1
|
Zuo L, Tan Y, Xu QL, Li XL, Xiao M. Circ-RNF111 Promotes Proliferation of Ovarian Cancer Cell SKOV-3 by Targeting the MiR-556-5p/CCND1 Axis. Biochem Genet 2024; 62:4884-4895. [PMID: 38376577 DOI: 10.1007/s10528-024-10665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/01/2024] [Indexed: 02/21/2024]
Abstract
The aim of this study was to investigate the role and mechanism of circ-RNF111 in the human ovarian cancer cell line SKOV-3. First, qRT-PCR was used to detect circ-RNF111 and miR-556-5p expression levels in human normal ovarian epithelial cells IOSE80 and human ovarian cancer cells SKOV-3. CCK-8 and colony formation assays were adopted to determine the proliferation rate and cell viability of SKOV-3 cells, respectively. Additionally, in an attempt to reveal the mechanism of circ-RNF111, we predicted the targeting relationship between miR-556-5p and circ-RNF111 as well as miR-556-5p and CCND1 using the circinteractome and TargetScan databases, respectively, and validated their relationship by dual-luciferase reporter assay. The protein expression levels of CCND1 in SKOV-3 cells were detected by Western blot. Based on the above experiments, the expression of circ-RNF111 was found to be up-regulated in SKOV-3, and the knockdown of circ-RNF111 significantly inhibited the proliferation and viability of SKOV-3 cells. Then we confirmed that circ-RNF111 sponged miR-556-5p in SKOV-3 cells to up-regulate CCND1 expression. In addition, simultaneous inhibition of miR-556-5p or overexpression of CCND1 in SKOV-3 cells with knockdown of circ-RNF111 reversed the inhibitory effect of knockdown of circ-RNF111 on the protein expression level of CCND1, cell proliferation rate, and cell viability. In summary, circ-RNF111 promotes the proliferation of SKOV-3 cells by targeting the miR-556-5p/CCND1 axis. Circ-RNF111 may serve as a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Li Zuo
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Yue Tan
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Qiao-Ling Xu
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Xiao-Li Li
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China
| | - Mi Xiao
- Department of Oncology, Fudan University Shanghai Cancer Center, Minhang Branch, Shanghai, 200240, China.
| |
Collapse
|
2
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Shahraki K, Najafi A, Ilkhani Pak V, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. The Traces of Dysregulated lncRNAs-Associated ceRNA Axes in Retinoblastoma: A Systematic Scope Review. Curr Eye Res 2024; 49:551-564. [PMID: 38299506 DOI: 10.1080/02713683.2024.2306859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE Long non-coding RNAs are an essential component of competing endogenous RNA regulatory axes and play their role by sponging microRNAs and interfering with the regulation of gene expression. Because of the broadness of competing endogenous RNA interaction networks, they may help investigate treatment targets in complicated disorders. METHODS This study performed a systematic scoping review to assess verified loops of competing endogenous RNAs in retinoblastoma, emphasizing the competing endogenous RNAs axis related to long non-coding RNAs. We used a six-stage approach framework and the PRISMA guidelines. A systematic search of seven databases was done to locate suitable papers published before February 2022. Two reviewers worked independently to screen articles and collect data. RESULTS Out of 363 records, fifty-one articles met the inclusion criteria, and sixty-three axes were identified in desired articles. The majority of the research reported several long non-coding RNAs that were experimentally verified to act as competing endogenous RNAs in retinoblastoma: XIST/NEAT1/MALAT1/SNHG16/KCNQ1OT1, respectively. At the same time, around half of the studies investigated unique long non-coding RNAs. CONCLUSIONS Understanding the many features of this regulatory system may aid in elucidating the unknown etiology of Retinoblastoma and providing novel molecular targets for therapeutic and clinical applications.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amin Najafi
- Department of Ophthalmology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vida Ilkhani Pak
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
4
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
5
|
Cao Y, Yang H, Wang B. CircRNA_001373 promotes liver fibrosis by regulating autophagy activation in hepatic stellate cells via the miR-142a-5p/Becn1 axis. Hum Exp Toxicol 2024; 43:9603271241265105. [PMID: 39291962 DOI: 10.1177/09603271241265105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The purpose of this study was to investigate the regulatory role and underlying mechanisms of circRNA_001373 in the hepatic stellate cell (HSC) activation. Quantitative real-time polymerase chain reaction was used to detect the expression of circRNA_001373, miR-142a-5p and Becn1. The viability of JS-1 cells was measured by Cell Counting Kit-8. The targeting relationship between miR-142a-5p and CircRNA_001373, as well as between miR-142a-5p and Becn1 was predicted using CircInteractome and TargetScan databases, respectively, and validated by dual-luciferase reporter assay. Western blot was utilized to determine the expression levels of proteins related to autophagy and the activation if HSCs in JS-1 cells. After activation by platelet-derived growth factor-BB, an increase was observed in the expression of collagen I and α-smooth muscle actin proteins. The expression of CircRNA_001373 was up-regulated in the activated HSCs. Knockdown of CircRNA_001373 significantly inhibited cell viability and activation of JS-1 cells, as well as autophagy in the activated HSCs. CircRNA_001373 could sponge miR-142a-5p in the activated HSCs, which in turn elevated the Becn1 expression. Concurrent knockdown of both CircRNA_001373 and miR-142a-5p reversed the inhibitory effects of the knockdown of CircRNA_001373 alone on cell viability and autophagy in activated JS-1 cells. CircRNA_ 001373 promotes cell viability and autophagy as well as the activation of JS-1 cells by regulating the miR-142a-5p/Becn1 axis.
Collapse
Affiliation(s)
- Ying Cao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Huan Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| | - Bingying Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, P. R. China
| |
Collapse
|
6
|
Fattahi M, Rezaee D, Fakhari F, Najafi S, Aghaei-Zarch SM, Beyranvand P, Rashidi MA, Bagheri-Mohammadi S, Zamani-Rarani F, Bakhtiari M, Bakhtiari A, Falahi S, Kenarkoohi A, Majidpoor J, Nguyen PU. microRNA-184 in the landscape of human malignancies: a review to roles and clinical significance. Cell Death Discov 2023; 9:423. [PMID: 38001121 PMCID: PMC10673883 DOI: 10.1038/s41420-023-01718-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) with a short length of 19-22 nucleotides. miRNAs are posttranscriptional regulators of gene expression involved in various biological processes like cell growth, apoptosis, and angiogenesis. miR-184 is a well-studied miRNA, for which most studies report its downregulation in cancer cells and tissues and experiments support its role as a tumor suppressor inhibiting malignant biological behaviors of cancer cells in vitro and in vivo. To exert its functions, miR-184 affects some signaling pathways involved in tumorigenesis like Wnt and β-catenin, and AKT/mTORC1 pathway, oncogenic factors (e.g., c-Myc) or apoptotic proteins, such as Bcl-2. Interestingly, clinical investigations have shown miR-184 with good performance as a prognostic/diagnostic biomarker for various cancers. Additionally, exogenous miR-184 in cell and xenograft animal studies suggest it as a therapeutic anticancer target. In this review, we outline the studies that evaluated the roles of miR-184 in tumorigenesis as well as its clinical significance.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abbas Bakhtiari
- Anatomical Sciences Department, Medical Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - P U Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
7
|
Fischer A, Ehrlich A, Plotkin Y, Ouyang Y, Asulin K, Konstantinos I, Fan C, Nahmias Y, Willner I. Stimuli-Responsive Hydrogel Microcapsules Harnessing the COVID-19 Immune Response for Cancer Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202311590. [PMID: 37675854 DOI: 10.1002/anie.202311590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yevgeni Plotkin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah University Hospital, Jerusalem, 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem Jerusalem, 9112001, (Israel)
| | - Yu Ouyang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Klil Asulin
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ioannidis Konstantinos
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
8
|
Bilan F, Amini M, Doustvandi MA, Tohidast M, Baghbanzadeh A, Hosseini SS, Mokhtarzadeh A, Baradaran B. Simultaneous suppression of miR-21 and restoration of miR-145 in gastric cancer cells; a promising strategy for inhibition of cell proliferation and migration. BIOIMPACTS : BI 2023; 14:27764. [PMID: 38505672 PMCID: PMC10945301 DOI: 10.34172/bi.2023.27764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 03/21/2024]
Abstract
Introduction Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. microRNAs are a group of regulatory non-coding RNAs that are involved in GC progression. miR-145 as a tumor suppressor and miR-21 as an oncomiR were shown to be dysregulated in many cancers including GC. This research aimed to enhance the expression of miR-145 while reducing the expression of miR-21 and examine their impact on the proliferation, apoptosis, and migration of GC cells. Methods KATO III cells with high expression levels of miR-21-5p and low expression of miR-145-5p were selected. These cells were then transfected with either miR-145-5p mimics or anti-miR-21-5p, alone or in combination. Afterward, the cell survival rate was determined using the MTT assay, while apoptosis induction was investigated through V-FITC/PI and DAPI staining. Additionally, cell migration was examined using the wound healing assay, and cell cycle progression was analyzed through flow cytometry. Furthermore, gene expression levels were quantified utilizing the qRT-PCR technique. Results The study's findings indicated that the co-replacement of miR-145-5p and anti-miR-21-5p led to a decrease in cell viability and the induction of apoptosis in GC cells. This was achieved via modulating the expression of Bax and Bcl-2, major cell survival regulators. Additionally, the combination therapy significantly increased sub-G1 cell cycle arrest and reduced cell migration by downregulating MMP-9 expression as an epithelial-mesenchymal transition marker. This study provides evidence for the therapeutic possibility of the combination of miR-145-5p and anti-miR-21-5p and also suggests that they could inhibit cell proliferation by modulating the PTEN/AKT1 signaling pathway. Conclusion Our research revealed that utilizing miR-145-5p and anti-miR-21-5p together could be a promising therapeutic approach for treating GC.
