1
|
Li D, Xie Z, Shaikh SB, Rahman I. Altered expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. Sci Rep 2025; 15:2714. [PMID: 39837838 PMCID: PMC11751386 DOI: 10.1038/s41598-025-85373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550. We performed differential analyses using DESeq2 in R/Bioconductor, adjusting for race, and conducted gene enrichment analyses on target genes regulated by significant miRNAs. Further, molecular-based techniques using the miRNA mimics and inhibitors were applied for the validation of the expressions of the miRNAs in vitro. We identified four miRNAs that were upregulated in exclusive e-cigarette users compared to non-users: hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p, after adjusting for the confounding effects of race. However, none of the miRNAs remained statistically significant after controlling for the false discovery rate (FDR) at 5%. Subgroup analysis of White participants only identified four miRNAs (hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-200b-3p, and hsa-miR-99a-5p) that were also upregulated in e-cigarette users with one miRNA hsa-miR-200b-3p remaining statistical significance after controlling for the FDR at 5%. GO enrichment analysis showed that these miRNAs are involved in processes like transcription regulation and cellular protein modification. KEGG pathway analysis indicated their involvement in cancer pathways, including small cell lung cancer, renal cell carcinoma, and signaling pathways (neurotrophin, ErbB, PI3K-Akt, FoxO, Hippo, MAPK, TGF-beta). Overexpression of hsa-miR-125b-5p promoted DNA damage in bronchial epithelial cells. These findings suggest an elevation of carcinogenic cellular signaling pathways in exclusive e-cigarette users.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US.
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US
| | - Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| |
Collapse
|
2
|
Shi M, Jia JS, Gao GS, Hua X. Advances and challenges of exosome-derived noncoding RNAs for hepatocellular carcinoma diagnosis and treatment. Biochem Biophys Rep 2024; 38:101695. [PMID: 38560049 PMCID: PMC10979073 DOI: 10.1016/j.bbrep.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/10/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Exosomes, also termed extracellular vesicles (EVs), are an important component of the tumor microenvironment (TME) and exert versatile effects on the molecular communications in the TME of hepatocellular carcinoma (HCC). Exosome-mediated intercellular communication is closely associated with the tumorigenesis and development of HCC. Exosomes can be extracted through ultracentrifugation and size exclusion, followed by molecular analysis through sequencing. Increasing studies have confirmed the important roles of exosome-derived ncRNAs in HCC, including tumorigenesis, progression, immune escape, and treatment resistance. Due to the protective membrane structure of exosomes, the ncRNAs carried by exosomes can evade degradation by enzymes in body fluids and maintain good expression stability. Thus, exosome-derived ncRNAs are highly suitable as biomarkers for the diagnosis and prognostic prediction of HCC, such as exosomal miR-21-5p, miR-221-3p and lncRNA-ATB. In addition, substantial studies revealed that the up-or down-regulation of exosome-derived ncRNAs had an important impact on HCC progression and response to treatment. Exosomal biomarkers, such as miR-23a, lncRNA DLX6-AS1, miR-21-5p, lncRNA TUC339, lncRNA HMMR-AS1 and hsa_circ_0004658, can reshape immune microenvironment by regulating M2-type macrophage polarization and then promote HCC development. Therefore, by controlling exosome biogenesis and modulating exosomal ncRNA levels, HCC may be inhibited or eliminated. In this current review, we summarized the recent findings on the role of exosomes in HCC progression and analyzed the relationship between exosome-derived ncRNAs and HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Min Shi
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Jun-Su Jia
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Guo-Sheng Gao
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Xin Hua
- Department of Clinical Laboratory, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Li D, Xie Z, Shaikh SB, Rahman I. Abnormal expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. RESEARCH SQUARE 2024:rs.3.rs-3877316. [PMID: 38343804 PMCID: PMC10854321 DOI: 10.21203/rs.3.rs-3877316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Exposure to electronic cigarette (e-cigarette) aerosol has been linked to several health concerns, including DNA damage, elevated oxidative stress, the release of inflammatory cytokine, and dysfunctions in epithelial barriers. However, little is known about the effect of exclusive e-cigarette use on expression profiles of exosomal miRNAs, which play critical regulatory roles in many inflammatory responses and disease processes including cancer. We aim to compare the exosomal microRNA expression profile between exclusive e-cigarette users and normal controls without any tobacco product use (non-users). Methods Using plasma samples from 15 exclusive e-cigarette users and 15 non-users in the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014), we examined exosomal microRNAs expression levels through Illumina NextSeq 500/550 sequencing. The differential analyses between exclusive e-cigarette users and non-users were examined using the generalized linear model approach in the DESeq2 package in R/Bioconductor after adjusting the significant confounding effect from race. Gene enrichment analyses were conducted on target genes regulated by significant microRNAs in the differential analyses. Further, molecular-based techniques using the micro RNA mimics and inhibitors were applied for the validation of the expressions of the micro RNAs in vitro. Results We identified four microRNAs that have significantly higher expression levels in exclusive e-cigarette users than non-users including hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p. GO enrichment analysis on the target genes regulated by the four microRNAs showed that dysregulation of the four microRNAs in exclusive e-cigarette users involved in multiple cell processes such as protein kinase binding and miRNA metabolic process. KEGG pathway enrichment analysis found the four upregulated miRNAs in exclusive e-cigarette users involved in many cancer pathways such as the non-small cell lung cancer, small cell lung cancer, pancreatic cancer, p53 signaling pathway, Hippo signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway. Overexpression of miRNA hsa-miR-125b-5p was shown to promote DNA damage in bronchial epithelia cells. Conclusions Four plasma exosomal microRNAs involved in cancer development had higher expression levels in exclusive e-cigarette users than non-users, which might indicate a potentially elevated risk of cancer among exclusive e-cigarette users.
