1
|
Zheng HZ, Dai W, Xu MH, Lin YY, Zhu XL, Long H, Tong LL, Xu XG. Intraspecific Differentiation of Styrax japonicus (Styracaceae) as Revealed by Comparative Chloroplast and Evolutionary Analyses. Genes (Basel) 2024; 15:940. [PMID: 39062719 PMCID: PMC11275416 DOI: 10.3390/genes15070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Styrax japonicus is a medicinal and ornamental shrub belonging to the Styracaceae family. To explore the diversity and characteristics of the chloroplast genome of S. japonicus, we conducted sequencing and comparison of the chloroplast genomes of four naturally distributed S. japonicus. The results demonstrated that the four chloroplast genomes (157,914-157,962 bp) exhibited a typical quadripartite structure consisting of a large single copy (LSC) region, a small single copy (SSC) region, and a pair of reverse repeats (IRa and IRb), and the structure was highly conserved. DNA polymorphism analysis revealed that three coding genes (infA, psbK, and rpl33) and five intergene regions (petA-psbJ, trnC-petN, trnD-trnY, trnE-trnT, and trnY-trnE) were identified as mutation hotspots. These genetic fragments have the potential to be utilized as DNA barcodes for future identification purposes. When comparing the boundary genes, a small contraction was observed in the IR region of four S. japonicus. Selection pressure analysis indicated positive selection for ycf1 and ndhD. These findings collectively suggest the adaptive evolution of S. japonicus. The phylogenetic structure revealed conflicting relationships among several S. japonicus, indicating divergent evolutionary paths within this species. Our study concludes by uncovering the genetic traits of the chloroplast genome in the differentiation of S. japonicus variety, offering fresh perspectives on the evolutionary lineage of this species.
Collapse
Affiliation(s)
- Hao-Zhi Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Wei Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Meng-Han Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Yu-Ye Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Xing-Li Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Hui Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Li-Li Tong
- School of Horticulture & Landscape Architecture, Jinling Institute of Technology, Nanjing 210038, China;
| | - Xiao-Gang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| |
Collapse
|
2
|
Ma Y, López‐Pujol J, Yan D, Zhou Z, Deng Z, Niu J. Complete chloroplast genomes of the hemiparasitic genus Cymbaria: Insights into comparative analysis, development of molecular markers, and phylogenetic relationships. Ecol Evol 2024; 14:e11677. [PMID: 38962021 PMCID: PMC11221886 DOI: 10.1002/ece3.11677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
The hemiparasitic tribe Cymbarieae (Orobanchaceae) plays a crucial role in elucidating the initial stage of the transition from autotrophism to heterotrophism. However, the complete chloroplast genome of the type genus Cymbaria has yet to be reported. In addition, the traditional Mongolian medicine Cymbaria daurica is frequently subjected to adulteration or substitution because of the minor morphological differences with Cymbaria mongolica. In this study, the complete chloroplast genomes of the two Cymbaria species were assembled and annotated, and those of other published 52 Orobanchaceae species were retrieved for comparative analyses. We found that the Cymbaria chloroplast genomes are characterized by pseudogenization or loss of stress-relevant genes (ndh) and a unique rbcL-matK inversion. Unlike the high variability observed in holoparasites, Cymbaria and other hemiparasites exhibit high similarity to autotrophs in genome size, guanine-cytosine (GC) content, and intact genes. Notably, four pairs of specific DNA barcodes were developed and validated to distinguish the medicinal herb from its adulterants. Phylogenetic analyses revealed that the genus Cymbaria and the Schwalbea-Siphonostegia clade are grouped into the tribe Cymbarieae, which forms a sister clade to the remaining Orobanchaceae parasitic lineages. Moreover, the diversification of monophyletic Cymbaria occurred during the late Miocene (6.72 Mya) in the Mongol-Chinese steppe region. Our findings provide valuable genetic resources for studying the phylogeny of Orobanchaceae and plant parasitism, and genetic tools to validate the authenticity of the traditional Mongolian medicine "Xinba.".