Collapse
Affiliation(s)
- Farzaneh Bilan
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Sameti P, Tohidast M, Amini M, Bahojb Mahdavi SZ, Najafi S, Mokhtarzadeh A. The emerging role of MicroRNA-182 in tumorigenesis; a promising therapeutic target. Cancer Cell Int 2023; 23:134. [PMID: 37438760 DOI: 10.1186/s12935-023-02972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
A wide range of studies have indicated that microRNAs (miRNAs), a type of small single-stranded regulatory RNAs, are dysregulated in a different variety of human cancers. Therefore, they are expected to play important roles in tumorigenesis by functioning as oncogenic (oncomiRs) or tumor-suppressive miRNAs. Subsequently, their potential as diagnostic and therapeutic targets for malignancies has attracted attention in recent years. In particular, studies have revealed the aberrant expression of miR-182 through tumorigenesis and its important roles in various aspects of malignancies, including proliferation, metastasis, and chemoresistance. Accumulating reports have illustrated that miR-182, as a dual-role regulator, directly or indirectly regulates the expression of a wide range of genes and modulates the activity of various signaling pathways involved in tumor progression, such as JAK / STAT3, Wnt / β-catenin, TGF-β, and P13K / AKT. Therefore, considering the high therapeutic and diagnostic potential of miR-182, this review aims to point out the effects of miR-182 dysregulation on the signaling pathways involved in tumorigenesis.
Collapse
Affiliation(s)
- Pouriya Sameti
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M, Ahmadi R. The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett 2023; 28:37. [PMID: 37161350 PMCID: PMC10169341 DOI: 10.1186/s11658-023-00447-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
Collapse
Affiliation(s)
- Amir Safi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammadreza Saberiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fateme Davarani Asl
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mahdi Shamsi
- Department of Cell and Molecular Biology, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Reza Ahmadi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Rahmatiyeh Region, Shahrekord, Iran.
| |
Collapse
|
11
|
Babaei Z, Panjehpour M, Ghorbanhosseini SS, Parsian H, Khademi M, Aghaei M. VEGFR3 suppression through miR-1236 inhibits proliferation and induces apoptosis in ovarian cancer via ERK1/2 and AKT signaling pathways. J Cell Biochem 2023; 124:674-686. [PMID: 36922713 DOI: 10.1002/jcb.30395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/24/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
Vascular endothelial growth factor receptor 3 (VEGFR3) is expressed in cancer cell lines and exerts a critical role in cancer progression. However, the signaling pathways of VEGFR3 in ovarian cancer cell proliferation remain unclear. This study aimed to demonstrate the signaling pathways of VEGFR3 through the upregulated expression of miR-1236 in ovarian cancer cells. We found that the messenger RNA and protein of VEGFR3 were expressed in the ovarian cancer cell lines, but downregulated after microRNA-1236 (miR-1236) transfection. The inhibition of VEGFR3, using miR-1236, significantly reduced cell proliferation, clonogenic survival, migration, and invasion ability in SKOV3 and OVCAR3 cells (p < 0.01). The flow cytometry results indicated that the rate of apoptotic cells in SKOV3 (38.65%) and OVCAR3 (41.95%) cells increased following VEGFR3 inhibition. Moreover, VEGFR3 stimulation (using a specific ligand, VEGF-CS) significantly increased extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation (p < 0.01), whereas VEGFR3 suppression reduced p-ERK1/2 (67.94% in SKOV3 and 93.52% in OVCAR3) and p-AKT (59.56% in SKOV3 and 78.73% in OVCAR3) compared to the VEGF-CS treated group. This finding demonstrated that miR-1236 may act as an endogenous regulator of ERK1/2 and AKT signaling by blocking the upstream regulator of VEGFR3. Overall, we demonstrated the important role of the miR-1236/VEGFR3 axis in ovarian cancer cell proliferation by regulating the ERK1/2 and AKT signaling that might be an effective strategy against ovarian cancer.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyedeh Sara Ghorbanhosseini
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Parsian
- Department of Biochemistry, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahsa Khademi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023; 75:238-256. [PMID: 35678612 DOI: 10.1002/iub.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
13
|
Ju H, Yu C, Liu W, Li HH, Fu Z, Wu YC, Gong PX, Li HJ. Polysaccharides from marine resources exhibit great potential in the treatment of tumor: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
14
|
Afrouz M, Amani A, Eftekhari A, Coudret C, Elias SG, Ahmadian Z, Alebrahim MT. Design and synthesis of multi-targeted nanoparticles for gene delivery to breast cancer tissues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:121-137. [PMID: 36255459 DOI: 10.1007/s00210-022-02303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/05/2022] [Indexed: 01/29/2023]
Abstract
Biocompatibility of nanoparticles is the most essential factor in their use in clinical applications. In this study, hyperbranched spermine (HS), hyperbranched spermine-polyethylene glycol-folic acid (HSPF), and hyperbranched spermine-polyethylene glycol-glucose (HSPG) were synthesized for DNA protection and gene delivery to breast cancer cells. The synthesis of HSPG and HSPF was confirmed using proton nuclear magnetic resonance (H-NMR), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) spectroscopy. The HS/DNA, HSPF/DNA, HSPG/DNA, and hyperbranched spermine-polyethylene glycol-folic acid/glucose/DNA (HSPFG/DNA) nanoparticles were prepared by combining different concentrations of HS, HSPF, and HSPG with the same amount of DNA. The ability of HS, HSPF, and HSPG to interact with DNA and protect it against plasm digestion was evaluated using agarose gel. Moreover, in vivo and in vitro biocompatibility of HSPF/DNA, HSPG/DNA, and HSPFG/DNA was investigated using MTT assay and calculating weight change and survival ratio of BALB/c mice, respectively. The results of agarose gel electrophoresis showed that HS, HSPF, and HSPG have the high ability to neutralize the negative charge of DNA and protect it against plasma degradation. The results of in vivo cytotoxicity assay revealed that the HSPF/DNA, HSPG/DNA, and HSPFG/DNA nanoparticles have good biocompatibility on female BALB/c mice. In vitro and in vivo transfection assays revealed that functionalization of the surface of HS using polyethylene glycol-folic acid (HSPF) and polyethylene glycol-glucose (HSPG) significantly increases gene delivery efficiency in vitro and in vivo. These results also showed that gene transfer using both HSPF and HSPG copolymers increases gene transfer efficiency compared to when only one of them is used. The HSPFG/DNA nanoparticles have a high potential for use in therapeutic applications because of their excellent biocompatibility and high gene transfer efficiency to breast cancer tissue.
Collapse
Affiliation(s)
- Mehdi Afrouz
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Amin Amani
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.,Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | - Ali Eftekhari
- UMR 8516, Laboratoire de Spectroscopie Pour Les Interactions, la Reactivite et l'Environment (LASIRE), CNRS, Université Lille, 59000, Lille, France
| | - Christophe Coudret
- IMRCP, CNRS UMR5623, UPS, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, France
| | - Sabry G Elias
- Department of Crop and Soil Science, Seed Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Taghi Alebrahim
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
15
|
Mihanfar A, Yousefi B, Azizzadeh B, Majidinia M. Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int 2022; 22:420. [PMID: 36581900 PMCID: PMC9798601 DOI: 10.1186/s12935-022-02825-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022] Open
Abstract
Melatonin is a neuro-hormone with conserved roles in evolution. Initially synthetized as an antioxidant molecule, it has gained prominence as a key molecule in the regulation of the circadian rhythm. Melatonin exerts its effect by binding to cytoplasmic and intra-nuclear receptors, and is able to regulate the expression of key mediators of different signaling pathways. This ability has led scholars to investigate the role of melatonin in reversing the process of carcinogenesis, a process in which many signaling pathways are involved, and regulating these pathways may be of clinical significance. In this review, the role of melatonin in regulating multiple signaling pathways with important roles in cancer progression is discussed, and evidence regarding the beneficence of targeting malignancies with this approach is presented.