Collapse
|
4
|
Muenstermann C, Clemens KJ. Epigenetic mechanisms of nicotine dependence. Neurosci Biobehav Rev 2024; 156:105505. [PMID: 38070842 DOI: 10.1016/j.neubiorev.2023.105505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Smoking continues to be a leading cause of preventable disease and death worldwide. Nicotine dependence generates a lifelong propensity towards cravings and relapse, presenting an ongoing challenge for the development of treatments. Accumulating evidence supports a role for epigenetics in the development and maintenance of addiction to many drugs of abuse, however, the involvement of epigenetics in nicotine dependence is less clear. Here we review evidence that nicotine interacts with epigenetic mechanisms to enable the maintenance of nicotine-seeking across time. Research across species suggests that nicotine increases permissive histone acetylation, decreases repressive histone methylation, and modulates levels of DNA methylation and noncoding RNA expression throughout the brain. These changes are linked to the promoter regions of genes critical for learning and memory, reward processing and addiction. Pharmacological manipulation of enzymes that catalyze core epigenetic modifications regulate nicotine reward and associative learning, demonstrating a functional role of epigenetic modifications in nicotine dependence. These findings are consistent with nicotine promoting an overall permissive chromatin state at genes important for learning, memory and reward. By exploring these links through next-generation sequencing technologies, epigenetics provides a promising avenue for future interventions to treat nicotine dependence.
Collapse
Affiliation(s)
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
5
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Magesh S, Gande P, Yalamarty R, John D, Chakladar J, Li WT, Ongkeko WM. Characterization of tRNA-Derived Fragments in Lung Squamous Cell Carcinoma with Respect to Tobacco Smoke. Int J Mol Sci 2023; 24:ijms24065501. [PMID: 36982573 PMCID: PMC10057801 DOI: 10.3390/ijms24065501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a highly heterogeneous cancer that is influenced by etiological agents such as tobacco smoke. Accordingly, transfer RNA-derived fragments (tRFs) are implicated in both cancer onset and development and demonstrate the potential to act as targets for cancer treatments and therapies. Therefore, we aimed to characterize tRF expression with respect to LUSC pathogenesis and clinical outcomes. Specifically, we analyzed the effect of tobacco smoke on tRF expression. In order to do so, we extracted tRF read counts from MINTbase v2.0 for 425 primary tumor samples and 36 adjacent normal samples. We analyzed the data in three primary cohorts: (1) all primary tumor samples (425 samples), (2) smoking-induced LUSC primary tumor samples (134 samples), and (3) non-smoking-induced LUSC primary tumor samples (18 samples). Differential expression analysis was performed to examine tRF expression in each of the three cohorts. tRF expression was correlated to clinical variables and patient survival outcomes. We identified unique tRFs in primary tumor samples, smoking-induced LUSC primary tumor samples, and non-smoking-induced LUSC primary tumor samples. In addition, many of these tRFs demonstrated correlations to worse patient survival outcomes. Notably, tRFs in the smoking-induced LUSC and non-smoking-induced LUSC primary tumor cohorts were significantly correlated to clinical variables pertaining to cancer stage and treatment efficacy. We hope that our results will be used to better inform future LUSC diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Shruti Magesh
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Pranava Gande
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Rishabh Yalamarty
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Daniel John
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jaideep Chakladar
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Wei Tse Li
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Weg M. Ongkeko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine, San Diego, CA 92093, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA 92161, USA
- Correspondence: ; Tel.: +1-858-552-8585 (ext. 7165)
| |
Collapse
|
7
|
Fei X, Jin M, Yuan Z, Li T, Lu Z, Wang H, Lu J, Quan K, Yang J, He M, Wang T, Wang Y, Wei C. MiRNA-Seq reveals key MicroRNAs involved in fat metabolism of sheep liver. Front Genet 2023; 14:985764. [PMID: 36968587 PMCID: PMC10035661 DOI: 10.3389/fgene.2023.985764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
There is a genetic difference between Hu sheep (short/fat-tailed sheep) and Tibetan sheep (short/thin-tailed sheep) in tail type, because of fat metabolism. Previous studies have mainly focused directly on sheep tail fat, which is not the main organ of fat metabolism. The function of miRNAs in sheep liver fat metabolism has not been thoroughly elucidated. In this study, miRNA-Seq was used to identify miRNAs in the liver tissue of three Hu sheep (short/fat-tailed sheep) and three Tibetan sheep (short/thin-tailed sheep) to characterize the differences in fat metabolism of sheep. In our study, Hu sheep was in a control group, we identified 11 differentially expressed miRNAs (DE miRNAs), including six up-regulated miRNAs and five down-regulated miRNAs. Miranda and RNAhybrid were used to predict the target genes of DE miRNAs, obtaining 3,404 target genes. A total of 115 and 67 GO terms as well as 54 and 5 KEGG pathways were significantly (padj < 0.05) enriched for predicted 3,109 target genes of up-regulated and 295 target genes of down-regulated miRNAs, respectively. oar-miR-432 was one of the most up-regulated miRNAs between Hu sheep and Tibetan sheep. And SIRT1 is one of the potential target genes of oar-miR-432. Furthermore, functional validation using the dual-luciferase reporter assay indicated that the up-regulated miRNA; oar-miR-432 potentially targeted sirtuin 1 (SIRT1) expression. Then, the oar-miR-432 mimic transfected into preadipocytes resulted in inhibited expression of SIRT1. This is the first time reported that the expression of SIRT1 gene was regulated by oar-miR-432 in fat metabolism of sheep liver. These results could provide a meaningful theoretical basis for studying the fat metabolism of sheep.
