1, GRB2, and CTNNB1 were identified as hub genes, and some of them have been investigated in PCOS. This study uncovered nine novel PCOS-related lncRNAs. To confirm how these lncRNAs control translational modification in PCOS, functional studies are required.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Malina Binti Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Habibah Abdul Hamid
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.H.); (K.-H.L.)
| |
Collapse
|
16
|
Evaluation of the potential of miR-21 as a diagnostic marker for oocyte maturity and embryo quality in women undergoing ICSI. Sci Rep 2023; 13:1440. [PMID: 36697494 PMCID: PMC9876918 DOI: 10.1038/s41598-023-28686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
MicroRNAs are small molecules that play a crucial role in regulating a woman's reproductive system. The present study evaluates the expression of miR-21 in the serum, follicular fluid (FF), and cumulus cells (CCs) and their association with oocyte maturity and embryo quality in women undergoing intracytoplasmic sperm injection. Women subjects were divided into the case (54 Patients with female factor infertility) and control groups (33 patients with male factor infertility). The level of miR-21 was measured using Real-Time PCR. The level of miR-21 was significantly lower in the CCs, FF, and serum in the case compared to the control group (p < 0.05). MiR-21 abundance was higher in FF and CCs samples than in serum. Furthermore, there was a significant increase in CCs to FF in the case group (p < 0.05). A significant decrease in oocyte count, MII oocytes, and percentage of mature oocytes were observed in the case group (p < 0.05). The expression of miR-21 in FF and CCs was positively related to oocyte maturation, but no correlation with embryo development was observed. This study found that miR-21 is expressed less in women with female factor infertility, and human oocytes' development is crucially affected by the expression of miR-21. Therefore, miR-21 could provide new helpful biomarkers of oocyte maturity.
Collapse
|
17
|
Niinuma SA, Lubbad L, Lubbad W, Moin ASM, Butler AE. The Role of Heat Shock Proteins in the Pathogenesis of Polycystic Ovarian Syndrome: A Review of the Literature. Int J Mol Sci 2023; 24:ijms24031838. [PMID: 36768170 PMCID: PMC9915177 DOI: 10.3390/ijms24031838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and post-menopausal women. PCOS is a multifactorial heterogeneous disorder associated with a variety of etiologies, outcomes, and clinical manifestations. However, the pathophysiology of PCOS is still unclear. Heat shock proteins (HSPs) have recently been investigated for their role in the pathogenesis of PCOS. HSPs are a class of proteins that act as molecular chaperones and maintain cellular proteostasis. More recently, their actions beyond that of molecular chaperones have highlighted their pathogenic role in several diseases. In PCOS, different HSP family members show abnormal expression that affects the proliferation and apoptotic rates of ovarian cells as well as immunological processes. HSP dysregulation in the ovaries of PCOS subjects leads to a proliferation/apoptosis imbalance that mechanistically impacts follicle stage development, resulting in polycystic ovaries. Moreover, HSPs may play a role in the pathogenesis of PCOS-associated conditions. Recent studies on HSP activity during therapeutic interventions for PCOS suggest that modulating HSP activity may lead to novel treatment strategies. In this review, we summarize what is currently known regarding the role of HSPs in the pathogenesis of PCOS and their potential role in the treatment of PCOS, and we outline areas for future research.
Collapse
Affiliation(s)
- Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Laila Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Walaa Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
- Correspondence: or ; Tel.: +973-66760313
| |
Collapse
|
18
|
Rani S, Chandna P. Multiomics Analysis-Based Biomarkers in Diagnosis of Polycystic Ovary Syndrome. Reprod Sci 2023; 30:1-27. [PMID: 35084716 PMCID: PMC10010205 DOI: 10.1007/s43032-022-00863-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
Polycystic ovarian syndrome is an utmost communal endocrine, psychological, reproductive, and metabolic disorder that occurs in women of reproductive age with extensive range of clinical manifestations. This may even lead to long-term multiple morbidities including obesity, diabetes mellitus, insulin resistance, cardiovascular disease, infertility, cerebrovascular diseases, and ovarian and endometrial cancer. Women affliction from PCOS in midst assemblage of manifestations allied with menstrual dysfunction and androgen exorbitance, which considerably affects eminence of life. PCOS is recognized as a multifactorial disorder and systemic syndrome in first-degree family members; therefore, the etiology of PCOS syndrome has not been copiously interpreted. The disorder of PCOS comprehends numerous allied health conditions and has influenced various metabolic processes. Due to multifaceted pathophysiology engaging several pathways and proteins, single genetic diagnostic tests cannot be supportive to determine in straight way. Clarification of cellular and biochemical pathways and various genetic players underlying PCOS could upsurge our consideration of pathophysiology of this syndrome. It is requisite to know pathophysiological relationship between biomarker and their reflection towards PCOS disease. Biomarkers deliver vibrantly and potent ways to apprehend the spectrum of PCOS with applications in screening, diagnosis, characterization, and monitoring. This paper relies on the endeavor to point out many candidates as potential biomarkers based on omics technologies, thus highlighting correlation between PCOS disease with innovative technologies. Therefore, the objective of existing review is to encapsulate more findings towards cutting-edge advances in prospective use of biomarkers for PCOS disease. Discussed biomarkers may be fruitful in guiding therapies, addressing disease risk, and predicting clinical outcomes in future.
Collapse
Affiliation(s)
- Shikha Rani
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi , 110021, India.
| | - Piyush Chandna
- Natdynamics Biosciences Confederation, Gurgaon, Haryana, 122001, India
| |
Collapse
|
19
|
The molecular mechanism of miR-96-5p in the pathogenesis and treatment of polycystic ovary syndrome. Transl Res 2022; 256:1-13. [PMID: 36586536 DOI: 10.1016/j.trsl.2022.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Polycystic ovary syndrome (PCOS), characterized by the androgen excess and arrest of antral follicles, is a common endocrine disorder among women lacking specific diagnostic biomarkers and therapeutic targets. Herein, we studied the molecular mechanism of miR-96-5p in the process of PCOS and its potential applications in PCOS. Clinically, we found that miR-96-5p significantly decreased in serum, follicular fluid and primary human granulosa cells (hGCs) of PCOS patients (n = 70) vs non-PCOS women (n = 60), as well as in the ovaries of 3-types of induced PCOS-like mice. Furthermore, we demonstrated that the elevated circulating miR-96-5p levels were significantly correlated with the PCOS disordered endocrine clinical features, and the area under the curve of receiver operating characteristic was 0.8344, with 75.71% specificity and 80% sensitivity. Mechanically, we identified miR-96-5p as an androgen-regulated miRNA that directly targets the forkhead transcription factor FOXO1. Inhibition of miR-96-5p decreased estrogen synthesis, while decreasing the cell proliferation index of KGN via regulating the expression of FOXO1 and its downstream genes. Inversely, inhibition of FOXO1 abrogated the effect of miR-96-5p on estrogen synthesis and proliferation index. Of note, ovarian intra-bursal injection of miR-96-5p agomir rescued the phenotypes of dehydroepiandrosterone-induced PCOS like mice. In conclusion, our results clarified a vital role of miR-96-5p in the pathogenesis of PCOS and might serve as a novel diagnostic biomarker and therapeutic target for PCOS.