Collapse
Affiliation(s)
- Yang Ma
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jordi López‐Pujol
- Botanic Institute of Barcelona (IBB)CSIC‐CMCNBBarcelonaSpain
- Escuela de Ciencias AmbientalesUniversidad Espíritu Santo (UEES)SamborondónEcuador
| | - Dongqing Yan
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zhen Zhou
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Zekun Deng
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Jianming Niu
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauHohhotChina
- Inner Mongolia Key Laboratory of Grassland Ecology and the Candidate State Key Laboratory of Ministry of Science and TechnologyHohhotChina
| |
Collapse
|
3
|
Lubna, Asaf S, Khan I, Jan R, Asif S, Bilal S, Kim KM, Al-Harrasi A. Genetic characterization and phylogenetic analysis of the Nigella sativa (black seed) plastome. Sci Rep 2024; 14:14509. [PMID: 38914674 PMCID: PMC11196742 DOI: 10.1038/s41598-024-65073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
In this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N. sativa's plastome with ten other species from various genera in the Ranunculaceae family reveals substantial structural variations. The contraction of the inverted repeat region in N. sativa influences the boundaries of single-copy regions, resulting in a shorter plastome size than other species. When comparing the plastome of N. sativa with those of its related species, significant divergence is observed, particularly except for N. damascena. Among these, the plastome of A. glaucifolium displays the highest average pairwise sequence divergence (0.2851) with N. sativa, followed by A. raddeana (0.2290) and A. coerulea (0.1222). Furthermore, the study identified 12 distinct hotspot regions characterized by elevated Pi values (> 0.1). These regions include trnH-GUG-psbA, matK-trnQ-UUG, psbK-trnR-UCU, atpF-atpI, rpoB-psbD, ycf3-ndhJ, ndhC-cemA, petA-psaJ, trnN-GUU-ndhF, trnV-GAC-rps12, ycf2-trnI-CAU, and ndhA-ycf1. Approximately, 24 tandem and 48 palindromic and forward repeats were detected in N. sativa plastome. The analysis revealed 32 microsatellites with the majority being mononucleotide repeats. In the N. sativa plastome, phenylalanine had the highest number of codons (1982 codons), while alanine was the least common amino acid with 260 codons. A phylogenetic tree, constructed using protein-coding genes, revealed a distinct monophyletic clade comprising N. sativa and N. damascene, closely aligned with the Cimicifugeae tribe and exhibiting robust support. This plastome provides valuable genetic information for precise species identification, phylogenetic resolution, and evolutionary studies of N. sativa.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman.
| | - Ibrahim Khan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, 616, Nizwa, Oman.
| |
Collapse
|
4
|
Gao Y, Chen Z, Li X, Malik K, Li C. Comparative Analyses of Complete Chloroplast Genomes of Microula sikkimensis and Related Species of Boraginaceae. Genes (Basel) 2024; 15:226. [PMID: 38397215 PMCID: PMC10887780 DOI: 10.3390/genes15020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The present study provides a detailed analysis of the chloroplast genome of Microula sikkimensis. The genome consisted of a total of 149,428 bp and four distinct regions, including a large single-copy region (81,329 bp), a small single-copy region (17,261 bp), and an inverted repeat region (25,419 bp). The genome contained 112 genes, including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes, and some exhibited duplication in the inverted repeat region. The chloroplast genome displayed different GC content across regions, with the inverted repeat region exhibiting the highest. Codon usage analysis and the identification of simple sequence repeats (SSRs) offer valuable genetic markers. Comparative analysis with other Boraginaceae species highlighted conservation and diversity in coding and noncoding regions. Phylogenetic analysis placed M. sikkimensis within the Boraginaceae family, revealing its distinct relationship with specific species.
Collapse
Affiliation(s)
- Yunqing Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China;
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730000, China; (Y.G.); (K.M.)