Collapse
Affiliation(s)
- Ainaz Mihanfar
- grid.412763.50000 0004 0442 8645Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bita Azizzadeh
- grid.449129.30000 0004 0611 9408Department of Biochemistry, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Majidinia
- grid.412763.50000 0004 0442 8645Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
16
|
Tan Y, Cai J, Wang Z. Epsilon-caprolactone-modified polyethylenimine as a genetic vehicle for stem cell-based bispecific antibody and exosome synergistic therapy. Regen Biomater 2022; 10:rbac090. [PMID: 36683744 PMCID: PMC9847525 DOI: 10.1093/rb/rbac090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2022] Open
Abstract
Bispecific antibodies (BsAb) have gained significant momentum in clinical application. However, the rapid enzymolysis and metabolism of protein drugs usually induce short circulation in vivo, and developing an efficient protein delivery system still is a bottleneck. Mesenchymal stem cells (MSCs) have become an attractive therapeutic carrier for cancers. Genetic modification enables MSCs to express and secrete specific proteins, which is essential for therapeutic efficacy. However, efficient gene transfer into MSCs is still a challenge. In this study, we applied epsilon-caprolactone-modified polyethylenimine (PEI-CL) as an efficacy carrier for plasmid transfection into MSC that served as in situ 'cell factory' for anti-CD3/CD20 BsAb preparation. Herein, the PEI-CL encapsulates the minicircle plasmid and mediates cell transfection efficiently. Thus, the anti-CD3/CD20 BsAb is secreted from MSC and recruited T cell, resulting in highly sensitive cytotoxicity in the human B-cell lymphoma. Furthermore, these stem cells produce exosomes bearing MiR-15a/MiR-16, which could negatively regulate cancer's oncogenes BCL-2 for adjuvant therapy. Meanwhile, high immunologic factors like tumor necrosis factor-α and interferon-γ are generated and enhance immunotherapy efficacy. The engineered MSCs are demonstrated as an efficient route for BsAb production, and these bioactive components contribute to synergistic therapy, which would be an innovative treatment.
Collapse
Affiliation(s)
- Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiali Cai
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Center for Functional Biomaterials, Sun Yat-Sen University, Guangzhou 510275, China
| | | |
Collapse
|
17
|
Tokarski M, Cierzniak A, Baczynska D. Role of hypoxia on microRNA-dependant regulation of HGFA - HGF - c-Met signalling pathway in human progenitor and mature endothelial cells. Int J Biochem Cell Biol 2022; 152:106310. [PMID: 36182093 DOI: 10.1016/j.biocel.2022.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 10/31/2022]
Abstract
Hepatocyte growth factor (HGF) is considered to be one of the key pro-angiogenic cytokines that stimulates endothelial cells to proliferate and migrate. The activation of the precursor form of HGF is primarily undertaken by the serine protease HGFA. Research indicates that HIF-1α hypoxia stimulates the expression of HGFA, which is synthesized by a range of cells including fibroblasts, endothelium, and macrophages. To date, little is known about the potential role of epigenetic factors in the regulation of the HGFA - HGF - c-Met signalling pathway. The literature suggests that there are several microRNAs (miRNAs, miRs) directly affecting the expression of c-Met under normoxic conditions. The main objective of the research described was to explore the effect of chemically-induced hypoxia on the expression of miRNA molecules in human progenitor and mature endothelial cells, with particulate attention paid to those miRNAs that may specifically affect the HGFA - HGF - c-Met signalling pathway. This publication sheds new light on the role of miRNAs in hypoxia, as well as identifying several miRNAs directly involved in the regulation of HGFA, HGF and c-Met expression in hypoxic conditions. The results indicate that hsa-miR-335-5p, hsa-miR-425-5p and hsa-miR-101-3p are the major miRNAs that appear to play an important role in the regulation of the HGFA - HGF - c-Met signalling pathway.
Collapse
Affiliation(s)
- Miron Tokarski
- Department of Molecular Techniques, Faculty of Medicine, Wroclaw Medical University, M. Curie-Skłodowskiej 52, Wrocław 50-369, Poland.
| | - Aneta Cierzniak
- Department of Molecular Techniques, Faculty of Medicine, Wroclaw Medical University, M. Curie-Skłodowskiej 52, Wrocław 50-369, Poland
| | - Dagmara Baczynska
- Department of Molecular and Cell Biology, Faculty of Pharmacy and Laboratory Medicine, Wroclaw Medical University, Borowska 211, Wrocław 50-556, Poland
| |
Collapse
|
18
|
Clausse V, Zheng H, Amarasekara H, Kruhlak M, Appella DH. Thyclotides, tetrahydrofuran-modified peptide nucleic acids that efficiently penetrate cells and inhibit microRNA-21. Nucleic Acids Res 2022; 50:10839-10856. [PMID: 36215040 DOI: 10.1093/nar/gkac864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Peptide nucleic acids (PNAs) are promising therapeutic molecules for gene modulation; however, they suffer from poor cell uptake. Delivery of PNAs into cells requires conjugation of the PNA to another large molecule, typically a cell-penetrating peptide or nanoparticle. In this study, we describe a new PNA-based molecule with cyclic tetrahydrofuran (THF) backbone modifications that in some cases considerably improve cell uptake. We refer to these THF-PNA oligomers as thyclotides. With THF groups at every position of the oligomer, the cell uptake of thyclotides targeted to miR-21 is enhanced compared with the corresponding unmodified PNA based on an aminoethylglycine backbone. An optimized thyclotide can efficiently enter cells without the use of cell-penetrating peptides, bind miR-21, its designated microRNA target, decrease expression of miR-21 and increase expression of three downstream targets (PTEN, Cdc25a and KRIT1). Using a plasmid with the PTEN-3'UTR coupled with luciferase, we further confirmed that a miR-21-targeted thyclotide prevents miR-21 from binding to its target RNA. Additionally, the thyclotide shows no cytotoxicity when administered at 200 times its active concentration. We propose that thyclotides be further explored as therapeutic candidates to modulate miRNA levels.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongchao Zheng
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harsha Amarasekara
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Kruhlak
- Microscopy Core Facility, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel H Appella
- Synthetic Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: Sharpening a double-edged sword? Eur J Pharmacol 2022; 932:175210. [PMID: 35981607 DOI: 10.1016/j.ejphar.2022.175210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
Abstract
Cancer is a leading cause of increased morbidity and mortality worldwide despite advancements in diagnosis and treatment. Lack of early detection and diagnosis of different cancers and adverse effects and toxicity associated with conventional cancer treatments, such as chemotherapy and radiation, remains a problem. MicroRNAs can act as oncogenes or tumour suppressors in different types of cancers. Their distinct gene expression in various stages and types of cancerous cells make them attractive targets for cancer diagnosis and therapy. The growing research and clinical interests in gene therapy and nano-drug delivery systems have led to the development of potential miRNA-targeted treatments encompassing miRNA mimics, antagonists, and their use in cancer chemotherapy sensitization. In this review, we discuss the recent advancements in understanding the role of miRNAs in cancer development and their potential use as biomarkers in clinical diagnostics and as targets in chemotherapy of cancer.
Collapse
|
20
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Wagner A, Kosnacova H, Chovanec M, Jurkovicova D. Mitochondrial Genetic and Epigenetic Regulations in Cancer: Therapeutic Potential. Int J Mol Sci 2022; 23:ijms23147897. [PMID: 35887244 PMCID: PMC9321253 DOI: 10.3390/ijms23147897] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondria are dynamic organelles managing crucial processes of cellular metabolism and bioenergetics. Enabling rapid cellular adaptation to altered endogenous and exogenous environments, mitochondria play an important role in many pathophysiological states, including cancer. Being under the control of mitochondrial and nuclear DNA (mtDNA and nDNA), mitochondria adjust their activity and biogenesis to cell demands. In cancer, numerous mutations in mtDNA have been detected, which do not inactivate mitochondrial functions but rather alter energy metabolism to support cancer cell growth. Increasing evidence suggests that mtDNA mutations, mtDNA epigenetics and miRNA regulations dynamically modify signalling pathways in an altered microenvironment, resulting in cancer initiation and progression and aberrant therapy response. In this review, we discuss mitochondria as organelles importantly involved in tumorigenesis and anti-cancer therapy response. Tumour treatment unresponsiveness still represents a serious drawback in current drug therapies. Therefore, studying aspects related to genetic and epigenetic control of mitochondria can open a new field for understanding cancer therapy response. The urgency of finding new therapeutic regimens with better treatment outcomes underlines the targeting of mitochondria as a suitable candidate with new therapeutic potential. Understanding the role of mitochondria and their regulation in cancer development, progression and treatment is essential for the development of new safe and effective mitochondria-based therapeutic regimens.