Collapse
Affiliation(s)
- Xiaojuan Fei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meilin Jin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Taotao Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huihua Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Lu
- National Animal Husbandry Service, Beijing, China
| | - Kai Quan
- College of Animals Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Junxiang Yang
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Maochang He
- Gansu Institute of Animal Husbandry and Veterinary Medicine, Pingliang, China
| | - Tingpu Wang
- College of Bioengineering and Biotechnology, TianShui Normal University, Tianshui, China
| | - Yuqin Wang
- College of Animals Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| | - Caihong Wei
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Caihong Wei, ; Yuqin Wang,
| |
Collapse
|
8
|
Öngöz Dede F, Gökmenoğlu C, Türkmen E, Bozkurt Doğan Ş, Ayhan BS, Yildirim K. Six miRNA expressions in the saliva of smokers and non-smokers with periodontal disease. J Periodontal Res 2023; 58:195-203. [PMID: 36495003 DOI: 10.1111/jre.13081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND It has been stated that microRNA (miRNA) plays an important role in development, homeostasis, and immune functions, and abnormal miRNA expression may cause faster disease progression. OBJECTIVE The aim of this study was to determine miR-203, miR-142-3p, miR-146a, miR-146b, miR-155, and miR-29b gene expressions in the saliva of smokers and non-smokers with the periodontal disease before and after non-surgical periodontal therapy (NSPT). METHODS A total of 90 individuals, 30 with periodontitis, 30 with gingivitis, and 30 periodontally healthy (control group), were included. These three groups were divided into subgroups as smoking and non-smoking individuals, with 15 people in each group. NSPT was applied to patients with periodontitis and gingivitis. Saliva samples and clinical parameters were obtained at baseline and repeated 6 weeks after NSPT. RESULTS Saliva miR-203, miR-142-3p, miR-146a, miR-146b, and miR-155 gene expressions were significantly upregulated in patients with periodontal disease compared to the control group both in smokers and non-smokers, and also these miRNAs' gene expressions were significantly higher in the periodontitis group than in the gingivitis group at baseline (p < .05). A significant increase in saliva miR-142-3p expression was detected in all groups of smokers compared to non-smokers (p < .05). Although there was a decrease in salivary miRNAs gene expressions with the treatment, it was not statistically significant (p > .05). CONCLUSIONS These results suggest that salivary miR-146a, miR-146b, miR142-3p, miR-155, and miR-203 gene expressions increased with the progression of periodontal disease, but unchanged after periodontal treatment. Moreover, smoking may contribute to an increase in the levels of salivary miR-142-3p in the periodontal health and disease.