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730000, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Tech Innovation Centre of Western China Grassland Industry, Lanzhou University, Lanzhou 730000, China
- Centre for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Han Y, Feng YL, Wang J, Zhu SS, Jin XJ, Wu ZQ, Zhang YH. Comprehensive Analysis of the Complete Mitochondrial Genome of Rehmannia chingii: An Autotrophic Species in the Orobanchaceae Family. Genes (Basel) 2024; 15:98. [PMID: 38254987 PMCID: PMC10815111 DOI: 10.3390/genes15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Rehmannia chingii is an important medicinal plant with immense value in scientific research. However, its mitochondrial genome (mitogenome) has not yet been characterized. Herein, based on whole-genome Illumina short reads and PacBio HiFi reads, we obtained the complete mitogenome of R. chingii through a de novo assembly strategy. We carried out comparative genomic analyses and found that, in comparison with the plastid genome (plastome) showing a high degree of structural conservation, the R. chingii mitogenome structure is relatively complex, showing an intricate ring structure with 16 connections, owing to five repetitive sequences. The R. chingii mitogenome was 783,161 bp with a GC content of 44.8% and contained 77 genes, comprising 47 protein-coding genes (CDS), 27 tRNA genes, and 3 rRNA genes. We counted 579 RNA editing events in 47 CDS and 12,828 codons in all CDSs of the R. chingii mitogenome. Furthermore, 24 unique sequence transfer fragments were found between the mitogenome and plastome, comprising 8 mitogenome CDS genes and 16 plastome CDS genes, corresponding to 2.39% of the R. chingii mitogenome. Mitogenomes had shorter but more collinear regions, evidenced by a comparison of the organelles of non-parasitic R. chingii, hemiparasitic Pedicularis chinensis, and holoparasitic Aeginetia indica in the Orobanchaceae family. Moreover, from non-parasitic to holoparasitic species, the genome size in the mitogenomes of Orobanchaceae species did not decrease gradually. Instead, the smallest mitogenome was found in the hemiparasitic species P. chinensis, with a size of 225,612 bp. The findings fill the gap in the mitogenome research of the medicinal plant R. chingii, promote the progress of the organelle genome research of the Orobanchaceae family, and provide clues for molecular breeding.
Collapse
Affiliation(s)
- Ying Han
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.H.); (X.-J.J.)
| | - Yan-Lei Feng
- College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China;
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Shan-Shan Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Xin-Jie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.H.); (X.-J.J.)
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Qiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yong-Hua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Y.H.); (X.-J.J.)
- Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
6
|
Tan F, Li W, Feng H, Huang Y, Banerjee AK. Interspecific variation and phylogenetic relationship between mangrove and non-mangrove species of a same family (Meliaceae)-insights from comparative analysis of complete chloroplast genome. PeerJ 2023; 11:e15527. [PMID: 37397021 PMCID: PMC10309054 DOI: 10.7717/peerj.15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
The mahogany family, Meliaceae, contains 58 genera with only one mangrove genus: Xylocarpus. Two of the three species of the genus Xylocarpus are true mangroves (X. granatum and X. moluccensis), and one is a non-mangrove (X. rumphii). In order to resolve the phylogenetic relationship between the mangrove and non-mangrove species, we sequenced chloroplast genomes of these Xylocarpus species along with two non-mangrove species of the Meliaceae family (Carapa guianensis and Swietenia macrophylla) and compared the genome features and variations across the five species. The five Meliaceae species shared 130 genes (85 protein-coding genes, 37 tRNA, and eight rRNA) with identical direction and order, with a few variations in genes and intergenic spacers. The repetitive sequences identified in the rpl22 gene region only occurred in Xylocarpus, while the repetitive sequences in accD were found in X. moluccensis and X. rumphii. The TrnH-GUG and rpl32 gene regions and four non-coding gene regions showed high variabilities between X. granatum and the two non-mangrove species (S. macrophylla and C. guianensis). In addition, among the Xylocarpus species, only two genes (accD and clpP) showed positive selection. Carapa guianensis and S. macrophylla owned unique RNA editing sites. The above genes played an important role in acclimation to different stress factors like heat, low temperature, high UV light, and high salinity. Phylogenetic analysis with 22 species in the order Sapindales supported previous studies, which revealed that the non-mangrove species X. rumphii is closer to X. moluccensis than X. granatum. Overall, our results provided important insights into the variation of genetic structure and adaptation mechanism at interspecific (three Xylocarpus species) and intergeneric (mangrove and non-mangrove genera) levels.