Collapse
|
20
|
Motahari Rad H, Mowla SJ, Ramazanali F, Rezazadeh Valojerdi M. Characterization of altered microRNAs related to different phenotypes of polycystic ovarian syndrome (PCOS) in serum, follicular fluid, and cumulus cells. Taiwan J Obstet Gynecol 2022; 61:768-779. [PMID: 36088043 DOI: 10.1016/j.tjog.2022.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 10/14/2022] Open
Abstract
OBJECTIVE Polycystic ovarian syndrome (PCOS) is a metabolic syndrome in which steroidogenesis, folliculogenesis, and cellular adhesion play crucial roles in its prognosis. These pathways are controlled and regulated by some small non-coding RNAs called microRNAs (miRs). Several miRs have differential expression in PCOS compared to healthy women, and their dysregulation suggests important roles of miRs in PCOS pathophysiology. However, the role of miRs is still unclear, especially in various phenotypes of PCOS. MATERIALS AND METHODS This study was conducted to evaluate the diagnostic potential of miR-212-3p, miR-490-5p, miR-647, and miR-4643 in different subtypes of PCOS. Accordingly, nineteen PCOS patients with different subtypes based on Rotterdam criteria (A: 8, B: not detected in this study, C: 5, and D: 6 patients) and six control age and BMI matched women under ICSI treatment were selected. The relative expression of miRs was then measured in blood serum before hormonal treatment (S1) and before ovum pickup (S2), follicular fluid (FF), and cumulus cells (CC) in all subjects. Also, the expression of miRs predicted target genes (AMH, AR, CYP11A1, CYP17A1, CYP19A1, GDF9, and HSD17B12) were done in the CC of understudy groups. RESULTS In general, the results indicated that PCOS significantly increased the expression of miR-212-3p, miR-490-5p, and miR-4643 in FF and CCs compared to control. Although these miRs tend to increase in serum 1 of the PCOS patients, the differences were insignificant. However, there was a significant reduction in the expression of miR-647 in FF and CCs between PCOS vs. control. In addition, the miRs had significantly different expressions in various phenotypes of PCOS. For example, high levels of miR-647 in S2 and low levels of miR-490 in FF and miR-212 in CC can differentiate phenotype A from the other. Also, upregulation of miR-212 in FF and miR-4643 in S1 and low levels of this miR in FF can specifically differentiate subtype A from D. On the other hand, high levels of miR-4643 in FF and miR-490 in CC and lower titter of miR-647 can distinguish subtype C from the other. On the other hand, high levels of AMH, AR, CYP11, CYP17, and HSD17 in the hyperandrogenic PCOS and upregulation of CYP19A1 in the hypoandrogenic group can validate the role of selected miRs in the prognosis of PCOS. CONCLUSION Characterization of altered microRNAs in serum, FF, and CCs and their targets in CC showed that the miRs might play critical roles in steroidogenesis and folliculogenesis. These miRs may be used for molecular classification of PCOS subtypes and as biomarkers for PCOS diagnosis.
Collapse
Affiliation(s)
- Hanieh Motahari Rad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fariba Ramazanali
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mojtaba Rezazadeh Valojerdi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
21
|
MiR-520h inhibits viability and facilitates apoptosis of KGN cells through modulating IL6R and the JAK/STAT pathway. Reprod Biol 2022; 22:100607. [DOI: 10.1016/j.repbio.2022.100607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022]
|
22
|
Xu X, Guan R, Gong K, Xie H, Shi L. Circ_FURIN knockdown assuages Testosterone-induced human ovarian granulosa-like tumor cell disorders by sponging miR-423-5p to reduce MTM1 expression in polycystic ovary syndrome. Reprod Biol Endocrinol 2022; 20:32. [PMID: 35177076 PMCID: PMC8851856 DOI: 10.1186/s12958-022-00891-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine disorder among reproductive-age women. The mechanism by which circular RNA (circRNA) drives PCOS development remains unclear. Thus, the study is designed to explore the role of a novel circRNA, circ_FURIN, in the PCOS cell model and the underlying mechanism. METHODS PCOS cell model was established by treating human ovarian granulosa-like tumor cells (KGN) with Testosterone (TTR). RNA expressions of circ_FURIN, microRNA-423-5p (miR-423-5p) and myotubularin 1 (MTM1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was checked by Western blot. Cell proliferation was investigated by a 5-Ethynyl-29-deoxyuridine assay, 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry analysis for cell cycle. Apoptotic cells were quantified by flow cytometry analysis for cell apoptosis. The interplay between miR-423-5p and circ_FURIN or MTM1 was identified by dual-luciferase reporter and RNA pull-down assays. RESULTS Circ_FURIN and MTM1 expressions were significantly upregulated, whereas miR-423-5p was downregulated in the ovarian cortex tissues of PCOS patients and TTR-treated KGN cells compared with controls. Circ_FURIN depletion relieved TTR-induced proliferation inhibition and apoptosis promotion. Besides, knockdown of miR-423-5p, a target miRNA of circ_FURIN, rescued circ_FURIN knockdown-mediated effects under TTR treatment. MiR-423-5p remitted TTR-induced cell disorders by binding to MTM1. Moreover, circ_FURIN modulated MTM1 expression through miR-423-5p. CONCLUSION Circ_FURIN silencing protected against TTR-induced dysfunction by the miR-423-5p/MTM1 pathway in human ovarian granulosa-like tumor cells.
Collapse
Affiliation(s)
- Xia Xu
- Department of Obstetrical, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Rui Guan
- Department of Gynaecology, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Ke Gong
- Department of Obstetrical, The Hospital of Bayannaoer, Bayannaoer City, Inner Mongolia, China
| | - Huaibing Xie
- Department of Oncology, Huai'an Second People's Hospital, Affiliated to Xuzhou Medical University, Qingjiangpu District, Huai'an City, No.62, Huaihai South Road, 223001, Jiangsu Province, China.
| | - Lei Shi
- Department of Obstetrics and Gynecology, Hongze Huai'an District People's Hospital, Hongze District, Huai'an City, No.102 Dongfeng Road, 223001, Jiangsu Province, China.
| |
Collapse
|
23
|
Gu H, Li L, Zhou B, Li M, Zhong W, Wei X, Zhong X. Single nucleotide polymorphisms in binding site of miRNA-135a and targeted gene IRS2 are correlated with multiple clinical features of PCOS: A study in Chinese women. Technol Health Care 2022; 30:71-80. [PMID: 35124585 PMCID: PMC9028752 DOI: 10.3233/thc-228007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND: The etiology of polycystic ovary syndrome (PCOS) remains unclear with highly heterogeneous clinical manifestations, recently growing evidence revealing genetic variants play a crucial part in its pathogenesis. OBJECTIVE: This study aimed to examine the correlation between SNPs in miRNA-135a’s binding site of targeted gene IRS2 and clinical manifestations of PCOS in Chinese females. METHOD: A total of 126 Chinese women with PCOS and 109 healthy women were enrolled, divided into 4 groups based on different clinical features of hyperandrogenemia (HA), insulin resistance (IR), polycystic ovary morphology (PCOM) and obesity. We analyzed 2 single nucleotide polymorphisms (SNPs) of the IRS2 gene (rs2289046 and rs1865434) and clinical features’ laboratory measurements such as sex hormone, fasting plasma glucose (FPG), fasting plasma insulin (FINS). RESULTS: Located in miRNA-135a binding site of IRS2 gene, the rs2289046’s triple genotypes distribution showed a significant difference between PCOS/control group and PCOM/non-PCOM group (P< 0.05) while the rs1865434’s triple genotype distribution showed a significant difference between obesity/non-obesity group (P< 0.05). CONCLUSION: The results revealed the two SNPs as rs2289046 and rs1865434 in the IRS-2 binding region of miRNA-135a have correlations with the clinical features of PCOS in Chinese population.