Collapse
Affiliation(s)
- Figen Öngöz Dede
- Faculty of Dentistry, Department of Periodontology, Ordu University, Ordu, Turkey
| | - Ceren Gökmenoğlu
- Faculty of Dentistry, Department of Periodontology, Ordu University, Ordu, Turkey
| | - Emrah Türkmen
- Faculty of Dentistry, Department of Periodontology, İstanbul Medipol University, İstanbul, Turkey
| | - Şeyma Bozkurt Doğan
- Faculty of Dentistry, Department of Periodontology, Yıldırım Beyazıt University, Ankara, Turkey
| | - Burhanettin Sertaç Ayhan
- Department of Pharmaceutical Chemistry, Anadolu University, Health Sciences Institute, Eskişehir, Turkey
| | - Kubilay Yildirim
- Karadeniz Advanced Technology Research and Application Center, Ondokuzmayis University, Samsun, Turkey
| |
Collapse
|
9
|
Dai Z, Liu X, Zeng H, Chen Y. Long noncoding RNA HOTAIR facilitates pulmonary vascular endothelial cell apoptosis via DNMT1 mediated hypermethylation of Bcl-2 promoter in COPD. Respir Res 2022; 23:356. [PMID: 36527094 PMCID: PMC9758792 DOI: 10.1186/s12931-022-02234-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND To study the regulatory effect of Long non-coding RNA (LncRNA) HOX transcript antisense RNA (HOTAIR) on pulmonary vascular endothelial cell (HPVEC) apoptosis and determine whether the HOTAIR facilitate HPVEC apoptosis via DNMT1 mediated hypermethylation of Bcl-2 promoter in chronic obstructive pulmonary disease (COPD). METHODS LncRNA array was used to measure the differentially expressed lncRNAs in COPD and non-COPD lung tissues. Expression of HOTAIR in COPD patient lungs and cigarette smoke extract (CSE)-induced HPVEC was assessed by qRT-PCR. The location of HOTAIR was determined in COPD patient lungs and HPVEC by RNA in situ hybridization (RNA-ISH). The emphysema mouse model and HOTAIR knockdown mice were each established by inhaling cigarette smoke or intratracheal lentiviral vectors instillation. The dysregulation of DNA methyltransferase enzyme 1 (DNMT1), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax) and Cleaved-caspase 3 protein expression were detected by Western blotting. HOTAIR, DNMT1, Bcl-2 and Bax mRNA expression were measured by quantitative real-time polymerase chain reaction. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assays were used to assess apoptotic ratio in mice and CSE-induced HPVEC. Methylation-specific PCR (MSP) assay was conducted to observe the alterations in the methylation of the Bcl-2 promoter in specimens. RNA pull-down assay was used for analysis of the correlation between HOTAIR and DNMT1. RESULTS The expression levels of the HOTAIR were up-regulated in COPD patient lungs and CSE-induced HPVEC. HPVEC apoptosis with down-regulated Bcl-2 expression, increased promoter methylation, DNMT1, Bax and Cleaved-caspase 3 expression was found in emphysema mouse model and CSE-induced HPVEC. Knockdown HOTAIR can attenuate cell apoptosis and emphysema via DNMT1 mediated hypermethylation of Bcl-2 promoter in mice. In vitro, HOTAIR can aggravate the apoptosis of CSE-exposed HPVEC. DNMT1 was a target of HOTAIR and had a positive correlation with HOTAIR. CONCLUSION HOTAIR facilitates HPVEC apoptosis via DNMT1 mediated hypermethylation of Bcl-2 promoter in COPD, and attenuating the expression of HOTAIR may be a new therapy to prevent COPD.
Collapse
Affiliation(s)
- Zhongshang Dai
- Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiangming Liu
- Second Xiangya Hospital of Central South University, Changsha, China
| | - Huihui Zeng
- Second Xiangya Hospital of Central South University, Changsha, China.
| | - Yan Chen
- Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
10
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
11
|
Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1695. [PMID: 34825502 DOI: 10.1002/wrna.1695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Non-coding RNAs (ncRNAs) work as crucial posttranscriptional modulators of gene expression regulating a wide array of biological processes that impact normal physiology, including reproductive health. The health of women, especially reproductive health, is now a prime focus of society that ensures the females' overall physical, social, and mental well-being. Furthermore, there has been a growing cognizance of ncRNAs' possible applications in diagnostics and therapeutics of dreaded diseases. Hence, understanding the functions and mode of actions of ncRNAs in the context of women's health will allow us to develop effective prognostic and therapeutic strategies that will enhance the quality of life of women. Herein, we summarize recent progress on ncRNAs, such as microRNAs (miRNAs) and long ncRNAs (lncRNAs), and their implications in reproductive health by tying the knot with lifestyle factors that affect fertility complications, pregnancy outcomes, and so forth. We also discourse the interplay among the RNA species, especially miRNAs, lncRNAs, and protein-coding RNAs, through the competing endogenous RNA regulations in diseases of women associated with maternal and fetal health. This review provides new perspectives correlating ncRNAs, lifestyle, and reproductive health of women, which will attract future studies to improve women's lives. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pooja Gupta
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
12
|
Weng W, Li H, Zhu S. An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes (Basel) 2022; 13:genes13050806. [PMID: 35627191 PMCID: PMC9141076 DOI: 10.3390/genes13050806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) leads to significant bone loss, which is recognized as an independent risk factor for osteoporosis. The number of smokers is continuously increasing due to the addictive nature of smoking. Therefore it is of great value to effectively prevent CS-induced osteoporosis. However, there are currently no effective interventions to specifically counteract CS-induced osteoporosis, owing to the fact that the specific mechanisms by which CS affects bone metabolism are still elusive. This review summarizes the latest research findings of important pathways between CS exposure and bone metabolism, with the aim of providing new targets and ideas for the prevention of CS-induced osteoporosis, as well as providing theoretical directions for further research in the future.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Hongming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Sheng Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
13
|
Non-coding RNA in alcohol use disorder by affecting synaptic plasticity. Exp Brain Res 2022; 240:365-379. [PMID: 35028694 DOI: 10.1007/s00221-022-06305-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022]
Abstract
Alcohol use disorder (AUD) is one of the most serious public health problems worldwide. AUD is a complex disorder, and there is ample evidence that genetic predisposition is critical to its development. Recent studies have shown that genetic predisposition leads to the onset of AUD, and alcohol metabolism can affect epigenetic inheritance, which in turn affects synaptic plasticity, alters brain function, and leads to more severe addictive behaviors. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play an important role in alcohol addiction. This paper reviews the regulatory role of ncRNAs. ncRNAs are involved in enzyme and neurotransmitter reaction systems during alcohol use disorder. Alcohol consumption regulates the expression of ncRNAs that mediate epigenetic modification and synaptic plasticity, which play an important role in the development of chronic AUD. ncRNAs may be used not only as predictors of therapeutic responses but also as therapeutic targets of AUD. Chronic alcoholism is more likely to lead to neuroimmune disorders, including permanent brain dysfunction. AUD induced by long-term alcoholism greatly alters the expression of genes in the human genome, especially the expression of ncRNAs. Alcohol can cause a series of pathological changes by interfering with gene expression, such as through disordered miRNA-mRNA expression networks, epigenetic modifications, disordered metabolism, and even synaptic remodeling. ncRNAs are involved in the transition from moderate drinking to alcohol dependence.