Collapse
Affiliation(s)
- Alexandra Wagner
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Kosnacova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Department of Simulation and Virtual Medical Education, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia; (A.W.); (H.K.); (M.C.)
- Correspondence:
| |
Collapse
|
22
|
Lamichhane S, Mo JS, Sharma G, Joung SM, Chae SC. MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer cells. Am J Cancer Res 2022; 12:3223-3241. [PMID: 35968353 PMCID: PMC9360235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023] Open
Abstract
The human microRNA 133A (MIR133A) was identified as a CRC-associated miRNA. It was down-regulated in human CRC tissues. We identified the putative MIR133A1 and A2 target genes by comparing the transcriptome analysis data of MIR133A1 and A2 knock-in cells with the candidate MIR133A target genes predicted by bioinformatics tools. We identified 29 and 33 putative MIR133A and A2 direct target genes, respectively. Among them, we focused on the master transcription regulator gene SRY-box transcription factor 9 (SOX9), which exhibits a pleiotropic role in cancer. We confirmed that SOX9 is a direct target gene of MIR133A by luciferase reporter assay, quantitative RT-PCR, and western blot analysis. Overexpression of MIR133A in CRC cell lines significantly decreased SOX9 and its downstream PIK3CA-AKT1-GSK3B-CTNNB1 and KRAS-BRAF-MAP2K1-MAPK1/3 pathways and increased apoptosis. Furthermore, functional studies reveal that cell proliferation, colony formation, and migration ability were significantly decreased by MIR133A-overexpressed CRC cell lines. Knockdown of SOX9 in CRC cell lines by SOX9 gene silencing showed similar results. We also used a xenograft model to show that MIR133A overexpression suppresses tumor growth and proliferation. Our results suggest that MIR133A regulates cell proliferation, migration, and apoptosis by targeting SOX9 in human colorectal cancer.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Ji-Su Mo
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Grinsun Sharma
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Sun-Myoung Joung
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang UniversityIksan, Chonbuk 54538, Korea
- Digestive Disease Research Institute, Wonkwang UniversityIksan, Chonbuk 54538, Korea
| |
Collapse
|
23
|
Green-Tripp G, Nattress C, Halldén G. Targeting Triple Negative Breast Cancer With Oncolytic Adenoviruses. Front Mol Biosci 2022; 9:901392. [PMID: 35813830 PMCID: PMC9263221 DOI: 10.3389/fmolb.2022.901392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is the most common cancer globally, accounting for 685,000 deaths in 2020. Triple-negative breast cancers (TNBC) lack oestrogen (ER) and progesterone (PR) hormone receptor expression and HER2 overexpression. TNBC represent 10–15% of all BC with high incidence in women under 50-years old that have BRCA mutations, and have a dismal prognosis. African American and Hispanic women are at higher risk partly due to the common occurrence of BRCA mutations. The standard treatment for TNBC includes surgery, radiotherapy, and chemotherapy although, resistance to all standard-of-care therapies eventually develops. It is crucial to identify and develop more efficacious therapeutics with different mechanisms of action to improve on survival in these women. Recent findings with oncolytic adenoviruses (OAds) may generate a new strategy to improve on the outcomes for women afflicted by TNBC and other types of BC. OAds are genetically engineered to selectively lyse, eliminate and recruit the host antitumour immune responses, leaving normal cells unharmed. The most common modifications are deletions in the early gene products including the E1B55 KDa protein, specific regions of the E1A protein, or insertion of tumour-specific promoters. Clinical trials using OAds for various adenocarcinomas have not yet been sufficiently evaluated in BC patients. Preclinical studies demonstrated efficacy in BC cell lines, including TNBC cells, with promising novel adenoviral mutants. Here we review the results reported for the most promising OAds in preclinical studies and clinical trials administered alone and in combination with current standard of care or with novel therapeutics. Combinations of OAds with small molecule drugs targeting the epidermal growth factor receptor (EGFR), androgen receptor (AR), and DNA damage repair by the novel PARP inhibitors are currently under investigation with reported enhanced efficacy. The combination of the PARP-inhibitor Olaparib with OAds showed an impressive anti-tumour effect. The most promising findings to date are with OAds in combination with antibodies towards the immune checkpoints or expression of cytokines from the viral backbone. Although safety and efficacy have been demonstrated in numerous clinical trials and preclinical studies with cancer-selective OAds, further developments are needed to eliminate metastatic lesions, increase immune activation and intratumoural viral spread. We discuss shortcomings of the OAds and potential solutions for improving on patient outcomes.
Collapse
Affiliation(s)
- Gabriela Green-Tripp
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Callum Nattress
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, London, United Kingdom
| | - Gunnel Halldén
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Gunnel Halldén,
| |
Collapse
|
24
|
Stieg DC, Wang Y, Liu LZ, Jiang BH. ROS and miRNA Dysregulation in Ovarian Cancer Development, Angiogenesis and Therapeutic Resistance. Int J Mol Sci 2022; 23:ijms23126702. [PMID: 35743145 PMCID: PMC9223852 DOI: 10.3390/ijms23126702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
The diverse repertoires of cellular mechanisms that progress certain cancer types are being uncovered by recent research and leading to more effective treatment options. Ovarian cancer (OC) is among the most difficult cancers to treat. OC has limited treatment options, especially for patients diagnosed with late-stage OC. The dysregulation of miRNAs in OC plays a significant role in tumorigenesis through the alteration of a multitude of molecular processes. The development of OC can also be due to the utilization of endogenously derived reactive oxygen species (ROS) by activating signaling pathways such as PI3K/AKT and MAPK. Both miRNAs and ROS are involved in regulating OC angiogenesis through mediating multiple angiogenic factors such as hypoxia-induced factor (HIF-1) and vascular endothelial growth factor (VEGF). The NAPDH oxidase subunit NOX4 plays an important role in inducing endogenous ROS production in OC. This review will discuss several important miRNAs, NOX4, and ROS, which contribute to therapeutic resistance in OC, highlighting the effective therapeutic potential of OC through these mechanisms.
Collapse
Affiliation(s)
- David C. Stieg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Yifang Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
25
|
Chung YH, Cheng YT, Kao YH, Tsai WC, Huang GK, Chen YT, Shen YC, Tai MH, Chiang PH. MiR-26a-5p as a useful therapeutic target for upper tract urothelial carcinoma by regulating WNT5A/β-catenin signaling. Sci Rep 2022; 12:6955. [PMID: 35484165 PMCID: PMC9050734 DOI: 10.1038/s41598-022-08091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/01/2022] [Indexed: 11/15/2022] Open
Abstract
The role of miRNAs in cancer and their possible function as therapeutic agents are interesting and needed further investigation. The miR-26a-5p had been demonstrated as a tumor suppressor in various cancers. However, the importance of miR-26a-5p regulation in upper tract urothelial carcinoma (UTUC) remains unclear. Here, we aimed to explore the miR-26a-5p expression in UTUC tissues and to identify its regulatory targets and signal network involved in UTUC tumorigenesis. The miR-26a-5p expression was validated by quantitative real-time polymerase chain reaction (qPCR) using renal pelvis tissue samples from 22 patients who were diagnosed with UTUC and 64 cases of renal pelvis tissue microarray using in situ hybridization staining. BFTC-909 UTUC cells were used to examine the effects of miR-26a-5p genetic delivery on proliferation, migration and expression of epithelial-to-mesenchymal transition (EMT) markers. MiR-26a-5p was significantly down-regulated in UTUC tumors compared to adjacent normal tissue and was decreased with histological grades. Moreover, restoration of miR-26a-5p showed inhibition effects on proliferation and migration of BFTC-909 cells. In addition, miR-26a-5p delivery regulated the EMT marker expression and inhibited WNT5A/β-catenin signaling and expression of downstream molecules including NF-κB and MMP-9 in BFTC-909 cells. This study demonstrated that miR-26a-5p restoration may reverse EMT process and regulate WNT5A/β-catenin signaling in UTUC cells. Further studies warranted to explore the potential roles in biomarkers for diagnostics and prognosis, as well as novel therapeutics targets for UTUC treatment.