Collapse
Affiliation(s)
- Heng Gu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
| | - Longyu Li
- Dongguan Institute of Reproduction and Genetics, Dongguan Maternal and Children Health Hospital, Dongguan, Guangdong, China
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
| | - Bingyi Zhou
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
| | - Mingzhen Li
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
| | - Wenyao Zhong
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
| | - Xiangcai Wei
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xingmin Zhong
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Hospital, Guangzhou, Guangdong, China
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
25
|
Soyman Z, Durmus S, Ates S, Simsek G, Sozer V, Kundaktepe B, Kurtulus D, Gelisgen R, Sal V, Uzun H. CIRCULATING MIR-132, MIR-146A, MIR-222, AND MIR-320 EXPRESSION IN DIFFERENTIAL DIAGNOSIS OF WOMEN WITH POLYCYSTIC OVARY SYNDROME. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2022; 18:13-19. [PMID: 35975247 PMCID: PMC9365421 DOI: 10.4183/aeb.2022.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE The aim of the study was to investigate whether the circulating miR-132, miR-146a, miR-222, and miR-320 levels are used in the differential diagnosis of women with polycystic ovary syndrome (PCOS) and healthy women. METHODS This prospective case-control study included 50 women with PCOS and age- and body mass index- matched 50 healthy controls. The hormone and lipid profiles, levels of microRNAs (miRNAs), and parameters of carbohydrate metabolism were measured. RESULTS Expression levels of miRNAs were assessed using the two-step quantitative real-time polymerase chain reaction. Circulating miR-132, miR-146a and miR-222 levels were significantly downregulated in the PCOS group compared with the control group. The miR-320 levels did not differ between the two groups. Free testosterone was negatively correlated with miR-132, miR-146a and miR-222. Insulin was negatively correlated with miR-132 and miR-146a. CONCLUSIONS The results of the study revealed that miRNA expression, may suggest a possible distinction between healthy women and PCOS patients. miR-132, miR-146a, and miR-222 may have key functions in the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Z. Soyman
- Istanbul Education and Research Hospital, Dept. of Obstetrics & Gynecology, Istanbul, Turkey
| | - S. Durmus
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Dept. of Biochemistry, Istanbul, Turkey
| | - S. Ates
- Bezmialem Vakif University School of Medicine, Dept. of Obstetrics & Gynecology, Istanbul, Turkey
| | - G. Simsek
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Dept. of Physiology, Istanbul, Turkey
| | - V. Sozer
- Yildiz Technical University, Dept. of Biochemistry, Istanbul, Turkey
| | - B.P. Kundaktepe
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Dept. of General Surgery, Istanbul, Turkey
| | - D. Kurtulus
- Istanbul University Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - R. Gelisgen
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Dept. of Biochemistry, Istanbul, Turkey
| | - V. Sal
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Dept. of Obstetrics & Gynecology, Istanbul, Turkey
| | - H. Uzun
- Istanbul Atlas University, Faculty of Medicine, Dept. of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
26
|
Xu L, Xiong F, Bai Y, Xiao J, Zhang Y, Chen J, Li Q. Circ_0043532 regulates miR-182/SGK3 axis to promote granulosa cell progression in polycystic ovary syndrome. Reprod Biol Endocrinol 2021; 19:167. [PMID: 34740363 PMCID: PMC8569971 DOI: 10.1186/s12958-021-00839-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/25/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women at childbearing age. Several circular RNAs (circRNAs) have been demonstrated to be involved in PCOS. In this study, we aimed to explore the function and mechanism of circ_0043532 in PCOS. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the expression of circ_0043532, miR-182 and serum/glucocorticoid regulated kinase family member 3 (SGK3). Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) assay and 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. Flow cytometry analysis was employed to evaluate cell cycle and cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to verify the association between miR-182 and SGK3. Western blot assay was carried out to determine the protein level of SGK3. RESULTS Circ_0043532 was markedly elevated in PCOS granulosa cells (GCs) and KGN cells. Silencing of circ_0043532 suppressed cell proliferation and cell cycle process and promoted cell apoptosis in PCOS GCs and KGN cells. For mechanistic analysis, circ_0043532 was identified as a sponge of miR-182 and SGK3 was confirmed to be a target gene of miR-182. Inhibition of miR-182 rescued the impacts of circ_0043532 interference on PCOS GCs and KGN cell progression. Moreover, miR-182 overexpression suppressed cell proliferation and cell cycle process and promoted cell apoptosis in PCOS GCs and KGN cells by targeting SGK3. CONCLUSION Deficiency of circ_0043532 suppressed cell proliferation and induced cell cycle arrest and cell apoptosis in PCOS by modulation of miR-182/SGK3 axis.
Collapse
Affiliation(s)
- Lishuang Xu
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Fang Xiong
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China.
| | - Yinyang Bai
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Juxia Xiao
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Yun Zhang
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Jie Chen
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| | - Qiuping Li
- Department of Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, NO.48 Huaishu Street, Wuxi, 214002, Jiangsu, China
| |
Collapse
|
27
|
Li Y, Yao N, Gao Y, Wang Y, Bai L, Xu J, Wang H. MiR-1224-5p attenuates polycystic ovary syndrome through inhibiting NOD-like receptor protein 3 inflammasome activation via targeting Forkhead box O 1. Bioengineered 2021; 12:8555-8569. [PMID: 34637688 PMCID: PMC8806973 DOI: 10.1080/21655979.2021.1987125] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine disorder that poses a great threat to women's health. MiR-1224-5p is downregulated in the follicular fluid of patients with PCOS, but its role remains largely unknown. In this study, mice were treated with dehydroepiandrosterone (DHEA) to establish an in vivo model of PCOS. We found that enhanced activation of NLRP3 inflammasome was accompanied by downregulation of miR-1224-5p in ovarian tissue of PCOS mice. The effect of miR-1224-5p was further explored in TNF-α-treated human granulosa-like tumor (KGN) cells. Upregulation of miR-1224-5p suppressed TNF-α-induced secretion of DHEA and testosterone. MiR-1224-5p attenuated TNF-α-induced inflammation by inhibiting NLRP3 inflammasome activation, IL-1β synthesis, and nuclear factor kappa B (NF-κB) p65 nuclear translocation. Notably, miR-1224-5p decreased the expression of Forkhead box O 1 (FOXO1) and its downstream gene thioredoxin interaction protein (TXNIP). Luciferase reporter assay confirmed FOXO1 as a target of miR-1224-5p. Upregulation of FOXO1 abolished miR-1224-5p-induced activation of NLRP3 inflammasome, demonstrating that miR-1224-5p might inhibit NLRP3 inflammasome activation through regulating FOXO1. This study provided novel insights into the pathogenesis of PCOS and suggested that miR-1224-5p might be a promising target for treating PCOS.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Nianling Yao
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yan Gao
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Yunping Wang
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Lu Bai
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jia Xu
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Haixu Wang
- Department of Obstetrics and Gynecology, The Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
28
|
Orazov M, Silantieva E, Orekhov R. THE CAPACITY OF PHYSICAL THERAPY FOR REPEATED IMPLANTATION FAILURES IN IVF PROGRAMS: A LITERATURE REVIEW. REPRODUCTIVE MEDICINE 2021. [DOI: 10.37800/rm.3.2021.27-34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Relevance: Studies of the etiology and pathogenesis of implantation failures, both repeated and primary, as well as the possibilities of therapy today carry many contraversions. However, in recent years, numerous studies have demonstrated the high effectiveness of various physiotherapy methods in improving reproductive outcomes, including therapy and overcoming repeated implantation failures in in-vitro fertilization programs.
The purpose of the study was to study the capacity of physical therapy for repeated implantation failures in in-vitro fertilization programs.
Materials and Methods: The capacity of physical therapy for repeated implantation failures in in-vitro fertilization programs were studied through the search and analysis of the scientific sources for 1995-2021, available in the Scopus and Pubmed databases, using the keywords “in-vitro fertilization,” “repeated implantation failure,” “assisted reproductive technology,” and «physiotherapy.»
Results: Electrical impulse therapy has established itself as the most studied method in the treatment of disorders of endometrial receptivity with proven efficacy. Physical methods of exposure can improve reproductive outcomes through a beneficial effect on the angiogenesis and architectonics of the endometrium, improving its receptivity, and normalizing physiology. Further detailed study of the etiology, pathogenetic mechanisms, as well as the effectiveness of overcoming repeated implantation failures by various methods is needed to develop treatment protocols.