Collapse
|
14
|
Kaur G, Singh K, Maremanda KP, Li D, Chand HS, Rahman I. Differential plasma exosomal long non-coding RNAs expression profiles and their emerging role in E-cigarette users, cigarette, waterpipe, and dual smokers. PLoS One 2020; 15:e0243065. [PMID: 33290406 PMCID: PMC7723270 DOI: 10.1371/journal.pone.0243065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the varied set of transcripts that play a critical role in biological processes like gene regulation, transcription, post-transcriptional modification, and chromatin remodeling. Recent studies have reported the presence of lncRNAs in the exosomes that are involved in regulating cell-to-cell communication in lung pathologies including lung cancer, chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). In this study, we compared the lncRNA profiles in the plasma-derived exosomes amongst non-smokers (NS), cigarette smokers (CS), E-cig users (E-cig), waterpipe smokers (WP) and dual smokers (CSWP) using GeneChip™ WT Pico kit for transcriptional profiling. We found alterations in a distinct set of lncRNAs among subjects exposed to E-cig vapor, cigarette smoke, waterpipe smoke and dual smoke with some overlaps. Gene enrichment analyses of the differentially expressed lncRNAs demonstrated enrichment in the lncRNAs involved in crucial biological processes including steroid metabolism, cell differentiation and proliferation. Thus, the characterized lncRNA profiles of the plasma-derived exosomes from smokers, vapers, waterpipe users, and dual smokers will help identify the biomarkers relevant to chronic lung diseases such as COPD, asthma or IPF.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Kameshwar Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Krishna P. Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Florida International University, Miami, FL, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|
15
|
Zhou AY, Zhao YY, Zhou ZJ, Duan JX, Zhu YZ, Cai S, Chen P. Microarray Analysis of Long Non-Coding RNAs in Lung Tissues of Patients with COPD and HOXA-AS2 Promotes HPMECs Proliferation via Notch1. Int J Chron Obstruct Pulmon Dis 2020; 15:2449-2460. [PMID: 33116460 PMCID: PMC7555270 DOI: 10.2147/copd.s259601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background and Objectives Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of many diseases, including cancer, pulmonary fibrosis and chronic obstructive pulmonary disease (COPD). In this study, we intended to identify the differentially expressed lncRNAs and the role of HOXA cluster antisense RNA 2 (HOXA-AS2) in patients with COPD. Methods We analyzed lncRNA profiles of three non-COPD and seven COPD patients’ lungs via microarray and then validated the expression of the top differentially expressed lncRNAs by using real-time polymerase chain reaction (PCR). To identify the mechanism of HOXA-AS2 during COPD pathogenesis and endothelial cell proliferation, we knocked down and overexpressed HOXA-AS2 with siRNA and lentivirus transfection approach in human pulmonary microvascular endothelial cells (HPMECs). Results Among 29,150 distinct lncRNA transcripts, 353 lncRNAs were significantly (≥2-fold change and P<0.05) upregulated and 552 were downregulated in COPD patients. The fold change of HOXA-AS2 is 9.32; real-time PCR confirmed that HOXA-AS2 was downregulated in COPD patients. In in vitro experiments, cigarette smoke extract (CSE) treatment reduced the expression of HOXA-AS2 and cell proliferation of HPMECs. Knocking down HOXA-AS2 inhibited HPMECs proliferation and the expression of Notch1 in HPMECs. Overexpressing Notch1 could partly rescue the inhibition of cell viability induced by the silence of HOXA-AS2. Conclusion Our results demonstrated that differentially expressed lncRNAs may act as potential molecular biomarkers for the diagnosis of COPD, and HOXA-AS2 was involved in the pathogenesis of COPD by regulating HPMECs proliferation via Notch1, which may provide a new approach for COPD treatment.