Collapse
Affiliation(s)
- Fengxiao Tan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Weixi Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Feng
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yelin Huang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | | |
Collapse
|
7
|
Kim KR, Park SY, Kim H, Hong JM, Kim SY, Yu JN. Complete Chloroplast Genome Determination of Ranunculus sceleratus from Republic of Korea (Ranunculaceae) and Comparative Chloroplast Genomes of the Members of the Ranunculus Genus. Genes (Basel) 2023; 14:1149. [PMID: 37372329 DOI: 10.3390/genes14061149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Ranunculus sceleratus (family: Ranunculaceae) is a medicinally and economically important plant; however, gaps in taxonomic and species identification limit its practical applicability. This study aimed to sequence the chloroplast genome of R. sceleratus from Republic of Korea. Chloroplast sequences were compared and analyzed among Ranunculus species. The chloroplast genome was assembled from Illumina HiSeq 2500 sequencing raw data. The genome was 156,329 bp and had a typical quadripartite structure comprising a small single-copy region, a large single-copy region, and two inverted repeats. Fifty-three simple sequence repeats were identified in the four quadrant structural regions. The region between the ndhC and trnV-UAC genes could be useful as a genetic marker to distinguish between R. sceleratus populations from Republic of Korea and China. The Ranunculus species formed a single lineage. To differentiate between Ranunculus species, we identified 16 hotspot regions and confirmed their potential using specific barcodes based on phylogenetic tree and BLAST-based analyses. The ndhE, ndhF, rpl23, atpF, rps4, and rpoA genes had a high posterior probability of codon sites in positive selection, while the amino acid site varied between Ranunculus species and other genera. Comparison of the Ranunculus genomes provides useful information regarding species identification and evolution that could guide future phylogenetic analyses.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Heesoo Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong Min Hong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sun-Yu Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| |
Collapse
|
8
|
Zhou L, Chen T, Qiu X, Liu J, Guo S. Evolutionary differences in gene loss and pseudogenization among mycoheterotrophic orchids in the tribe Vanilleae (subfamily Vanilloideae). FRONTIERS IN PLANT SCIENCE 2023; 14:1160446. [PMID: 37035052 PMCID: PMC10073425 DOI: 10.3389/fpls.2023.1160446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Galeola lindleyana is a mycoheterotrophic orchid belonging to the tribe Vanilleae within the subfamily Vanilloideae. METHODS In this study, the G. lindleyana plastome was assembled and annotated, and compared with other Vanilleae orchids, revealing the evolutionary variations between the photoautotrophic and mycoheterotrophic plastomes. RESULTS The G. lindleyana plastome was found to include 32 protein-coding genes, 16 tRNA genes and four ribosomal RNA genes, including 11 pseudogenes. Almost all of the genes encoding photosynthesis have been lost physically or functionally, with the exception of six genes encoding ATP synthase and psaJ in photosystem I. The length of the G. lindleyana plastome has decreased to 100,749 bp, while still retaining its typical quadripartite structure. Compared with the photoautotrophic Vanilloideae plastomes, the inverted repeat (IR) regions and the large single copy (LSC) region of the mycoheterotrophic orchid's plastome have contracted, while the small single copy (SSC) region has expanded significantly. Moreover, the difference in length between the two ndhB genes was found to be 682 bp, with one of them spanning the IRb/SSC boundary. The Vanilloideae plastomes were varied in their structural organization, gene arrangement, and gene content. Even the Cyrtosia septentrionalis plastome which was found to be closest in length to the G. lindleyana plastome, differed in terms of its gene arrangement and gene content. In the LSC region, the psbA, psbK, atpA and psaB retained in the G. lindleyana plastome were missing in the C. septentrionalis plastome, while, the matK, rps16, and atpF were incomplete in the C. septentrionalis plastome, yet still complete in that of the G. lindleyana. Lastly, compared with the G. lindleyana plastome, a 15 kb region located in the SSC area between ndhB-rrn16S was found to be inverted in the C. septentrionalis plastome. These changes in gene content, gene arrangment and gene structure shed light on the polyphyletic evolution of photoautotrophic orchid plastomes to mycoheterotrophic orchid plastomes. DISCUSSION Thus, this study's decoding of the mycoheterotrophic G. lindleyana plastome provides valuable resource data for future research and conservation of endangered orchids.
Collapse
Affiliation(s)
| | | | | | - Jinxin Liu
- *Correspondence: Jinxin Liu, ; Shunxing Guo,
| | | |
Collapse
|
9
|
Qin HH, Cai J, Liu CK, Zhou RX, Price M, Zhou SD, He XJ. The plastid genome of twenty-two species from Ferula, Talassia, and Soranthus: comparative analysis, phylogenetic implications, and adaptive evolution. BMC PLANT BIOLOGY 2023; 23:9. [PMID: 36604614 PMCID: PMC9814190 DOI: 10.1186/s12870-022-04027-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.