Collapse
|
29
|
Dehghan Z, Mohammadi-Yeganeh S, Rezaee D, Salehi M. MicroRNA-21 is involved in oocyte maturation, blastocyst formation, and pre-implantation embryo development. Dev Biol 2021; 480:69-77. [PMID: 34411594 DOI: 10.1016/j.ydbio.2021.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Follicular fluid is one source of microRNAs (miRNAs). These miRNAs originate from oocytes and their neighboring cells. The changes in the miRNAs profile in the follicular fluid could alter folliculogenesis and oocyte maturation, and lead to infertility. Polycystic ovary syndrome (PCOS) patients have increased miR-21 levels in their sera, granulosa cells, and follicular fluid, and this mi-RNA plays a role in the pathophysiology and follicular dysfunction of PCOS patients. In the current study, we intend to examine whether expression levels of miR-21 influence oocyte maturation and embryo development. We examined miR-21 over-expression and down-regulation of miR-21 by miR-off 21 during in vitro maturation (IVM) to assess its influence on oocyte maturation and embryo development in mice. Over-expression of miR-21 in cumulus cells decreased expansion, meiotic progression, Glutathione-S-transferase GSH levels, and decreased expressions of Bmpr2 and Ptx3 genes. Subsequently, we noted that in vitro fertilization, and the cleavage rate and blastocyst formation significantly increased in cumulus oocyte complexes (COCs) that over-expressed miR-21. Inhibition of miR-21 by miR-off 21 led to increased cumulus expansion and GSH levels, along with decreased cleavage rate and blastocyst formation by alterations in Cdk2ap1 and Oct4 gene expressions. However, oocyte progression from the germinal vesicle (GV) to the metaphase II (MII) stage was not significant. miR-21 altered the gene expression levels in cumulus cells and influenced cytoplasmic oocyte maturation, cumulus expansion, and subsequent embryonic development in mice.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Cellular & Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Zhen J, Li J, Li X, Wang X, Xiao Y, Sun Z, Yu Q. Downregulating lncRNA NEAT1 induces proliferation and represses apoptosis of ovarian granulosa cells in polycystic ovary syndrome via microRNA-381/IGF1 axis. J Biomed Sci 2021; 28:53. [PMID: 34266430 PMCID: PMC8281489 DOI: 10.1186/s12929-021-00749-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Researchers have revealed the combined functions of long noncoding RNAs (lncRNAs) and microRNA (miRNAs) in polycystic ovary syndrome (PCOS). This study aimed to understand the role of nuclear-enriched abundant transcript 1 (NEAT1) and miR-381 involving insulin-like growth factor 1 (IGF1) in PCOS. METHODS PCOS rat model was established by dehydroepiandrosterone induction. NEAT1, miR-381 and IGF1 expression in ovarian granulosa cells of PCOS patients and ovarian tissues of PCOS rats were tested. Bioinformatics website and dual luciferase reporter gene assay were utilized to verify the relationship between NEAT1 and miR-381 and that between miR-381 and IGF1. Levels of sex hormone, pathological changes and ovarian granulosa cell apoptosis in ovarian tissues of PCOS rats were detected. Ovarian granulosa cell proliferation and apoptosis were analyzed in vitro. RESULTS NEAT1 and IGF1 expression increased while miR-381 expression decreased in the ovarian granulosa cells of patients with PCOS and the ovarian tissues of PCOS rats. In in vivo experiments, interference with NEAT1 improved the levels of sex hormones, alleviated pathological changes and suppressed ovarian granulosa cell apoptosis in the ovarian tissues of PCOS rats. In in vitro cell experiments, interference with NEAT1 suppressed apoptosis and enhanced cell proliferation of ovarian granulosa cells. NEAT1 interference-mediated effect would be reversed by up-regulating miR-381. NEAT1 acted as a ceRNA to adsorb miR-381 to target IGF1. Overexpression of IGF1 reversed the inhibitory effect of miR-381 on ovarian granulosa cell apoptosis. CONCLUSION Interference with NEAT1 increases miR-381 and reduces IGF1 levels, effectively improving the levels of sex hormones and reducing the pathological damage of ovarian tissue in rats with PCOS.
Collapse
Affiliation(s)
- Jingran Zhen
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China
| | - Jiangli Li
- Department of Obstetrics and Gynecology, Zhongguancun Hospital, Beijing, 100080, China
| | - Xia Li
- Community Health Service Center, Beijing Forestry University, Beijing, 100053, China
| | - Xue Wang
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China
| | - Yaling Xiao
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China
| | - Zhengyi Sun
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China.
| | - Qi Yu
- Department of Gynecological Endocrinology and Reproduction Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 41 Damucang Hutong, Xicheng, Beijing, China.
| |
Collapse
|
31
|
Aldakheel FM, Abuderman AA, Alduraywish SA, Xiao Y, Guo WW. MicroRNA-21 inhibits ovarian granulosa cell proliferation by targeting SNHG7 in premature ovarian failure with polycystic ovary syndrome. J Reprod Immunol 2021; 146:103328. [PMID: 34020163 DOI: 10.1016/j.jri.2021.103328] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
microRNA (miRs or miRNAs) is a type of non-coding RNA which plays the role of a regulator in gene expression. A number of miRNAs has been found by the researchers for its critical role in the pathogenesis of polycystic ovary syndrome (PCOS). But there is a no clear information available about the biological role played by miR-21 in PCOS prognosis. So, the aim of the current study is to determine the role played by miR-21 in the progression of PCOS. In order to achieve this aim, the researcher examined miR-21 expression levels in ovarian tissue samples collected from PCOS patients as well as their KGN cells (human granulosa-like tumor cell line). The study results inferred downregulation in the expression levels of miR-21 in ovarian tissues of PCOS patients and KGN cells, when compared with unaffected ovarian tissues and IOSE80 (human ovarian surface epithelial cell line). With the overexpression of miR-21, the proliferation of KGN cells was prevented and apoptosis was induced among these cells. The authors used StarBase analysis for predicting the direct binding target of miR-21. As per the assay results attained from luciferase reporter assay and western blot analysis, it was found that SNHG7 acted as a target gene for miR-21 while the latter downregulated the former. To conclude, the current study revealed the contribution of miR-21/SNHG7 axis in the regulation of Granulosa Cell (GC) proliferation and apoptosis. It further suggested a new molecular mechanism for GC dysregulation while the finding presents a new promising target for PCOS treatment procedure.
Collapse
Affiliation(s)
- Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulwahab A Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi Arabia.
| | - Shatha A Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Yuhong Xiao
- Department of Reproductive Shangluo Shangzhou Heilongkou Central Hospital, Shangluo, Shangzhou District, Shaanxi, 110016, PR China
| | - Wen Wang Guo
- Department of Reproductive Shangluo Shangzhou Heilongkou Central Hospital, Shangluo, Shangzhou District, Shaanxi, 110016, PR China.
| |
Collapse
|
32
|
Barnard L, du Toit T, Swart AC. Back where it belongs: 11β-hydroxyandrostenedione compels the re-assessment of C11-oxy androgens in steroidogenesis. Mol Cell Endocrinol 2021; 525:111189. [PMID: 33539964 DOI: 10.1016/j.mce.2021.111189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Adrenal steroidogenesis has, for decades, been depicted as three biosynthesis pathways -the mineralocorticoid, glucocorticoid and androgen pathways with aldosterone, cortisol and androstenedione as the respective end products. 11β-hydroxyandrostenedione was not included as an adrenal steroid despite the adrenal output of this steroid being twice that of androstenedione. While it is the end of the line for aldosterone and cortisol, as it is in these forms that they exhibit their most potent receptor activities prior to inactivation and conjugation, 11β-hydroxyandrostenedione is another matter entirely. The steroid, which is weakly androgenic, has its own designated pathway yielding 11-ketoandrostenedione, 11β-hydroxytestosterone and the potent androgens, 11-ketotestosterone and 11-ketodihydrotestosterone, primarily in the periphery. Over the last decade, these C11-oxy C19 steroids have once again come to the fore with the rising number of studies contradicting the generally accepted notion that testosterone and it's 5α-reduced product, dihydrotestosterone, are the principal potent androgens in humans. These C11-oxy androgens have been shown to contribute to the androgen milieu in adrenal disorders associated with androgen excess and in androgen dependant disease progression. In this review, we will highlight these overlooked C11-oxy C19 steroids as well as the C11-oxy C21 steroids and their contribution to congenital adrenal hyperplasia, polycystic ovarian syndrome and prostate cancer. The focus is on new findings over the past decade which are slowly but surely reshaping our current outlook on human sex steroid biology.