Collapse
Affiliation(s)
- Yueh-Hua Chung
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC
| | - Yuan-Tso Cheng
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, 82445, Taiwan, ROC
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | - Gong-Kai Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yen-Ta Chen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yuan-Chi Shen
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, ROC.
| | - Po-Hui Chiang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.
| |
Collapse
|
26
|
Lee YC, Lin CH, Chang WL, Lin WD, Pan JK, Wang WJ, Su BC, Chung HH, Tsai CH, Lin FC, Wang WC, Lu PJ. Concurrent Chemoradiotherapy-Driven Cell Plasticity by miR-200 Family Implicates the Therapeutic Response of Esophageal Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:4367. [PMID: 35457185 PMCID: PMC9030842 DOI: 10.3390/ijms23084367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common and fatal malignancy with an increasing incidence worldwide. Over the past decade, concurrent chemoradiotherapy (CCRT) with or without surgery is an emerging therapeutic approach for locally advanced ESCC. Unfortunately, many patients exhibit poor response or develop acquired resistance to CCRT. Once resistance occurs, the overall survival rate drops down rapidly and without proper further treatment options, poses a critical clinical challenge for ESCC therapy. Here, we utilized lab-created CCRT-resistant cells as a preclinical study model to investigate the association of chemoradioresistantresistance with miRNA-mediated cell plasticity alteration, and to determine whether reversing EMT status can re-sensitize refractory cancer cells to CCRT response. During the CCRT treatment course, refractory cancer cells adopted the conversion of epithelial to mesenchymal phenotype; additionally, miR-200 family members were found significantly down-regulated in CCRT resistance cells by miRNA microarray screening. Down-regulated miR-200 family in CCRT resistance cells suppressed E-cadherin expression through snail and slug, and accompany with an increase in N-cadherin. Rescuing expressions of miR-200 family members in CCRT resistance cells, particularly in miR-200b and miR-200c, could convert cells to epithelial phenotype by increasing E-cadherin expression and sensitize cells to CCRT treatment. Conversely, the suppression of miR-200b and miR-200c in ESCC cells attenuated E-cadherin, and that converted cells to mesenchymal type by elevating N-cadherin expression, and impaired cell sensitivity to CCRT treatment. Moreover, the results of ESCC specimens staining established the clinical relevance that higher N-cadherin expression levels associate with the poor CCRT response outcome in ESCC patients. Conclusively, miR-200b and miR-200c can modulate the conversion of epithelial-mesenchymal phenotype in ESCC, and thereby altering the response of cells to CCRT treatment. Targeting epithelial-mesenchymal conversion in acquired CCRT resistance may be a potential therapeutic option for ESCC patients.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Cheng-Han Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 840, Taiwan
| | - Wei-Lun Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Der Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Jhih-Kai Pan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Wei-Jan Wang
- Department of Biological Science and Technology, Research Center for Cancer Biology, China Medical University, Taichung 404, Taiwan;
| | - Bor-Chyuan Su
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsien-Hui Chung
- Preventive Medicine Program, Center for General Education, Chung Yuan Christian University, Taoyuan City 320, Taiwan;
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907, Taiwan
| | - Chen-Hsun Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
| | - Forn-Chia Lin
- Department of Radiation Oncology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan;
| | - Wen-Ching Wang
- Department of Surgery, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan 710, Taiwan
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35 Xiaodong Rd., Tainan 704, Taiwan; (C.-H.L.); (W.-L.C.); (W.-D.L.); (J.-K.P.); (C.-H.T.)
- Department of Clinical Medicine Research, National Cheng Kung University Hospital, Tainan 704, Taiwan
| |
Collapse
|
27
|
Zhou J, Zhang B, Zhang X, Wang C, Xu Y. Identification of a 3-miRNA Signature Associated With the Prediction of Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2022; 11:823603. [PMID: 35155213 PMCID: PMC8828644 DOI: 10.3389/fonc.2021.823603] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor caused by an infection of the epithelial cells of the nasopharynx, which is highly metastatic and aggressive. Due to the deep anatomical site and atypical early symptoms, the majority of NPC patients are diagnosed at terminal stages. There is growing evidence that microRNAs offer options for early detection, accurate diagnosis, and prediction of malignancy treatment response. Therefore, the purpose of this article was to identify microRNAs that predict the prognosis of patients with NPC by integrating biological information analysis. In this study, we utilized the GSE36682 dataset rooted in the Gene Expression Omnibus (GEO) data bank, including 62 cases of NPC tissues and six cases of non-cancerous tissues. The miRNAs were subjected to weighted gene co-expression network analysis, and hub miRNAs were screened for differentially upregulated miRNAs from modules highly correlated with tumor progression. We took a lot of time to calculate the risk scores of miRNA markers for 62 NPC patients, and incidentally combined the clinical survival information of patients to finally identify the three key miRNAs, and then divided the patients into low- and high-risk groups. Kaplan-Meier curve analysis revealed that the overall survival of patients in the high-risk group was obviously shorter than that of the low-risk group. Subsequently, the target genes of the three miRNAs were predicted and analyzed for functional enrichment. In summary, a prognostic predictive risk model based on three miRNA profiles may increase prognostic predictive value and provide reference information for the precise treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Jinhui Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Bo Zhang
- Teaching and Research Section of Otolaryngology, Hubei University of Science and Technology, Xianning, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Chengyu Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yu Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
28
|
Lima E, Barroso AG, Sousa MA, Ferreira O, Boto RE, Fernandes JR, Almeida P, Silvestre SM, Santos AO, Reis LV. Picolylamine-functionalized benz[e]indole squaraine dyes: Synthetic approach, characterization and in vitro efficacy as potential anticancer phototherapeutic agents. Eur J Med Chem 2022; 229:114071. [PMID: 34979302 DOI: 10.1016/j.ejmech.2021.114071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022]
Abstract
Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated. Dyes were further assessed for their phototoxicity activity, and the most interesting ones were studied regarding cell localization and induction of morphological cell changes, genotoxicity, apoptosis and cell cycle arrest. The molecules with N-ethyl chains showed the greatest in vitro light-dependent cytotoxic effects, particularly the zwitterionic squaraine dye and the one bearing a single pyridine unit, which also exhibited a more significant interaction with human albumin. Phenotypically, the cells incubated with these squaraines became smaller and rounded after irradiation, the effects varying with the tested concentration. Genotoxic effects were observed even without irradiation, being more evident for the N-ethyl picolylamine-derived dye. The fluorescence emitted by Rhodamine 123 largely coincided with that emitted by the dyes, suggesting that they are found preferentially in mitochondria. After irradiation, an increase in the subG1 population was verified by propidium iodide-staining analysis by flow cytometry, indicative of cell death by apoptosis.
Collapse
Affiliation(s)
- Eurico Lima
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal; Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Andreia G Barroso
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Margarida A Sousa
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Octávio Ferreira
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Renato E Boto
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - José R Fernandes
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Paulo Almeida
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal
| | - Samuel M Silvestre
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, 3000-517, Coimbra, Portugal.
| | - Adriana O Santos
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-506, Covilhã, Portugal.
| | - Lucinda V Reis
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal.
| |
Collapse
|
29
|
Role of circulating microRNAs to predict hepatocellular carcinoma recurrence in patients treated with radiofrequency ablation or surgery. HPB (Oxford) 2022; 24:244-254. [PMID: 34366240 DOI: 10.1016/j.hpb.2021.06.421] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Loco-regional treatments have improved the survival of patients with early hepatocellular carcinoma (HCC), but tumor relapse is a frequent event and survival rates remain low. Moreover, conflicting evidences address early HCC patients to surgery or radiofrequency ablation (RFA), with the clinical need to find predictive non-invasive biomarkers able to guide treatment choice and define patients survival. METHODS Two independent case series of treatment-naïve HCC patients treated with local RFA, and a cohort of 30 HCC patients treated with liver surgery were enrolled. On the basis of literature evidence, we customized a panel of 21 miRNAs correlated with relapse and prognosis after local curative treatment of HCC. RESULTS Expression levels of let-7c predict tumor relapse after RFA; we also investigated the same panel in a small cohort of HCC patients undergoing surgery, finding no statistically significance in predicting tumor relapse or survival. Moreover, interaction test indicated that let-7c expression levels are predictive for identifying a subset of patients that should be addressed to surgery. CONCLUSION Results from this study could predict prognosis of early HCC patients, helping to address early HCC patients to surgery or RFA treatment.
Collapse
|
30
|
Dastjerd NT, Valibeik A, Rahimi Monfared S, Goodarzi G, Moradi Sarabi M, Hajabdollahi F, Maniati M, Amri J, Samavarchi Tehrani S. Gene therapy: A promising approach for breast cancer treatment. Cell Biochem Funct 2021; 40:28-48. [PMID: 34904722 DOI: 10.1002/cbf.3676] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy and the second leading cause of death among women worldwide that is caused by numerous genetic and environmental factors. Hence, effective treatment for this type of cancer requires new therapeutic approaches. The traditional methods for treating this cancer have side effects, therefore so much research have been performed in last decade to find new methods to alleviate these problems. The study of the molecular basis of breast cancer has led to the introduction of gene therapy as an effective therapeutic approach for this cancer. Gene therapy involves sending genetic material through a vector into target cells, which is followed by a correction, addition, or suppression of the gene. In this technique, it is necessary to target tumour cells without affecting normal cells. In addition, clinical trial studies have shown that this approach is less toxic than traditional therapies. This study will review various aspects of breast cancer, gene therapy strategies, limitations, challenges and recent studies in this area.