Collapse
Affiliation(s)
- Huan-Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jing Cai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Chang-Kun Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Ren-Xiu Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Megan Price
- Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
Qin L, Lu E, Chen K, Bao R, Liang L, Hu X. The complete chloroplast genome of Striga asiatica (L.) Kuntze 1891 ( Orobanchaceae), a hemiparasitic weed from Guangxi China. Mitochondrial DNA B Resour 2023; 8:497-500. [PMID: 37063239 PMCID: PMC10101682 DOI: 10.1080/23802359.2023.2197089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Striga asiatica (L.) Kuntze 1891 is a hemiparasitic plant native to Asia and Africa. It is invasive and causes yield losses in crops such as corn, rice and sorghum. Lack of chloroplast genomic data has limited research into its obligate parasitic lifestyle. In this study, the complete chloroplast genome of Striga asiatica was sequenced and characterized. It is a quadripartite structure with a total length of 191,085 bp and a GC content of 37.86%. It has a large single copy region (LSC) of 51,406 bp, a small single copy region (SSC) of 273 bp, and two copies of the reverse repeat sequence (IRA and IRB) of 69,703 bp. A total of 122 protein-coding genes, 8 rRNA genes, and 44 tRNA genes were annotated in the chloroplast genome. There were a lot of ndh gene deletions and pseudogenizations in this chloroplast genome. For example, ndhA, D, E, H, I, and K were all pseudogenes because they were missing the 5' end start codon. ndhB, C, and J had shorter gene lengths than their homologs, and ndhF and ndhG were missing genes. The phylogenetic tree reveals that all Striga species form a clade, and a bootstrap value of 100 indicates that S. asiatica is closely related to Striga hermonthica and Striga sepera. The comprehensive chloroplast genomic resource of S. asiatica would assist researchers in comprehending hemiparasitic mechanisms, molecular markers, and evolutionary patterns of the genus Striga.
Collapse
Affiliation(s)
- Liu Qin
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, China
| | - Enke Lu
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| | - Kexin Chen
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| | - Rizhen Bao
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| | - Lina Liang
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| | - Xiaohu Hu
- Key Laboratory for Conservation and Utilization of subtropical Bio-Resources Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
- CONTACT Xiaohu Hu Key Laboratory for Conservation and Utilization of subtropical Bio-Resources, Education Department of Guangxi Zhuang Autonomous Region, Yulin Normal University, Yulin, China
| |
Collapse
|
11
|
The Complete Chloroplast Genome Sequence of Laportea bulbifera (Sieb. et Zucc.) Wedd. and Comparative Analysis with Its Congeneric Species. Genes (Basel) 2022; 13:genes13122230. [PMID: 36553498 PMCID: PMC9778553 DOI: 10.3390/genes13122230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Laportea bulbifera (L. bulbifera) is an important medicinal plant of Chinese ethnic minorities, with high economic and medicinal value. However, the medicinal materials of the genus Laportea are prone to be misidentified due to the similar morphological characteristics of the original plants. Thus, it is crucial to discover their molecular marker points and to precisely identify these species for their exploitation and conservation. Here, this study reports detailed information on the complete chloroplast (cp) of L. bulbifera. The result indicates that the cp genome of L. bulbifera of 150,005 bp contains 126 genes, among them, 37 tRNA genes and 81 protein-coding genes. The analysis of repetition demonstrated that palindromic repeats are more frequent. In the meantime, 39 SSRs were also identified, the majority of which were mononucleotides Adenine-Thymine (A-T). Furthermore, we compared L. bulbifera with eight published Laportea plastomes, to explore highly polymorphic molecular markers. The analysis identified four hypervariable regions, including rps16, ycf1, trnC-GCA and trnG-GCC. According to the phylogenetic analysis, L. bulbifera was most closely related to Laportea canadensis (L. canadensis), and the molecular clock analysis speculated that the species originated from 1.8216 Mya. Overall, this study provides a more comprehensive analysis of the evolution of L. bulbifera from the perspective of phylogenetic and intrageneric molecular variation in the genus Laportea, which is useful for providing a scientific basis for further identification, taxonomic, and evolutionary studies of the genus.