Collapse
Affiliation(s)
- Lise Barnard
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Therina du Toit
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
33
|
Saha P, Kumar S, Datta K, Tyagi RK. Upsurge in autophagy, associated with mifepristone-treated polycystic ovarian condition, is reversed upon thymoquinone treatment. J Steroid Biochem Mol Biol 2021; 208:105823. [PMID: 33484844 DOI: 10.1016/j.jsbmb.2021.105823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 01/31/2023]
Abstract
Polycystic ovarian syndrome (PCOS) is a multi-factorial gynecological endocrine disorder. It affects fertility in women and also predisposes to insulin resistance, type 2 diabetes mellitus, obesity etc. Earlier, significance of autophagy has been explored in PCOS-related metabolic disorders and during normal folliculogenesis. Increasing evidences reveal connection of autophagy with chronic inflammatory behaviour, an associated phenomena in polycystic ovaries. However, understanding of the association of autophagy with PCOS is still obscure. This study reveals that increased autophagy in mifepristone (RU486) treated KK-1 cells and in vivo PCO rat model is characterized by upregulated Androgen Receptor (AR) expression and downregulated PCO biomarker aromatase. The prevalence of autophagy has been observed to be concomitant with increased expression of two autophagic markers Beclin1 and MAP-LC3-II while the autophagy substrate p62/SQSTM1 was downregulated. Immunohistochemical staining revealed increased localization of MAP-LC3 in the compacted granulosa layers of the follicular cysts in the PCO model. The PCO rat models also demonstrated augmented levels of p65, the active subunit of NF-κB, which acts as a transcriptional regulator of several pro-inflammatory factors. NF-κB repressor and anti-inflammatory herbal drug thymoquinone, known to alleviate PCO condition, downregulated autophagy modules substantially. Pre-treatment with thymoquinone upregulated aromatase, reduced AR levels and decreased autophagic markers as well as p65 levels, simulating super-ovulated condition. In conclusion, the anti-inflammatory phytochemical thymoquinone alleviated PCO condition.
Collapse
Affiliation(s)
- Paramita Saha
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Datta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
34
|
Yang D, Wang Y, Zheng Y, Dai F, Liu S, Yuan M, Deng Z, Bao A, Cheng Y. Silencing of lncRNA UCA1 inhibited the pathological progression in PCOS mice through the regulation of PI3K/AKT signaling pathway. J Ovarian Res 2021; 14:48. [PMID: 33743811 PMCID: PMC7980617 DOI: 10.1186/s13048-021-00792-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common hormonal disorder among reproductive-aged women worldwide, however, the mechanisms and progression of PCOS still unclear due to its heterogeneous nature. Using the human granulosa-like tumor cell line (KGN) and PCOS mice model, we explored the function of lncRNA UCA1 in the pathological progression of PCOS. Results CCK8 assay and Flow cytometry were used to do the cell cycle, apoptosis and proliferation analysis, the results showed that UCA1 knockdown in KGN cells inhibited cell proliferation by blocking cell cycle progression and promoted cell apoptosis. In the in vivo experiment, the ovary of PCOS mice was injected with lentivirus carrying sh-UCA1, the results showed that knockdown of lncRNA UCA1 attenuated the ovary structural damage, increased the number of granular cells, inhibited serum insulin and testosterone release, and reduced the pro-inflammatory cytokine production. Western blot also revealed that UCA1 knockdown in PCOS mice repressed AKT activation, inhibitor experiment demonstrated that suppression of AKT signaling pathway, inhibited the cell proliferation and promoted apoptosis. Conclusions Our study revealed that, in vitro, UCA1 knockdown influenced the apoptosis and proliferation of KGN cells, in vivo, silencing of UCA1 regulated the ovary structural damage, serum insulin release, pro-inflammatory production, and AKT signaling pathway activation, suggesting lncRNA UCA1 plays an important role in the pathological progression of PCOS.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanqing Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyi Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengqin Yuan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratoy, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
35
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
36
|
Motta AB. Epigenetic Marks in Polycystic Ovary Syndrome. Curr Med Chem 2021; 27:6727-6743. [PMID: 31580245 DOI: 10.2174/0929867326666191003154548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022]
Abstract
Polycystic Ovary Syndrome (PCOS) is a common endocrine and metabolic disorder that affects women in their reproductive age. Recent studies have shown that genes have an important role in the etiology of PCOS. However, the precise way in which these genes are transcriptionally and post-transcriptionally regulated is poorly understood. The aim of the present review is to provide updated information on miRNAs and DNA methylation as epigenetic marks of PCOS. The data presented here allow concluding that both microRNAs and DNA methylation can be considered as possible useful biomarkers when choosing the treatment for a specific PCOS phenotype and thus represent two important tools for the diagnosis and treatment of PCOS patients.
Collapse
Affiliation(s)
- Alicia Beatriz Motta
- Laboratorio de Fisio-patologia Ovarica, Centro de Estudios Farmacologicos y Botanicos (CEFYBO), Consejo Nacional de Investigaciones Cientificas y Tecnologicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, CP1121, Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
37
|
Alexandri C, Daniel A, Bruylants G, Demeestere I. The role of microRNAs in ovarian function and the transition toward novel therapeutic strategies in fertility preservation: from bench to future clinical application. Hum Reprod Update 2020; 26:174-196. [PMID: 32074269 DOI: 10.1093/humupd/dmz039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/02/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND New therapeutic approaches in oncology have converted cancer from a certain death sentence to a chronic disease. However, there are still challenges to be overcome regarding the off-target toxicity of many of these treatments. Oncological therapies can lead to future infertility in women. Given this negative impact on long-term quality of life, fertility preservation is highly recommended. While gamete and ovarian tissue cryopreservation are the usual methods offered, new pharmacological-based options aiming to reduce ovarian damage during oncological treatment are very attractive. In this vein, advances in the field of transcriptomics and epigenomics have brought small noncoding RNAs, called microRNAs (miRNAs), into the spotlight in oncology. MicroRNAs also play a key role in follicle development as regulators of follicular growth, atresia and steroidogenesis. They are also involved in DNA damage repair responses and they can themselves be modulated during chemotherapy. For these reasons, miRNAs may be an interesting target to develop new protective therapies during oncological treatment. This review summarizes the physiological role of miRNAs in reproduction. Considering recently developed strategies based on miRNA therapy in oncology, we highlight their potential interest as a target in fertility preservation and propose future strategies to make the transition from bench to clinic. OBJECTIVE AND RATIONALE How can miRNA therapeutic approaches be used to develop new adjuvant protective therapies to reduce the ovarian damage caused by cytotoxic oncological treatments? SEARCH METHODS A systematic search of English language literature using PubMed and Google Scholar databases was performed through to 2019 describing the role of miRNAs in the ovary and their use for diagnosis and targeted therapy in oncology. Personal data illustrate miRNA therapeutic strategies to target the gonads and reduce chemotherapy-induced follicular damage. OUTCOMES This review outlines the importance of miRNAs as gene regulators and emphasizes the fact that insights in oncology can inspire new adjuvant strategies in the field of onco-fertility. Recent improvements in nanotechnology offer the opportunity for drug development using next-generation miRNA-nanocarriers. WIDER IMPLICATIONS Although there are still some barriers regarding the immunogenicity and toxicity of these treatments and there is still room for improvement concerning the specific delivery of miRNAs into the ovaries, we believe that, in the future, miRNAs can be developed as powerful and non-invasive tools for fertility preservation.
Collapse
Affiliation(s)
- C Alexandri
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - A Daniel
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Université de Tours, Faculty of Science and Technology, 37200 Tours, France
| | - G Bruylants
- Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - I Demeestere
- Research Laboratory in Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.,Fertility Clinic, CUB-Erasme, 1070 Brussels, Belgium
| |
Collapse
|
38
|
Pourteymour Fard Tabrizi Z, Miraj S, Tahmasebian S, Ghasemi S. Plasma Levels of miR-27a, miR-130b, and miR-301a in Polycystic Ovary Syndrome. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:198-206. [PMID: 33274182 PMCID: PMC7703662 DOI: 10.22088/ijmcm.bums.9.3.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder in women of reproductive age. There is adequate evidence that suggests several microRNAs (miRNAs) are of great importance for PCOS. It seems that dysregulated expression of miR-27a, miR-130b, and miR-301a are associated with PCOS. The aim of this study was to investigate whether plasma levels of these miRNAs are different between patients with PCOS and healthy controls. Fifty-three women with a definite diagnosis of PCOS, and 53 healthy controls were enrolled. MiRNAs expression levels in plasma were evaluated by real-time PCR. The diagnostic values of each miRNA were calculated by the receiver operating characteristic (ROC) curve and areas under the curves (AUC). The main clinical characteristics were not significantly different between the two groups. The circulating plasma expression levels of miR-27a and miR-301a had a significant increase (P = 0.0008 and P <0.0001, respectively) but miR-130b expression level decreased in the patient group (P <0.0001). The AUC for miR-27a, miR-130b, and miR-301a were 0.71, 0.77, and 0.66, respectively. A positive exponential was observed for miR-27a and miR-301a in multiple logistic regression. Changes in the plasma expressions of the studied miRNAs are likely to be associated with PCOS phenotypes. MiR-27a has a potential to serve as a diagnostic biomarker of PCOS.