Collapse
Affiliation(s)
- Ai-Yuan Zhou
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yi-Yang Zhao
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Zi-Jing Zhou
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Jia-Xi Duan
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yi-Zhang Zhu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Shan Cai
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China.,Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
16
|
Takeuchi T, Kawasaki H, Luce A, Cossu AM, Misso G, Scrima M, Bocchetti M, Ricciardiello F, Caraglia M, Zappavigna S. Insight toward the MicroRNA Profiling of Laryngeal Cancers: Biological Role and Clinical Impact. Int J Mol Sci 2020; 21:E3693. [PMID: 32456271 PMCID: PMC7279294 DOI: 10.3390/ijms21103693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), a heterogeneous disease arising from various anatomical locations including the larynx, is a leading cause of death worldwide. Despite advances in multimodality treatment, the overall survival rate of the disease is still largely dismal. Early and accurate diagnosis of HNSCC is urgently demanded in order to prevent cancer progression and to improve the quality of the patient's life. Recently, microRNAs (miRNAs), a family of small non-coding RNAs, have been widely reported as new robust tools for prediction, diagnosis, prognosis, and therapeutic approaches of human diseases. Abnormally expressed miRNAs are strongly associated with cancer development, resistance to chemo-/radiotherapy, and metastatic potential through targeting a large variety of genes. In this review, we summarize on the recent reports that emphasize the pivotal biological roles of miRNAs in regulating carcinogenesis of HNSCC, particularly laryngeal cancer. In more detail, we report the characterized miRNAs with an evident either oncogenic or tumor suppressive role in the cancers. In addition, we also focus on the correlation between miRNA deregulation and clinical relevance in cancer patients. On the basis of intriguing findings, the study of miRNAs will provide a new great opportunity to access better clinical management of the malignancies.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Molecular Diagnostics Division, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Hiromichi Kawasaki
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima 739-1195, Japan
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Alessia Maria Cossu
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | | | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy;
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (T.T.); (H.K.); (A.L.); (A.M.C.); (G.M.); (M.B.); (S.Z.)
| |
Collapse
|
17
|
Li H, Zhang X, Jin Z, Yin T, Duan C, Sun J, Xiong R, Li Z. MiR-122 Promotes the Development of Colon Cancer by Targeting ALDOA In Vitro. Technol Cancer Res Treat 2020; 18:1533033819871300. [PMID: 31564215 PMCID: PMC6767722 DOI: 10.1177/1533033819871300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNAs, originally considered junk gene products, have taken center
stage in view of their significant involvement in a spectrum of biological
processes during human development, thereby offering novel therapeutic targets
for improvement of treatment options. Accumulating evidence has demonstrated
non-coding RNA dysfunction across various human cancers. In particular,
microRNAs have emerged as key regulatory molecules in cancer biology. MicroRNAs
are noninvasive, readily accessible biomarkers that can be effectively applied
for diagnosis and prognosis of different tumor types, including colon cancer. In
this study, we reanalyzed the available data with bioinformatics tools to
identify differentially expressed microRNAs in colon cancer cells. The top 3
upregulated microRNAs (miR-10, miR-199, and miR-122) in colon cancer cells were
further validated in tissues of clinical patients via reverse
transcription-quantitative polymerase chain reaction. Our results showed that
miR-122 significantly promotes the proliferation and invasion ability of SW480
and SW620 cells through inhibition of Aldolase, Fructose-Bisphosphate A
(ALDOA) expression. We further summarized recent advances
in our understanding of the functional relevance of microRNAs in cancer
development and discussed the possible implications of specific microRNAs in
colon cancer. This study extends our knowledge of microRNA involvement in colon
cancer biology and presents novel candidates for the development of attractive
therapeutic strategies.
Collapse
Affiliation(s)
- Hong Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Xinhua Zhang
- Hubei Cancer Hospital, Wuhan, Hubei, China.,Xinhua Zhang is the co-first author
| | - Zhao Jin
- Zhongnan Hospital of Wuhan University
| | - Tao Yin
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | | | - Junwei Sun
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Rui Xiong
- Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Zilin Li
- Hubei Cancer Hospital, Wuhan, Hubei, China
| |
Collapse
|
18
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
19
|
Gao H, Li Y, Lin T, Cheng Y, Ma Y. Downregulation of CIP2A inhibits cancer cell proliferation and vascularization in renal clear cell carcinoma. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2019; 164:196-202. [PMID: 31431792 DOI: 10.5507/bp.2019.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/26/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND CIP2A has been proved to play a role as an oncogene in various types of malignancies while its functionality in renal clear cell carcinoma has not been investigated. Our study aimed to investigate the role of CIP2A in renal clear cell carcinoma and to explore the possible mechanisms. METHODS A total of 80 patients with renal clear cell carcinoma and 32 healthy people were included in the study. Expression of CIP2A was detected by qRT-PCR. CIP2A silencing renal clear cell carcinoma cell line was established. Its effects on cell proliferation and migration were verified by CCK-8 assay and Transwell cell assay, respectively. The effects of CIP2A overexpression on AKT and VEGF were investigated. RESULTS CIP2A expression level was increased in tumor tissues compared to adjacent healthy tissues. Serum levels of CIP2A protein were higher in cancer patients than in healthy controls, and serum levels of CIP2A protein were increased with increased stage of primary tumor. Serum CIP2A protein can be used to accurately predict renal clear cell carcinoma and its prognosis. CIP2A siRNA silencing inhibited tumor cell proliferation, and treatment with Akt activator reduced this inhibitory effect. CIP2A siRNA silencing decreased the expression level of VEGF and phosphorylation levels of AKT in renal clear cell carcinoma cells, while AKT activator treatment showed no significant effects on CIP2A expression. CONCLUSION Downregulation of CIP2A can inhibit cancer cell proliferation and vascularization in renal clear cell carcinoma through inactivation of the Akt pathway and its downstream VEGF.