Collapse
Affiliation(s)
- Niloufar Tavakoli Dastjerd
- Department of Medical Biotechnology, School of Allied Medical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Valibeik
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Sobhan Rahimi Monfared
- Department of Clinical Biochemistry, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Faezeh Hajabdollahi
- Department of Anatomical Sciences, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jamal Amri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Zhao Y, Tang X, Zhao Y, Yu Y, Liu S. Diagnostic significance of microRNA-1255b-5p in prostate cancer patients and its effect on cancer cell function. Bioengineered 2021; 12:11451-11460. [PMID: 34895055 PMCID: PMC8810192 DOI: 10.1080/21655979.2021.2009413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/04/2022] Open
Abstract
Discerning between indolent and aggressive types is a big challenge of prostate cancer clinically to guide the adequate therapeutic regimen. We aimed to examine the relationship between miR-1255b-p expression and prostate cancer and elucidate the function of miR-1255b-5p in prostate cancer. miR-1255b-5p were measured using Quantitative Real-Time PCR from the blood 103 benign prostate hyperplasia (BPH) and 153 prostate cancer patients (117 indolent cases and 36 upgrading cases). Using receiver operating characteristic (ROC) curve analysis, the discriminating ability of miR-1255b-5p was accessed between BPH and prostate cancer participants, or indolent and aggressive type. Using CCK-8 and Transwell assays, the function of miR-1255b-5p on prostate cancer cells was investigated. The levels of miR-1255b-5p were significantly raised in prostate cancer patients when compared with BPH participants. MiR-1255b-5p level can distinguish prostate cancer patients from BPH or indolent type from aggressive type. Downregulation of miR-1255b-5p can suppress the proliferative, invasive, and migratory capacity, but this effect can be eradicated by EPB41L1 inhibition. The measurement of miR-1255b-5p in blood may provide a new noninvasive approach for the diagnosis of prostate cancer. miR-1255b-5p may become a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Yuling Zhao
- Department of Laboratory, Traditional Chinese Medical Hospital of Huangdao District Qingdao, QingdaoShandong, China
| | - Xiaochun Tang
- Department of Blood Transfusion, Traditional Chinese Medical Hospital of Huangdao District Qingdao, QingdaoShandong, China
| | - Yifan Zhao
- Department of Minimally Invasive Intervention Center, Qingdao Municipal Hospital, QingdaoShandong, China
| | - Yan Yu
- Urology Department, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Shuzhen Liu
- Department of Disinfection Supply Center, Traditional Chinese Medical Hospital of Huangdao District Qingdao, QingdaoShandong, China
| |
Collapse
|
32
|
Benli-Hoppe T, Göl Öztürk Ş, Öztürk Ö, Berger S, Wagner E, Yazdi M. Transferrin Receptor Targeted Polyplexes Completely Comprised of Sequence-Defined Components. Macromol Rapid Commun 2021; 43:e2100602. [PMID: 34713524 DOI: 10.1002/marc.202100602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Human transferrin protein (Tf) modified polyplexes have already displayed encouraging potential for receptor-mediated nucleic acid delivery into tumors. The use of a blood-derived targeting protein and polydisperse macromolecular cationic subunits however presents a practical challenge for pharmaceutical grade production. Here, Tf receptor (TfR) targeted small interfering RNA (siRNA) polyplexes are designed that are completely composed of synthetic, monodisperse, and sequence-defined subunits generated by solid-phase supported synthesis. An optimized cationizable lipo-oligoaminoamide (lipo-OAA) is used for siRNA core polyplex formation, and a retro-enantio peptide (reTfR) attached via a monodisperse polyethylene glycol (PEG) spacer via click chemistry is applied for targeting. Improved gene silencing is demonstrated in TfR-expressing KB and DU145 cells. Analogous plasmid DNA (pDNA) polyplexes are successfully used for receptor-mediated gene delivery in TfR-rich K562 cells and Neuro2a cells. Six lipo-OAAs differing in their lipidic domain and redox-sensitive attachment of lipid residues are tested in order to evaluate the impact of core polyplex stability on receptor-dependent gene transfer.
Collapse
Affiliation(s)
- Teoman Benli-Hoppe
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Şurhan Göl Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Özgür Öztürk
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Simone Berger
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| | - Mina Yazdi
- Pharmaceutical Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Munich, 81377, Germany
| |
Collapse
|
33
|
Chong ZX, Yeap SK, Ho WY. Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res 2021; 172:105818. [PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/12/2021] [Indexed: 12/16/2022]
Abstract
Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
34
|
Li M, Chen H, Xia L, Huang P. Circular RNA circSP3 promotes hepatocellular carcinoma growth by sponging microRNA-198 and upregulating cyclin-dependent kinase 4. Aging (Albany NY) 2021; 13:18586-18605. [PMID: 34314379 PMCID: PMC8351711 DOI: 10.18632/aging.203303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/14/2020] [Indexed: 12/25/2022]
Abstract
As a new class of endogenous noncoding RNAs, circular RNAs (circRNAs), have been found to influence cell development and function by sponging microRNAs. MicroRNA (miR)-198 is downregulated in various cancers, including hepatocellular carcinoma (HCC). We therefore searched for dysregulated circRNAs that could sponge miR-198 in HCC. By analyzing relevant circRNA databases (circBase, TargetScan and CircInteractome), we found that the miR-198-binding circRNA hsa_circSP3 is upregulated in HCC. CircSP3 expression correlated negatively with miR-198 expression in HCC tissues. Dual luciferase reporter assays indicated that circSP3 bound to miR-198. CircSP3 overexpression in HCC cells induced expression of cyclin-dependent kinase 4, a target gene of miR-198. Silencing circSP3 inhibited HCC cell proliferation and migration by downregulating cyclin-dependent kinase 4, whereas inhibiting miR-198 reversed those effects. In vivo experiments confirmed that circSP3 promoted xenograft tumor growth. These data suggest that circSP3 may be a novel biomarker for HCC.
Collapse
Affiliation(s)
- Molin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, China
| | - Hang Chen
- Department of Oncology and Hematology, The People’s Hospital of Tongliang District, Chongqing 402560, China
| | - Lulu Xia
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing 400042, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, China
| |
Collapse
|
35
|
Kumari R, Roy U, Desai S, Nilavar NM, Van Nieuwenhuijze A, Paranjape A, Radha G, Bawa P, Srivastava M, Nambiar M, Balaji KN, Liston A, Choudhary B, Raghavan SC. MicroRNA miR-29c regulates RAG1 expression and modulates V(D)J recombination during B cell development. Cell Rep 2021; 36:109390. [PMID: 34260911 DOI: 10.1016/j.celrep.2021.109390] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 03/07/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Recombination activating genes (RAGs), consisting of RAG1 and RAG2, are stringently regulated lymphoid-specific genes, which initiate V(D)J recombination in developing lymphocytes. We report the regulation of RAG1 through a microRNA (miRNA), miR-29c, in a B cell stage-specific manner in mice and humans. Various lines of experimentation, including CRISPR-Cas9 genome editing, demonstrate the target specificity and direct interaction of miR-29c to RAG1. Modulation of miR-29c levels leads to change in V(D)J recombination efficiency in pre-B cells. The miR-29c expression is inversely proportional to RAG1 in a B cell developmental stage-specific manner, and miR-29c null mice exhibit a reduction in mature B cells. A negative correlation of miR-29c and RAG1 levels is also observed in leukemia patients, suggesting the potential use of miR-29c as a biomarker and a therapeutic target. Thus, our results reveal the role of miRNA in the regulation of RAG1 and its relevance in cancer.
Collapse
Affiliation(s)
- Rupa Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Urbi Roy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sagar Desai
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Amita Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Gudapureddy Radha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India
| | - Mrinal Srivastava
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research (TIFR), Hyderabad 500046, India
| | - Mridula Nambiar
- Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge, United Kingdom
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore 560100, India.
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
36
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
37
|
Li J, Li D, Zhang X, Li C, Zhu F. Long noncoding RNA SLC9A3‑AS1 increases E2F6 expression by sponging microRNA‑486‑5p and thus facilitates the oncogenesis of nasopharyngeal carcinoma. Oncol Rep 2021; 46:165. [PMID: 34165171 PMCID: PMC8218295 DOI: 10.3892/or.2021.8116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNA SLC9A3 antisense RNA 1 (SLC9A3-AS1) plays a central role in lung cancer; yet, its functions in nasopharyngeal carcinoma (NPC) have not been elucidated. The present study revealed the roles of SLC9A3-AS1 in NPC and dissected the mechanisms downstream of SLC9A3-AS1. SLC9A3-AS1 levels in NPC were assessed by applying RT-qPCR. The modulatory role of SLC9A3-AS1 interference on NPC cells was examined using numerous functional experiments. High expression of SLC9A3-AS1 was observed in NPC samples. Patients with NPC with a high level of SLC9A3-AS1 experienced a shorter overall survival than those with a low SLC9A3-AS1 level. Loss of SLC9A3-AS1 reduced NPC cell proliferation, colony formation, migration, and invasion but induced cell apoptosis in vitro. Animal experiments further revealed that the depletion of SLC9A3-AS1 hindered NPC tumour growth in vivo. As a competitive endogenous RNA, SLC9A3-AS1 sponged microRNA-486-5p (miR-486-5p), consequently upregulating E2F transcription factor 6 (E2F6). Finally, the effects of SLC9A3-AS1 silencing on NPC cells were reversed by inhibiting miR-486-5p or overexpressing E2F6. In summary, SLC9A3-AS1 exerted carcinogenic effects on NPC cells by adjusting the miR-486-5p/E2F6 axis. Accordingly, the newly identified SLC9A3-AS1/miR-486-5p/E2F6 pathway may offer attractive therapeutic targets for future development.