Collapse
Affiliation(s)
- Zahra Pourteymour Fard Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sepideh Miraj
- Department of Obstetrics and Gynecology, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shahram Tahmasebian
- School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
39
|
Udesen PB, Glintborg D, Sørensen AE, Svendsen R, Nielsen NLS, Wissing MLM, Andersen MS, Englund ALM, Dalgaard LT. Metformin decreases miR-122, miR-223 and miR-29a in women with polycystic ovary syndrome. Endocr Connect 2020; 9:1075-1084. [PMID: 33112812 PMCID: PMC7774773 DOI: 10.1530/ec-20-0195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Metformin is associated with increased insulin sensitivity, whereas oral contraceptive pills (OCP) could increase the risk for type 2 diabetes (T2D) in women with polycystic ovary syndrome (PCOS). Certain miRNAs might serve as biomarkers for the risk of T2D. The aim of this study was to investigate changes in circulating miRNA levels during treatment with metformin and OCP in women with PCOS. Sixty-five women with PCOS according to Rotterdam criteria were randomized to metformin (2 g/day), metformin + OCP (150 mg desogestrel + 30 µg ethinylestradiol) or OCP alone for 12 months. Serum miRNA analysis was performed with individual RT-qPCR or Taqman low density array cards of 22 selected miRNAs previously related to PCOS, glucose and/or lipid metabolism. miR-122 and miR-29a levels were decreased after treatment with metformin compared with metformin + OCP and OCP group: miR-122: log2 difference -0.7 (P = 0.01) and -0.7 (P = 0.02), miR-29a: log2 difference -0.5 (P = 0.01) and -0.4 (P = 0.04), while miR-223 levels were decreased in the metformin + OCP group after treatment: log2 difference -0.5 (P = 0.02). During the treatment period, a significant weight loss was observed in the metformin group compared with the OCP group. In the OCP group, miRNA levels were unchanged during the treatment period. Levels of circulating miRNAs associated with lipid and glucose metabolism decreased during metformin treatment. Changes in miRNA levels in the metformin group could be explained by the simultaneous weight loss in the same group. These results support the notion that metformin treatment alone may be superior for metabolic health compared with OCP.
Collapse
Affiliation(s)
- Pernille Bækgaard Udesen
- The Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Dorte Glintborg
- Department of Endocrinology and Metabolism, Odense University Hospital, Odense, Denmark
| | | | - Rikke Svendsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Nanna Louise Skov Nielsen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Department of Clinical Immunology, Næstved Hospital, Næstved, Denmark
| | | | | | - Anne Lis Mikkelsen Englund
- The Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | | |
Collapse
|
40
|
Overexpression of miR-144-3p alleviates polycystic ovaries syndrome through targeting expression of HSP-70. Gene Ther 2020; 29:217-226. [PMID: 32917949 DOI: 10.1038/s41434-020-00191-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 11/08/2022]
Abstract
Increasing microRNAs are shown to be participate in polycystic ovarian syndrome (PCOS) pathogenesis. Nevertheless, the biological effects of miR-144-3p and its detailed mechanisms in PCOS are to be investigated. The purpose of our work was to study the function of miR-144-3p in PCOS. Currently, Expression of miR-144-3p was greatly reduced in PCOS patients and PCOS rat models. In addition, HSP-70 expression was greatly elevated PCOS. Cell proliferation assays and flow cytometry assay were carried out following the overexpression of miR-144-3p in ovarian granulosa cells from PCOS rat models. We observed that miR-144-3p overexpression induced the proliferation and repressed cell apoptosis while loss of miR-144-3p demonstrated an opposite process. Then, PCOS rat models were classified to four groups: LV-NC group, LV-miR-144-3p group, Anti-control group, and Anti-miR-144-3p group. In response to loss of miR-144-3p, we found E2, T, and LH serum levels were elevated and FSH serum level was inhibited. Upregulation of miR-144-3p exhibited an opposite process. Moreover, HSP-70 was a direct target of miR-144-3p. Furthermore, increased expression of HSP-70 rescued the effects of miR-144-3p on ovarian granulosa cell growth and apoptosis. In addition, knockdown of HSP-70 alleviated endocrine disorders and abnormal ovarian weight in vivo. To sum up, miR-144-3p might function as a novel target for PCOS treatment via targeting HSP-70.
Collapse
|
41
|
Lee J, Lee S, Son J, Lim H, Kim E, Kim D, Ha S, Hur T, Lee S, Choi I. Analysis of circulating-microRNA expression in lactating Holstein cows under summer heat stress. PLoS One 2020; 15:e0231125. [PMID: 32866172 PMCID: PMC7458322 DOI: 10.1371/journal.pone.0231125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Korean peninsula weather is rapidly becoming subtropical due to global warming. In summer 2018, South Korea experienced the highest temperatures since the meteorological observations recorded in 1907. Heat stress has a negative effect on Holstein cows, the most popular breed of dairy cattle in South Korea, which is susceptible to heat. To examine physiological changes in dairy cows under heat stress conditions, we analyzed the profiles circulating microRNAs isolated from whole blood samples collected under heat stress and non-heat stress conditions using small RNA sequencing. We compared the expression profiles in lactating cows under heat stress and non-heat stress conditions to understand the regulation of biological processes in heat-stressed cows. Moreover, we measured several heat stress indicators, such as rectal temperature, milk yield, and average daily gain. All these assessments showed that pregnant cows were more susceptible to heat stress than non-pregnant cows. In addition, we found the differential expression of 11 miRNAs (bta-miR-19a, bta-miR-19b, bta-miR-30a-5p, and several from the bta-miR-2284 family) in both pregnant and non-pregnant cows under heat stress conditions. In target gene prediction and gene set enrichment analysis, these miRNAs were found to be associated with the cytoskeleton, cell junction, vasculogenesis, cell proliferation, ATP synthesis, oxidative stress, and immune responses involved in heat response. These miRNAs can be used as potential biomarkers for heat stress.
Collapse
Affiliation(s)
- Jihwan Lee
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Soohyun Lee
- Department of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Junkyu Son
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Hyeonju Lim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Euntae Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Donghyun Kim
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Seungmin Ha
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Taiyoung Hur
- Dairy Science Division, National Institute of Animal Science, RDA, Cheon-an, Republic of Korea
| | - Seunghwan Lee
- Department of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (IC); (SL)
| | - Inchul Choi
- Department of Animal and Dairy Sciences, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (IC); (SL)
| |
Collapse
|
42
|
Abdalla M, Deshmukh H, Atkin SL, Sathyapalan T. miRNAs as a novel clinical biomarker and therapeutic targets in polycystic ovary syndrome (PCOS): A review. Life Sci 2020; 259:118174. [PMID: 32745529 DOI: 10.1016/j.lfs.2020.118174] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most prevalent endocrine disorder in females of the reproductive age. PCOS is commonly manifested as ovulatory dysfunction, clinical and biochemical excess androgen level, and polycystic ovaries. Metabolic sequelae associated with PCOS, including insulin resistance (IR), type 2 diabetes (T2DM), obesity and increased cardiometabolic risk. The underlying pathology of PCOS is not fully understood with various genetic and environmental factors have been proposed. MicroRNAs (miRNAs), are endogenously produced, small non-coding, single-stranded RNAs that capable of regulating gene expression at the post-transcriptional level. Altered miRNAs expression has been associated with various disorders, including T2DM, IR, lipid disorder, infertility, atherosclerosis, endometriosis, and cancer. Given that PCOS also present with similar features, there is an increasing interest to investigate the role of miRNAs in the diagnosis and management of PCOS. In recent years, studies have demonstrated that miRNAs are present in various body fluids, including follicular fluid of women with PCOS. Therefore, it may act as a potential biomarker and could serve as a novel therapeutic target for the diagnosis and treatment of PCOS. This review aims to summarise the up to date research on the relation between miRNAs and PCOS and explore its potential role in the diagnosis and the management of PCOS.