Collapse
|
12
|
Lu QX, Chang X, Gao J, Wu X, Wu J, Qi ZC, Wang RH, Yan XL, Li P. Evolutionary Comparison of the Complete Chloroplast Genomes in Convallaria Species and Phylogenetic Study of Asparagaceae. Genes (Basel) 2022; 13:genes13101724. [PMID: 36292609 PMCID: PMC9601677 DOI: 10.3390/genes13101724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Convallaria (Asparagaceae) comprises three herbaceous perennial species that are widely distributed in the understory of temperate deciduous forests in the Northern Hemisphere. Although Convallaria species have high medicinal and horticultural values, studies related to the phylogenetic analysis of this genus are few. In the present study, we assembled and reported five complete chloroplast (cp) sequences of three Convallaria species (two of C. keiskei Miq., two of C. majalis L., and one of C. montana Raf.) using Illumina paired-end sequencing data. The cp genomes were highly similar in overall size (161,365–162,972 bp), and all consisted of a pair of inverted repeats (IR) regions (29,140–29,486 bp) separated by a large single-copy (LSC) (85,183–85,521 bp) and a small single-copy (SSC) region (17,877–18,502 bp). Each cp genome contained the same 113 unique genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. Gene content, gene order, AT content and IR/SC boundary structure were nearly identical among all of the Convallaria cp genomes. However, their lengths varied due to contraction/expansion at the IR/LSC borders. Simple sequence repeat (SSR) analyses indicated that the richest SSRs are A/T mononucleotides. Three highly variable regions (petA-psbJ, psbI-trnS and ccsA-ndhD) were identified as valuable molecular markers. Phylogenetic analysis of the family Asparagaceae using 48 cp genome sequences supported the monophyly of Convallaria, which formed a sister clade to the genus Rohdea. Our study provides a robust phylogeny of the Asparagaceae family. The complete cp genome sequences will contribute to further studies in the molecular identification, genetic diversity, and phylogeny of Convallaria.
Collapse
Affiliation(s)
- Qi-Xiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jing Wu
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe-Chen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing 312366, China
- Correspondence: (Z.-C.Q.); (R.-H.W.)
| | - Rui-Hong Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (Z.-C.Q.); (R.-H.W.)
| | - Xiao-Ling Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Pan Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Zhang C, Lin Q, Zhang J, Huang Z, Nan P, Li L, Song Z, Zhang W, Yang J, Wang Y. Comparing complete organelle genomes of holoparasitic Christisonia kwangtungensis (Orabanchaceae) with its close relatives: how different are they? BMC PLANT BIOLOGY 2022; 22:444. [PMID: 36114450 PMCID: PMC9482287 DOI: 10.1186/s12870-022-03814-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Orobanchaceae is the only flowering plant family with species from free-living nonparasite, hemi-parasite to holoparasite, making it an ideal system for studying the evolution of parasitism. However, both plastid and mitochondrial genome have been sequenced in only few parasitic species in Orobanchaceae. Therefore, further comparative study is wanted to investigate the impact of holoparasitism on organelle genomes evolution between close relatives. Here, we sequenced organelle genomes and transcriptome of holoparasitic Christisonia kwangtungensis and compared it with its closely related groups to analyze similarities and differences in adaption strategies to the holoparasitic lifestyle. RESULTS The plastid genome of C. kwangtungensis has undergone extensive pseudogenization and gene loss, but its reduction pattern is different from that of Aeginetia indica, the close relative of C. kwangtungensis. Similarly, the gene expression detected in the photosynthetic pathway of these two genera is different. In Orobanchaceae, holoparasites in Buchnereae have more plastid gene loss than Rhinantheae, which reflects their longer history of holoparasitism. Distinct from severe degradation of the plastome, protein-coding genes in the mitochondrial genome of C. kwangtungensis are relatively conserved. Interestingly, besides intracellularly transferred genes which are still retained in its plastid genome, we also found several horizontally transferred genes of plastid origin from diverse donors other than their current hosts in the mitochondrial genome, which probably indicate historical hosts. CONCLUSION Even though C. kwangtungensis and A. indica are closely related and share severe degradation of plastome, they adapt organelle genomes to the parasitic lifestyle in different ways. The difference between their gene loss and gene expression shows they ultimately lost photosynthetic genes but through different pathways. Our study exemplifies how parasites part company after achieving holoparasitism.