Collapse
Affiliation(s)
- Hui Gao
- Department of Urology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, P. R. China, 252000
| | - Yuqiao Li
- Department of Urology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, P. R. China, 252000
| | - Tao Lin
- Department of Urology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, P. R. China, 252000
| | - Yan Cheng
- Department of Urology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, P. R. China, 252000
| | - Yunbo Ma
- Department of Urology, Liaocheng People's Hospital, Liaocheng City, Shandong Province, P. R. China, 252000
| |
Collapse
|
20
|
Pentenero M, Bowers LM, Jayasinghe R, Yap T, Cheong SC, Kerr AR, Farah CS, Alevizos I. World Workshop on Oral Medicine VII: Clinical evidence of differential expression of lncRNAs in oral squamous cell carcinoma: A scoping review. Oral Dis 2019; 25 Suppl 1:88-101. [PMID: 31140697 PMCID: PMC6544174 DOI: 10.1111/odi.13076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have important roles in regulating gene expression pertaining to cell proliferation, survival, migration and genomic stability. Dysregulated expression of lncRNAs is implicated in cancer initiation, progression and metastasis. OBJECTIVES To explore, map and summarize the extent of evidence from clinical studies investigating the differential expression of lncRNAs in oral/tongue squamous cell carcinoma. METHODS PubMed, Scopus and Web of Science were used as search engines. Clinical, full-length, English language studies were included. PRISMA-ScR protocol was used to evaluate and present results. The present scoping review summarizes relationships of the differential expression of lncRNAs with the presence of tumour and with clinicopathological features including survival. RESULTS Almost half of the investigated transcripts have been explored in more than one study, yet not always with consistent results. The collected data were also compared to the limited studies investigating oral epithelial dysplasia. Data are not easily comparable, first because of different methods used to define what differential expression is, and second because only a limited number of studies performed multivariate analyses to identify clinicopathological features associated with the differentially expressed lncRNAs. CONCLUSIONS Standard methods and more appropriate data analyses are needed in order to achieve reliable results from future studies.
Collapse
Affiliation(s)
- Monica Pentenero
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Leah M Bowers
- Department of Stomatology, Division of Oral Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ruwan Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Tami Yap
- Melbourne Dental School, University of Melbourne, Melbourne, Victoria, Australia
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | | | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, UWA Dental School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ilias Alevizos
- Sjogren's Syndrome and Salivary Gland Dysfunction Unit, NIDCR/NIH, Bethesda, MD, USA
| |
Collapse
|
21
|
Liu W, Huang L, Zhang C, Liu Z. lncRNA MEG3 is downregulated in ankylosing spondylitis and associated with disease activity, hospitalization time and disease duration. Exp Ther Med 2018; 17:291-297. [PMID: 30651794 PMCID: PMC6307436 DOI: 10.3892/etm.2018.6921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Long non-coding (lnc)RNA maternally expressed gene 3 (MEG3) has been proved to participate in osteoporosis, which features inverse pathological changes to those associated with spondylosis. The present study aimed to investigate the involvement of lncRNA MEG3 in ankylosing spondylitis. Blood and open sacroiliac joint biopsies were obtained from ankylosing spondylitis patients and healthy controls, and the expression of MEG3 in those tissues was detected by reverse-transcription-quantitative polymerase chain reaction analysis. Disease activity was evaluated according to the Ankylosing Spondylitis Disease Activity Score established by the International Association of Ankylosing Spondylitis. The diagnostic value of MEG3 expression for ankylosing spondylitis was evaluated by receiver operating characteristic curve analysis. The correlation between MEG3 expression and disease activity was assessed using Pearson correlation analysis. Furthermore, according to the median expression level of MEG3, patients were divided into high-level and low-level groups. The hospitalization time and re-hospitalization rate within 2 years after discharge were compared between these two groups and differences in clinicopathological parameters between the two groups were analyzed using the chi-square test. The results indicated that MEG3 was downregulated in ankylosing spondylitis patients compared with that in healthy controls. Furthermore, MEG3 expression levels may be used to effectively distinguish ankylosing spondylitis patients from healthy controls. The serum levels of MEG3 were not associated with the patients' age, sex or alcohol/tobacco consumption, but closely correlated with disease activity and disease duration. In addition, patients with higher expression levels of MEG3 had a shorter hospitalization time and a lower re-hospitalization rate within 2 years after discharge It was concluded that lncRNA MEG3 is downregulated in ankylosing spondylitis patients and is associated with disease activity, time of hospitalization and disease duration.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Lili Huang
- Department of Infections, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Cuiying Zhang
- Department of Gynaecology and Obstetrics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Zuozhong Liu
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
22
|
Borah P, Das A, Milner MJ, Ali A, Bentley AR, Pandey R. Long Non-Coding RNAs as Endogenous Target Mimics and Exploration of Their Role in Low Nutrient Stress Tolerance in Plants. Genes (Basel) 2018; 9:E459. [PMID: 30223541 PMCID: PMC6162444 DOI: 10.3390/genes9090459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) research in plants has recently gained momentum taking cues from studies in animals systems. The availability of next-generation sequencing has enabled genome-wide identification of lncRNA in several plant species. Some lncRNAs are inhibitors of microRNA expression and have a function known as target mimicry with the sequestered transcript known as an endogenous target mimic (eTM). The lncRNAs identified to date show diverse mechanisms of gene regulation, most of which remain poorly understood. In this review, we discuss the role of identified putative lncRNAs that may act as eTMs for nutrient-responsive microRNAs (miRNAs) in plants. If functionally validated, these putative lncRNAs would enhance current understanding of the role of lncRNAs in nutrient homeostasis in plants.