Collapse
Affiliation(s)
- Mohammed Abdalla
- Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Harshal Deshmukh
- Clinical lecturer at Hull York Medical School, Academic Diabetes, Endocrinology and Metabolism, University of Hull, Hull, UK.
| | - Stephen L Atkin
- Head of School Postgraduate Studies and Research, RCIS-Bahrain, Medical University of Bahrain, Bahrain.
| | - Thozhukat Sathyapalan
- Honorary Consultant Endocrinologist at Hull University Teaching Hospital NHS Trust, UK; Chair in Academic Diabetes, Endocrinology and metabolism in Hull York Medical School, University of Hull, UK.
| |
Collapse
|
43
|
Lionett S, Kiel IA, Camera DM, Vanky E, Parr EB, Lydersen S, Hawley JA, Moholdt T. Circulating and Adipose Tissue miRNAs in Women With Polycystic Ovary Syndrome and Responses to High-Intensity Interval Training. Front Physiol 2020; 11:904. [PMID: 32848854 PMCID: PMC7406716 DOI: 10.3389/fphys.2020.00904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In women with polycystic ovary syndrome (PCOS), several miRNAs are differentially expressed compared to women without PCOS, suggesting a role for miRNAs in PCOS pathophysiology. Exercise training modulates miRNA abundance and is primary lifestyle intervention for women with PCOS. Accordingly, we measured the expression of eight circulating miRNAs selected a priori along with miRNA expression from gluteal and abdominal adipose tissue (AT) in 12 women with PCOS and 12 women matched for age and body mass index without PCOS. We also determined the miRNA expression “signatures” before and after high-intensity interval training (HIT) in 42 women with PCOS randomized to either: (1) low-volume HIT (LV-HIT, 10 × 1 min work bouts at maximal, sustainable intensity, n = 13); (2) high-volume HIT (HV-HIT, 4 × 4 min work bouts reaching 90–95% of maximal heart rate, n = 14); or (3) non-exercise control (Non-Ex, n = 15). Both HIT groups trained three times/week for 16 weeks. miRNAs were extracted from plasma, gluteal and abdominal AT, and quantified via a customized plate array containing eight miRNAs associated with PCOS and/or exercise training responses. Basal expression of circulating miRNA-27b (c-miR-27b), implicated in fatty acid metabolism, adipocyte differentiation and inflammation, was 1.8-fold higher in women with compared to without PCOS (P = 0.006) despite no difference in gluteal or abdominal AT miR-27b expression. Only the HV-HIT protocol increased peak oxygen uptake (VO2peak L/min; 9%, P = 0.008). There were no changes in body composition. In LV-HIT, but not HV-HIT, the expression of c-miR-27b decreased (0.5-fold, P = 0.007). None of the remaining seven circulating miRNAs changed in LV-HIT, nor was the expression of gluteal or abdominal AT miRNAs altered. Despite increased cardiorespiratory fitness, HV-HIT did not alter the expression of any circulating, gluteal or abdominal AT miRNAs. We conclude that women with PCOS have a higher basal expression of c-miR-27b compared to women without PCOS and that 16 weeks of LV-HIT reduces the expression of this miRNA in women with PCOS. Intense exercise training had little effect on the abundance of the selected miRNAs within subcutaneous AT depots in women with PCOS.
Collapse
Affiliation(s)
- Sofie Lionett
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway.,Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Ida A Kiel
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| | - Donny M Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Eszter Vanky
- Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| | - Evelyn B Parr
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Stian Lydersen
- Regional Centre for Child and Youth Mental Health and Child Welfare, Norwegian University of Science and Technology, Trondheim, Norway
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Trine Moholdt
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Obstetrics and Gynecology, St. Olav's Hospital, Trondheim, Norway
| |
Collapse
|
44
|
Shomali N, Hemmatzadeh M, Yousefzadeh Y, Soltani-Zangbar MS, Hamdi K, Mehdizadeh A, Yousefi M. Exosomes: Emerging biomarkers and targets in folliculogenesis and endometriosis. J Reprod Immunol 2020; 142:103181. [PMID: 32717674 DOI: 10.1016/j.jri.2020.103181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 06/14/2020] [Accepted: 07/18/2020] [Indexed: 12/31/2022]
Abstract
An appropriate connection of the cells in the ovary follicles is vital for a healthy ovule maturation and fertilization, and also for endometrium preparation for implantation that can cause endometriosis. Cellular communication within the follicle and endometrial epithelium involve many signaling molecules. Recent studies indicate that cellular communication can be enclosed by secretion and absorption of small membrane carriers which are named extracellular vesicles including exosomes and microvesicles. Understanding and defining these EVs (Extracellular vesicles) population are important for future studies and clinical translation. Here, we describe the various important cargos which are carried by exosomes during folliculogenesis and endometriosis. Additionally, the current knowledge of exosomes and their cargo within the FF (Follicular fluid) during the folliculogenesis and also in the intrauterine cavity which are involved in endometriosis lesions have also been summarized. Considering the potential importance of this form of the cell to cell communication in the reproductive system, the vital issues under discussion lead to a new insight in this rapidly expanding field and it may be an interesting approach for diagnostic, prognostic and especially therapeutic strategies in the field of infertility and assisted reproductive technology (ART).
Collapse
Affiliation(s)
- Navid Shomali
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Yousefzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Kobra Hamdi
- Reproductive Biology Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Wei J, Zhao Y. MiR-185-5p Protects Against Angiogenesis in Polycystic Ovary Syndrome by Targeting VEGFA. Front Pharmacol 2020; 11:1030. [PMID: 32760272 PMCID: PMC7373746 DOI: 10.3389/fphar.2020.01030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a heterogeneous endocrine disease with high incidences in women of reproductive age. Although miR-185-5p (miR-185) was decreased in PCOS patients, the exact function of miR-185 on PCOS development still requires further investigation. In this study, rat injected with dehydroepiandrosterone (DHEA) was established as a PCOS model. A lentivirus carrying miR-185 was employed to examine its effect on PCOS symptoms. Then we performed the luciferase reporter assay to validate the interactions between miR-185 and vascular endothelial growth factor A (VEGFA). Finally, human ovarian microvascular endothelial cells (HOMECs) were induced by VEGF to explore the role of miR-185 in the angiogenic process. The results showed that miR-185 overexpression improved insulin level alteration and ovarian histological lesion in PCOS rats. We also found that miR-185 reduced the excessive angiogenesis as indicated by alterations of VEGFA, ANGPT1/2, PDGFB/D, α-SMA and CD31 in the ovary of PCOS rats. Luciferase reporter assay identified that VEGFA directly interacted with miR-185, and its expression level was negatively regulated by miR-185. The in vitro results further demonstrated that miR-185-induced suppression of cell proliferation, migration and tube formation was attenuated by VEGF in HOMECs. In summary, this is the first study to show that miR-185 can target VEGFA to inhibit angiogenesis, thus improving the development of PCOS. These findings develop a molecular candidate for PCOS prevention and therapy.
Collapse
Affiliation(s)
- Jingzan Wei
- Department of Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanyan Zhao
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Du J, Lin X, Wu R, Gao Z, Du Y, Liao Y, Quan S. miR-424 suppresses proliferation and promotes apoptosis of human ovarian granulosa cells by targeting Apelin and APJ expression. Am J Transl Res 2020; 12:3660-3673. [PMID: 32774725 PMCID: PMC7407740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is associated with alteration of Apelin signaling in ovarian granulosa cells (GCs). However, the molecular mechanisms regulating Apelin expression remain poorly understood. This study aims to investigate the role of miR-424 in modulating Apelin expression and GC functions. METHODS miRNA expression in GCs was altered by transfection with specific miR-424 mimics and inhibitors. Apelin level was determined by ELISA. miR-424 and mRNA expression were analyzed by quantitative RT-PCR. Protein abundance was measured by western blotting. Genomic sequence targeted by miR-424 was validated by dual-luciferase reporter assay. Apelin gene was overexpressed by transfection of LV-003 vector carrying its cDNA. GC proliferation was analyzed by MTS method, and its cell cycle progression and apoptosis were measured by flow cytometry. RESULTS Apelin concentration was increased in serum and follicular fluid from PCOS patients, accompanied by upregulated APJ (Apelin receptor) expression and suppressed miR-424 expression in GCs. miR-424 mimics suppressed Apelin and APJ expression in KGN cells by targeting 3' UTR of Apelin and APJ, whereas miR-424 inhibitors had the opposite effects. miR-424 inhibited KGN cell proliferation and cell cycle progression by down-regulating Cyclin-D/E expression. Moreover, miR-424 promoted KGN cell apoptosis by increasing truncated Caspase-3 level. The regulation of KGN cell proliferation and apoptosis by miR-424 was mediated by directly suppressing Apelin gene expression, instead of inhibiting Apelin peptide activity. CONCLUSION miR-424 suppresses proliferation and promotes apoptosis of human ovarian granulosa cells by directly targeting and inhibiting Apelin and APJ expression.