Collapse
Affiliation(s)
- Chi Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Qianshi Lin
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 2Z9 Canada
| | - Jiayin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Zihao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Peng Nan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, College of Science, Tibet University, Lhasa, 850012 China
| |
Collapse
|
14
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haimei Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wanqi Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qiaoqiao Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
15
|
Francisconi AF, Cauz-Santos LA, Morales Marroquín JA, van den Berg C, Alves-Pereira A, Delmondes de Alencar L, Picanço-Rodrigues D, Zanello CA, Ferreira Costa M, Gomes Lopes MT, Veasey EA, Zucchi MI. Complete chloroplast genomes and phylogeny in three Euterpe palms (E. edulis, E. oleracea and E. precatoria) from different Brazilian biomes. PLoS One 2022; 17:e0266304. [PMID: 35901127 PMCID: PMC9333295 DOI: 10.1371/journal.pone.0266304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The Brazilian palm fruits and hearts-of-palm of Euterpe edulis, E. oleracea and E. precatoria are an important source for agro-industrial production, due to overexploitation, conservation strategies are required to maintain genetic diversity. Chloroplast genomes have conserved sequences, which are useful to explore evolutionary questions. Besides the plastid DNA, genome skimming allows the identification of other genomic resources, such as single nucleotide polymorphisms (SNPs), providing information about the genetic diversity of species. We sequenced the chloroplast genome and identified gene content in the three Euterpe species. We performed comparative analyses, described the polymorphisms among the chloroplast genome sequences (repeats, indels and SNPs) and performed a phylogenomic inference based on 55 palm species chloroplast genomes. Finally, using the remaining data from genome skimming, the nuclear and mitochondrial reads, we identified SNPs and estimated the genetic diversity among these Euterpe species. The Euterpe chloroplast genomes varied from 159,232 to 159,275 bp and presented a conserved quadripartite structure with high synteny with other palms. In a pairwise comparison, we found a greater number of insertions/deletions (indels = 93 and 103) and SNPs (284 and 254) between E. edulis/E. oleracea and E. edulis/E. precatoria when compared to E. oleracea/E. precatoria (58 indels and 114 SNPs). Also, the phylogeny indicated a closer relationship between E. oleracea/E. precatoria. The nuclear and mitochondrial genome analyses identified 1,077 SNPs and high divergence among species (FST = 0.77), especially between E. edulis and E. precatoria (FST = 0.86). These results showed that, despite the few structural differences among the chloroplast genomes of these Euterpe palms, a differentiation between E. edulis and the other Euterpe species can be identified by point mutations. This study not only brings new knowledge about the evolution of Euterpe chloroplast genomes, but also these new resources open the way for future phylogenomic inferences and comparative analyses within Arecaceae.
Collapse
Affiliation(s)
- Ana Flávia Francisconi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail: (MIZ); (AFF)
| | | | | | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
- Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brasil
| | - Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Luciano Delmondes de Alencar
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | | | - Cesar Augusto Zanello
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Marcones Ferreira Costa
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, Floriano, Piauí, Brasil
| | - Maria Teresa Gomes Lopes
- Departamento de Produção Animal e Vegetal, Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brasil
| | - Maria Imaculada Zucchi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, São Paulo, Brasil
- * E-mail: (MIZ); (AFF)
| |
Collapse
|
16
|
Cay SB, Cinar YU, Kuralay SC, Inal B, Zararsiz G, Ciftci A, Mollman R, Obut O, Eldem V, Bakir Y, Erol O. Genome skimming approach reveals the gene arrangements in the chloroplast genomes of the highly endangered Crocus L. species: Crocus istanbulensis (B.Mathew) Rukšāns. PLoS One 2022; 17:e0269747. [PMID: 35704623 PMCID: PMC9200356 DOI: 10.1371/journal.pone.0269747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Crocus istanbulensis (B.Mathew) Rukšāns is one of the most endangered Crocus species in the world and has an extremely limited distribution range in Istanbul. Our recent field work indicates that no more than one hundred individuals remain in the wild. In the present study, we used genome skimming to determine the complete chloroplast (cp) genome sequences of six C. istanbulensis individuals collected from the locus classicus. The cp genome of C. istanbulensis has 151,199 base pairs (bp), with a large single-copy (LSC) (81,197 bp), small single copy (SSC) (17,524 bp) and two inverted repeat (IR) regions of 26,236 bp each. The cp genome contains 132 genes, of which 86 are protein-coding (PCGs), 8 are rRNA and 38 are tRNA genes. Most of the repeats are found in intergenic spacers of Crocus species. Mononucleotide repeats were most abundant, accounting for over 80% of total repeats. The cp genome contained four palindrome repeats and one forward repeat. Comparative analyses among other Iridaceae species identified one inversion in the terminal positions of LSC region and three different gene (psbA, rps3 and rpl22) arrangements in C. istanbulensis that were not reported previously. To measure selective pressure in the exons of chloroplast coding sequences, we performed a sequence analysis of plastome-encoded genes. A total of seven genes (accD, rpoC2, psbK, rps12, ccsA, clpP and ycf2) were detected under positive selection in the cp genome. Alignment-free sequence comparison showed an extremely low sequence diversity across naturally occurring C. istanbulensis specimens. All six sequenced individuals shared the same cp haplotype. In summary, this study will aid further research on the molecular evolution and development of ex situ conservation strategies of C. istanbulensis.