Collapse
Affiliation(s)
- Jiansheng Li
- Department of Otolaryngology, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Dongzhi Li
- Department of Otolaryngology, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Xianhua Zhang
- Department of Otolaryngology, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Cuijuan Li
- Department of Otolaryngology, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Fengjuan Zhu
- Department of Otolaryngology, The People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| |
Collapse
|
38
|
French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer 2021; 148:2884-2897. [PMID: 33197277 PMCID: PMC8246550 DOI: 10.1002/ijc.33398] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Cancerous tumours contain a rare subset of cells with stem-like properties that are termed cancer stem cells (CSCs). CSCs are defined by their ability to divide both symmetrically and asymmetrically, to initiate new tumour growth and to tolerate the foreign niches required for metastatic dissemination. Accumulating evidence suggests that tumours arise from cells with stem-like properties, the generation of CSCs is therefore likely to be an initiatory event in carcinogenesis. Furthermore, CSCs in established tumours exist in a dynamic and plastic state, with nonstem tumour cells thought to be capable of de-differentiation to CSCs. The regulation of the CSC state both during tumour initiation and within established tumours is a desirable therapeutic target and is mediated by epigenetic factors. In this review, we will explore the epigenetic parallels between induced pluripotency and the generation of CSCs, and discuss how the epigenetic regulation of CSCs opens up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
39
|
Petrović N, Nakashidze I, Nedeljković M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way? J Mammary Gland Biol Neoplasia 2021; 26:157-178. [PMID: 33479880 DOI: 10.1007/s10911-021-09478-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/17/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.
Collapse
Affiliation(s)
- Nina Petrović
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001, Belgrade, Serbia.
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia.
| | - Irina Nakashidze
- Department of Biology, Natural Science and Health Care, Batumi Shota Rustaveli State University, Ninoshvili str. 35, 6010, Batumi, Georgia
| | - Milica Nedeljković
- Department for Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia
| |
Collapse
|
40
|
Rizkita LD, Astuti I. The potential of miRNA-based therapeutics in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A review. J Pharm Anal 2021; 11:265-271. [PMID: 33782640 PMCID: PMC7989072 DOI: 10.1016/j.jpha.2021.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Since the World Health Organization (WHO) declared COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as a pandemic in March 2020, and more than 117 million people worldwide have been confirmed to have been infected. Scientists, medical professionals, and other stakeholders are racing against time to find and develop effective medicines for COVID-19. However, no drug with high efficacy to treat SARS-CoV-2 infection has been approved. With the increasing popularity of gene therapy, scientists have explored the utilization of small RNAs such as microRNAs (miRNAs) as therapeutics. miRNAs are non-coding RNAs with high affinity for the 3'-UTRs of targeted messenger RNAs (mRNAs). Interactions between host cells and viral genomes may induce the upregulation or downregulation of various miRNAs. Therefore, understanding the expression patterns of these miRNAs and their functions will provide insights into potential miRNA-based therapies. This review systematically summarizes the potential targets of miRNA-based therapies for SARS-CoV-2 infection and examines the viability of possible transfection methods.
Collapse
Affiliation(s)
- Leonny Dwi Rizkita
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Indwiani Astuti
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
41
|
Zhang J, Li H, Dong J, Zhang N, Liu Y, Luo X, Chen J, Wang J, Wang A. Omics-Based Identification of Shared and Gender Disparity Routes in Hras12V-Induced Hepatocarcinogenesis: An Important Role for Dlk1-Dio3 Genomic Imprinting Region. Front Genet 2021; 12:620594. [PMID: 34135934 PMCID: PMC8202007 DOI: 10.3389/fgene.2021.620594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of gender disparity is very profound in hepatocellular carcinoma (HCC). Although previous research has revealed important roles of microRNA (miRNA) in HCC, there are no studies investigating the role of miRNAs in gender disparity observed hepatocarcinogenesis. In the present study, we investigated the global miRNAomics changes related to Ras-induced male-prevalent hepatocarcinogenesis in a Hras12V-transgenic mouse model (Ras-Tg) by next-generation sequencing (NGS). We identified shared by also unique changes in miRNA expression profiles in gender-dependent hepatocarcinogenesis. Two hundred sixty-four differentially expressed miRNAs (DEMIRs) with q value ≤0.05 and fold change ≥2 were identified. A vertical comparison revealed that the lower numbers of DEMIRs in the hepatic tumor (T) compared with the peri-tumor precancerous tissue (P) of Ras-Tg and normal liver tissue of wild-type C57BL/6J mice (W) in males indicated that males are more susceptible to develop HCC. The expression pattern analysis revealed 43 common HCC-related miRNAs and 4 Ras-positive-related miRNAs between males and females. By integrating the mRNA transcriptomic data and using 3-node FFL analysis, a group of significant components commonly contributing to HCC between sexes were filtered out. A horizontal comparison showed that the majority of DEMIRs are located in the Dlk1-Dio3 genomic imprinting region (GIR) and that they are closely related to not only hepatic tumorigenesis but also to gender disparity in hepatocarcinogenesis. This is achieved by regulating multiple metabolic pathways, including retinol, bile acid, and steroid hormones. In conclusion, the identification of shared and gender-dependent DEMIRs in hepatocarcinogenesis provides valuable insights into the mechanisms that contribute to male-biased Ras-induced hepatic carcinogenesis.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jianyi Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Dhuri K, Vyas RN, Blumenfeld L, Verma R, Bahal R. Nanoparticle Delivered Anti-miR-141-3p for Stroke Therapy. Cells 2021; 10:cells10051011. [PMID: 33922958 PMCID: PMC8145654 DOI: 10.3390/cells10051011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 01/14/2023] Open
Abstract
Ischemic stroke and factors modifying ischemic stroke responses, such as social isolation, contribute to long-term disability worldwide. Several studies demonstrated that the aberrant levels of microRNAs contribute to ischemic stroke injury. In prior studies, we established that miR-141-3p increases after ischemic stroke and post-stroke isolation. Herein, we explored two different anti-miR oligonucleotides; peptide nucleic acid (PNAs) and phosphorothioates (PS) for ischemic stroke therapy. We used US FDA approved biocompatible poly (lactic-co-glycolic acid) (PLGA)-based nanoparticle formulations for delivery. The PNA and PS anti-miRs were encapsulated in PLGA nanoparticles by double emulsion solvent evaporation technique. All the formulated nanoparticles showed uniform morphology, size, distribution, and surface charge density. Nanoparticles also exhibited a controlled nucleic acid release profile for 48 h. Further, we performed in vivo studies in the mouse model of ischemic stroke. Ischemic stroke was induced by transient (60 min) occlusion of middle cerebral artery occlusion followed by a reperfusion for 48 or 72 h. We assessed the blood-brain barrier permeability of PLGA NPs containing fluorophore (TAMRA) anti-miR probe after systemic delivery. Confocal imaging shows uptake of fluorophore tagged anti-miR in the brain parenchyma. Next, we evaluated the therapeutic efficacy after systemic delivery of nanoparticles containing PNA and PS anti-miR-141-3p in mice after stroke. Post-treatment differentially reduced both miR-141-3p levels in brain tissue and infarct injury. We noted PNA-based anti-miR showed superior efficacy compared to PS-based anti-miR. Herein, we successfully established that nanoparticles encapsulating PNA or PS-based anti-miRs-141-3p probes could be used as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Karishma Dhuri
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Rutesh N. Vyas
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
| | - Leslie Blumenfeld
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
| | - Rajkumar Verma
- Department of Neurosciences, UConn Health, Farmington, CT 06032, USA; (R.N.V.); (L.B.)