Collapse
Affiliation(s)
- Jing Du
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
- Reproductive Medical Center, Boai Hospital of ZhongshanZhongshan, Guangdong Province, China
| | - Xiufeng Lin
- Reproductive Medical Center, Boai Hospital of ZhongshanZhongshan, Guangdong Province, China
| | - Riran Wu
- Reproductive Medical Center, Boai Hospital of ZhongshanZhongshan, Guangdong Province, China
| | - Zixuan Gao
- Department of Gynecology, Boai Hospital of ZhongshanZhongshan, Guangdong Province, China
| | - Yan Du
- Reproductive Medical Center, Boai Hospital of ZhongshanZhongshan, Guangdong Province, China
| | - Yuechan Liao
- Reproductive Medical Center, Boai Hospital of ZhongshanZhongshan, Guangdong Province, China
| | - Song Quan
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
47
|
miR-7 Regulates GLP-1-Mediated Insulin Release by Targeting β-Arrestin 1. Cells 2020; 9:cells9071621. [PMID: 32640511 PMCID: PMC7407368 DOI: 10.3390/cells9071621] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) has been shown to potentiate glucose-stimulated insulin secretion binding GLP-1 receptor on pancreatic β cells. β-arrestin 1 (βARR1) is known to regulate the desensitization of GLP-1 receptor. Mounting evidence indicates that microRNAs (miRNAs, miRs) are fundamental in the regulation of β cell function and insulin release. However, the regulation of GLP-1/βARR1 pathways by miRs has never been explored. Our hypothesis is that specific miRs can modulate the GLP-1/βARR1 axis in β cells. To test this hypothesis, we applied a bioinformatic approach to detect miRs that could target βARR1; we identified hsa-miR-7-5p (miR-7) and we validated the specific interaction of this miR with βARR1. Then, we verified that GLP-1 was indeed able to regulate the transcription of miR-7 and βARR1, and that miR-7 significantly regulated GLP-1-induced insulin release and cyclic AMP (cAMP) production in β cells. Taken together, our findings indicate, for the first time, that miR-7 plays a functional role in the regulation of GLP-1-mediated insulin release by targeting βARR1. These results have a decisive clinical impact given the importance of drugs modulating GLP-1 signaling in the treatment of patients with type 2 diabetes mellitus.
Collapse
|
48
|
Butler AE, Hayat S, Dargham SR, Malek JA, Abdullah SA, Mahmoud YA, Sathyapalan T, Atkin SL. Long non-coding RNA expression in non-obese women with polycystic ovary syndrome and weight-matched controls. Reprod Biomed Online 2020; 41:579-583. [PMID: 32819839 DOI: 10.1016/j.rbmo.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/31/2022]
Abstract
RESEARCH QUESTION Long non-coding RNA (lncRNA) do not show protein translation but do have gene regulatory functions in several disease states. Studies have shown that lncRNA differ in overweight women with polycystic ovary syndrome (PCOS), increased insulin resistance and hyperandrogenaemia. The objective of this study was to determine the lncRNA in serum in age- and weight-matched non-obese women with and without PCOS. METHODS In this prospective pilot cohort study, lncRNA were measured in serum in 13 non-obese women with PCOS and 10 control women undergoing IVF. RESULTS There was no difference between groups in terms of age, body mass index or insulin resistance. Women with PCOS showed a higher free androgen index (FAI; P = 0.03) and anti-Müllerian hormone (AMH) concentration (P = 0.001). A total of 29 lncRNA (P ≤ 0.05) differed between PCOS groups. lncRNA AC095350.1 correlated with age (r = 0.79, P = 0.04), but no correlation was seen between the significantly different lncRNA and FAI or AMH values. Functional pathway assessment using the Ingenuity Pathway Assessment tool showed no relationships for the lncRNA. CONCLUSION lncRNA in serum differed between non-obese women with PCOS and the control group, and the pattern of expression differed from that reported in obese women with PCOS from the same ethnic population; however, it but did not correlate with androgen or insulin resistance.
Collapse
Affiliation(s)
- Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| | | | | | - Joel A Malek
- Weill Cornell Medical College in Qatar, Doha, Qatar
| | | | | | - Thozhukat Sathyapalan
- Academic Diabetes and Endocrinology, Hull York Medical School, University of Hull, Hull, UK
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland-Bahrain, Busaiteen, Bahrain
| |
Collapse
|
49
|
Dehghan Z, Mohammadi-Yeganeh S, Salehi M. MiRNA-155 regulates cumulus cells function, oocyte maturation, and blastocyst formation. Biol Reprod 2020; 103:548-559. [DOI: 10.1093/biolre/ioaa098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/05/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Abstract
Numerous oocytes are retrieved during in vitro fertilization from patients with polycystic ovary syndrome (PCOS). The poor quality of these oocytes leads to lower fertilization and decreases in cleavage and implantation. MiR-155 is one of the microRNA (miRNA) that is increased in serum and granulosa cells of PCOS patients. In this study, we investigate the effects of miR-155 expression and its target genes on oocyte maturation and embryo development. We used the calcium phosphate protocol to transfect vectors that contained miR-155 or miR-off 155 and alone eGFP into cumulus oophorus complex (COCs) of B6D2F1 female mice for in vitro maturation. Cumulus expansion, nuclear, and cytoplasmic maturation, as well as cleavage rates were determined in groups transfected and compared with the control groups. Quantitative real-time polymerase chain reaction was performed to analyze expression levels of miR-155 and the target genes in the cumulus cells, oocytes, and blastocysts. MiR-155 overexpression in COCs suppressed cumulus expansion, oocyte maturation, and inhibition of endogenous miR-155 by miR-off 155 improved cumulus expansion and oocyte maturation by downregulation and expression increase of the Smad2 and Bcl2 genes. On the other hand, overexpression and downregulation of miR-155 in the COCs led to increase and decrease in cleavage rates by changes in expressions of the Mecp2, Jarid2, and Notch1 genes, respectively (P < 0.05). These results suggested that miR-155 overexpression in granulosa cells of PCOS patients can negatively affect nuclear and cytoplasmic maturation, but this miRNA expression has a positive impact on embryo development.
Collapse
Affiliation(s)
- Zeinab Dehghan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Xia H, Zhao Y. miR-155 is high-expressed in polycystic ovarian syndrome and promotes cell proliferation and migration through targeting PDCD4 in KGN cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:197-205. [PMID: 31851829 DOI: 10.1080/21691401.2019.1699826] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is a typical disease of female endocrine and metabolic abnormalities. miR-155, famous as a multifunctional miRNA, promotes the proliferation, migration and invasion of human cancer cells. Therefore, we aimed to explore its regulation mechanism in PCOS. BrdU incorporation and apoptosis assay were used to test KGN cell survival. Luciferase activity experiment was employed to test targeting link between miR-155 and programmed cell death 4 (PDCD4). Migration and invasion assay were operated to examine the influence of miR-155 and PDCD4 in migration and invasion of KGN cells. In addition, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay and western blot analysis were utilized to measure expression of miR-155 and other relative factors. We found that expression of miR-155 was high in PCOS patients' tissues and it promoted proliferation, migration and invasion in KGN cells. Further studies found that PDCD4 was down-regulated by miR-155 and was a target of miR-155. Overexpression of PDCD4 promoted cell apoptosis to mitigate PCOS. Besides, up-regulation of PDCD4 suppressed PI3K/AKT and JNK signal pathways. To sum up, miR-155 promoted proliferation, migration, invasion and the activation of PI3K/AKT and JNK pathways in KGN cells through negatively regulating PDCD4.
Collapse
Affiliation(s)
- Huanjun Xia
- School of Nursing, Jining Medical University, Jining, P. R. China
| | - Yaxian Zhao
- Department of Obstetrics, No.1 People's Hospital of Jining, Jining, P. R. China
| |
Collapse
|