Collapse
Affiliation(s)
- Priyanka Borah
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Antara Das
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Matthew J Milner
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge CB30LE, UK.
| | - Arif Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Alison R Bentley
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge CB30LE, UK.
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.
| |
Collapse
|
23
|
Zhang Y, Ren J. MicroRNA-21: Bridging Binge Drinking and Cardiovascular Health. Alcohol Clin Exp Res 2018; 42:678-681. [PMID: 29315646 DOI: 10.1111/acer.13596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yingmei Zhang
- Department of Cardiology; Fudan University Zhongshan Hospital; Shanghai China
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming; Laramie Wyoming
| | - Jun Ren
- Department of Cardiology; Fudan University Zhongshan Hospital; Shanghai China
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming; Laramie Wyoming
| |
Collapse
|
24
|
Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, Sandoval J. Translating cancer epigenomics into the clinic: focus on lung cancer. Transl Res 2017. [PMID: 28644958 DOI: 10.1016/j.trsl.2017.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epigenetic deregulation is increasingly being recognized as a hallmark of cancer. Recent studies have identified many new epigenetic biomarkers, some of which are being introduced into clinical practice for diagnosis, molecular classification, prognosis or prediction of response to therapies. O-6-methylguanine-DNA methyltransferase gene is the most clinically advanced epigenetic biomarker as it predicts the response to temozolomide and carmustine in gliomas. Therefore, epigenomics may represent a novel and promising tool for precision medicine, and in particular, the detection of epigenomic biomarkers in liquid biopsies will be of great interest for monitoring diseases in patients. Of particular relevance is the identification of epigenetic biomarkers in lung cancer, one of the most prevalent and deadly types of cancer. DNA methylation of SHOX2 and RASSF1A could be used as diagnostic markers to differentiate between normal and tumor samples. MicroRNA and long noncoding RNA signatures associated with lung cancer development or tobacco smoke have also been identified. In addition to the field of biomarkers, therapeutic approaches using DNA methylation and histone deacetylation inhibitors are being tested in clinical trials for several cancer types. Moreover, new DNA editing techniques based on zinc finger and CRISPR/Cas9 technologies allow specific modification of aberrant methylation found in oncogenes or tumor suppressor genes. We envision that epigenomics will translate into the clinical field and will have an impact on lung cancer diagnosis/prognosis and treatment.
Collapse
Affiliation(s)
- Josep Mari-Alexandre
- Unit of Inherited Cardiovascular Diseases, Sudden Death and Mechanisms of Disease, Health Research Institute La Fe, Valencia, Spain
| | - Angel Diaz-Lagares
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), University Clinical Hospital of Santiago (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Maria Villalba
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | - Oscar Juan
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain
| | - Ana B Crujeiras
- Laboratory of Molecular and Cellular Endocrinology, Health Research Institute of Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Madrid, Spain.
| | - Alfonso Calvo
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Navarra, Spain; CIBERONC, IDISNA and Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain.
| | - Juan Sandoval
- Biomarkers and Precision Medicine Unit. Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
25
|
Ye JR, Liu L, Zheng F. Long Noncoding RNA Bladder Cancer Associated Transcript 1 Promotes the Proliferation, Migration, and Invasion of Nonsmall Cell Lung Cancer Through Sponging miR-144. DNA Cell Biol 2017; 36:845-852. [PMID: 28885863 DOI: 10.1089/dna.2017.3854] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ji-Ru Ye
- Department of Respiratory Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| | - Liang Liu
- Department of Thoracic Surgery, The TCM Hospital of Changzhou Affiliated to Nanjing University of TCM, Changzhou, China
| | - Feng Zheng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|