- Correspondence: (R.V.); (R.B.)
| | - Raman Bahal
- School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
- Correspondence: (R.V.); (R.B.)
| |
Collapse
|
43
|
Venkatesh J, Wasson MCD, Brown JM, Fernando W, Marcato P. LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett 2021; 509:81-88. [PMID: 33848519 DOI: 10.1016/j.canlet.2021.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Therapeutic effectiveness in breast cancer can be limited by the underlying mechanisms of pathogenesis, including epithelial-mesenchymal transition (EMT), cancer stem cells (CSCs) and drug resistance. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are master regulators of gene expression and are functionally important mediators in these mechanisms of pathogenesis. Intricate crosstalks between these non-coding RNAs form complex regulatory networks of post-transcriptional gene regulation. Depending on the specific lncRNA/miRNA interaction, the lncRNA-miRNA axis can have tumor suppressor or oncogenic effects, thus defining the lncRNA-miRNA axis is important for determining targetability. Herein, we summarize the current literature describing lncRNA-miRNA interactions that are critical in the molecular mechanisms that regulate EMT, CSCs and drug resistance in breast cancer. Further, we review both the well-studied and potential novel mechanisms of lncRNA-miRNA interactions in breast cancer.
Collapse
Affiliation(s)
| | | | - Justin M Brown
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Wasundara Fernando
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
44
|
|
45
|
Jahanbakhshi F, Maleki Dana P, Badehnoosh B, Yousefi B, Mansournia MA, Jahanshahi M, Asemi Z, Halajzadeh J. Curcumin anti-tumor effects on endometrial cancer with focus on its molecular targets. Cancer Cell Int 2021; 21:120. [PMID: 33602218 PMCID: PMC7891161 DOI: 10.1186/s12935-021-01832-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin is extracted from turmeric and shows a variety of properties that make it a useful agent for treating diseases and targeting different biological mechanisms, including apoptosis, angiogenesis, inflammation, and oxidative stress. This phenolic compound is safe even at high doses. However, it has poor bioavailability. The incidence rates of endometrial cancer (EC) that is one of the most prevalent gynecological malignancies is increasing. Meanwhile, the onset age of EC has been decreased in past few years. Besides, EC does not show a convenient prognosis, particularly at advanced stages. Based on this information, discovering new approaches or enhancing the available ones is required to provide better care for EC patients. In this review, we cover studies concerned with the anti-tumor effects of curcumin on EC. We focus on molecular mechanisms that are targeted by curcumin treatment in different processes of cancer development and progression, such as apoptosis, inflammation, and migration. Furthermore, we present the role of curcumin in targeting some microRNAs (miRNAs) that may play a role in EC.
Collapse
Affiliation(s)
- Fahime Jahanbakhshi
- Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bita Badehnoosh
- Department of Gynecology and Obstetrics, Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Moghadeseh Jahanshahi
- Clinical Research Development Center (CRDC), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Jamal Halajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| |
Collapse
|
46
|
Swellam M, Zahran RFK, Ghonem SA, Abdel-Malak C. Serum MiRNA-27a as potential diagnostic nucleic marker for breast cancer. Arch Physiol Biochem 2021; 127:90-96. [PMID: 31145011 DOI: 10.1080/13813455.2019.1616765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Accumulating evidence reveals that microRNA 27a (miR 27a) is implicated in the pathogenesis of cancer. However, its diagnostic role in breast cancer (BC) still needs investigation. MATERIALS AND METHODS MiR 27a expression was assessed in serum samples from patients with primary BC (n = 100), benign breast lesions (n = 30) and control group served as healthy volunteers (n = 20) using quantitative real-time PCR. RESULTS Both expression and mean rank of miR 27a and tumor markers among BC patients as compared to the other two groups. Clinicopathological characteristics showed significant relation with miRN 27a expression for clinical stage, histological grading, ER receptor and HER-2/neu. The diagnostic efficacy for miR 27a was superior to both tumor markers for early detection of BC especially high-risk BC groups. CONCLUSION Detection of miR 27a expression may serve as a potential sensitive minimally invasive molecular marker for early detection of primary BC.
Collapse
Affiliation(s)
- Menha Swellam
- Biochemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
- High Throughput Molecular and Genetic Laboratory, Center for Excellences for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha F K Zahran
- Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt
| | - Samar Ayman Ghonem
- Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt
| | - Camelia Abdel-Malak
- Biochemistry Division, Faculty of Science, Damietta University, Damietta, Egypt
| |
Collapse
|
47
|
Xing J, Jia J, Cong X, Liu Z, Li Q. N-Isopropylacrylamide-modified polyethylenimine-mediated miR-29a delivery to inhibit the proliferation and migration of lung cancer cells. Colloids Surf B Biointerfaces 2021; 198:111463. [DOI: 10.1016/j.colsurfb.2020.111463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
|
48
|
Yahya EB, Alqadhi AM. Recent trends in cancer therapy: A review on the current state of gene delivery. Life Sci 2021; 269:119087. [PMID: 33476633 DOI: 10.1016/j.lfs.2021.119087] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
Cancer treatment has been always considered one of the most critical and vital themes of clinical issues. Many approaches have been developed, depending on the type and the stage of tumor. Gene therapy has the potential to revolutionize different cancer therapy. With the advent of recent bioinformatics technologies and genetic science, it become possible to identify, diagnose and determine the potential treatment using the technology of gene delivery. Several approaches have been developed and experimented in vitro and vivo for cancer therapy including: naked nucleic acids based therapy, targeting micro RNAs, oncolytic virotherapy, suicide gene based therapy, targeting telomerase, cell mediated gene therapy, and CRISPR/Cas9 based therapy. In this review, we present a straightforward introduction to cancer biology and occurrence, highlighting different viral and non-viral gene delivery systems for gene therapy and critically discussed the current and various strategies for cancer gene therapy.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | | |
Collapse
|
49
|
Shelton M, Anene CA, Nsengimana J, Roberts W, Newton-Bishop J, Boyne JR. The role of CAF derived exosomal microRNAs in the tumour microenvironment of melanoma. Biochim Biophys Acta Rev Cancer 2021; 1875:188456. [PMID: 33153973 DOI: 10.1016/j.bbcan.2020.188456] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Exosomes play a crucial role in the crosstalk between cancer associated fibroblasts (CAFs) and cancer cells, contributing to carcinogenesis and the tumour microenvironment. Recent studies have revealed that CAFs, normal fibroblasts and cancer cells all secrete exosomes that contain miRNA, establishing a cell-cell communication network within the tumour microenvironment. For example, miRNA dysregulation in melanoma has been shown to promote CAF activation via induction of epithelial-mesenchymal transition (EMT), which in turn alters the secretory phenotype of CAFs in the stroma. This review assesses the roles of melanoma exosomal miRNAs in CAF formation and how CAF exosome-mediated feedback signalling to melanoma lead to tumour progression and metastasis. Moreover, efforts to exploit exosomal miRNA-mediated network communication between tumour cells and their microenvironment, and their potential as prognostic biomarkers or novel therapeutic targets in melanoma will also be considered.
Collapse
Affiliation(s)
- M Shelton
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH. United Kingdom
| | - C A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - J Nsengimana
- Population Health Sciences, Institute Faculty of Medical Sciences, Newcastle University, Newcastle NE1 7RU, United Kingdom
| | - W Roberts
- School of Clinical and Applied Science, Leeds Beckett University, Leeds LS1 3HE, United Kingdom
| | | | - J R Boyne
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH. United Kingdom.
| |
Collapse
|
50
|
Li K, Zhou Z, Li J, Xiang R. miR-146b Functions as an Oncogene in Oral Squamous Cell Carcinoma by Targeting HBP1. Technol Cancer Res Treat 2020; 19:1533033820959404. [PMID: 33327874 PMCID: PMC7750896 DOI: 10.1177/1533033820959404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents more than 90% of all oral cancer and is the most common oral threat around the world. In this study, we examined the roles of miR-146b in OSCC cells. The miR-146b expression in OSCC tissues and cell lines was evaluated by quantitative real-time PCR (qRT-PCR). MTT assay was used to investigate the impact of miR-146b on the growth of OSCC cells in vitro. Transwell assay was utilized to analyze the effect of miR-146b on the migration and invasion of OSCC cells. Target prediction and luciferase assay were employed to demonstrate the interaction between miR-146b and HMG-Box Transcription Factor 1 (HBP1). Western blot was carried out to investigate the protein expressions of HBP1 related genes. miR-146b expression was significantly higher in OSCC tissues and cells compared with paired normal tissues and normal oral keratinocyte cells. Inhibition of miR-146b decreased cell proliferation, migration, and invasion of OSCC cells. Further studies found that HBP1 was a direct target of miR-146b. Co-inhibition of HBP1 reversed the suppressive impact of miR-146b inhibition on OSCC cell proliferation, migration, and invasion. In conclusion-ourresults reveal that miR-146b potentially regulates the proliferation, migration, and invasion of OSCC cells through binding and downregulating HBP1 expression in OSCC cells.
Collapse
Affiliation(s)
- Kui Li
- Department of Stomatology, Guangyuan Central Hospital, Guangyuan, Sichuan Province, China
| | - Zheng Zhou
- Department of stomatology, Xiangyang Stomatological Hospital, Xiangyang City, Hubei Province, China
| | - Ju Li
- Department of stomatology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Rui Xiang
- Department of prosthodontics, WuXi Stomatology Hospital, Jiangsu Province, China
| |
Collapse
|