Collapse
Affiliation(s)
- Selahattin Baris Cay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Yusuf Ulas Cinar
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Selim Can Kuralay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Siirt, Siirt, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Almila Ciftci
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Rachel Mollman
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Onur Obut
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
- * E-mail:
| | - Yakup Bakir
- Department of Plant Bioactive Metabolites, ACTV Biotechnology, Inc., Istanbul, Turkey
| | - Osman Erol
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Feng Y, Gao XF, Zhang JY, Jiang LS, Li X, Deng HN, Liao M, Xu B. Complete Chloroplast Genomes Provide Insights Into Evolution and Phylogeny of Campylotropis (Fabaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:895543. [PMID: 35665174 PMCID: PMC9158520 DOI: 10.3389/fpls.2022.895543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/14/2022] [Indexed: 06/03/2023]
Abstract
The genus Campylotropis Bunge (Desmodieae, Papilionoideae) comprises about 37 species distributed in temperate and tropical Asia. Despite the great potential in soil conservation, horticulture, and medicine usage, little is known about the evolutionary history and phylogenetic relationships of Campylotropis due to insufficient genetic resources. Here, we sequenced and assembled 21 complete chloroplast genomes of Campylotropis species. In combination with the previously published chloroplast genomes of C. macrocarpa and closely related species, we conducted comparative genomics and phylogenomic analysis on these data. Comparative analysis of the genome size, structure, expansion and contraction of inverted repeat (IR) boundaries, number of genes, GC content, and pattern of simple sequence repeats (SSRs) revealed high similarities among the Campylotropis chloroplast genomes. The activities of long sequence repeats contributed to the variation in genome size and gene content in Campylotropis chloroplast genomes. The Campylotropis chloroplast genomes showed moderate sequence variation, and 13 highly variable regions were identified for species identification and further phylogenetic studies. We also reported one more case of matK pseudogene in the legume family. The phylogenetic analysis confirmed the monophyly of Campylotropis and the sister relationship between Lespedeza and Kummerowia, the latter two genera were then sister to Campylotropis. The intrageneric relationships of Campylotropis based on genomic scale data were firstly reported in this study. The two positively selected genes (atpF and rps19) and eight fast-evolving genes identified in this study may help us to understand the adaptation of Campylotropis species. Overall, this study enhances our understanding of the chloroplast genome evolution and phylogenetic relationships of Campylotropis.
Collapse
Affiliation(s)
- Yu Feng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xin-Fen Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Yi Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li-Sha Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Heng-Ning Deng
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Min Liao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Xu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| |
Collapse
|
18
|
Comparative Plastome Analysis of Three Amaryllidaceae Subfamilies: Insights into Variation of Genome Characteristics, Phylogeny, and Adaptive Evolution. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3909596. [PMID: 35372568 PMCID: PMC8970886 DOI: 10.1155/2022/3909596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
In the latest APG IV classification system, Amaryllidaceae is placed under the order of Asparagus and includes three subfamilies: Agapanthoideae, Allioideae, and Amaryllidoideae, which include many economically important crops. With the development of molecular phylogeny, research on the phylogenetic relationship of Amaryllidaceae has become more convenient. However, the current comparative analysis of Amaryllidaceae at the whole chloroplast genome level is still lacking. In this study, we sequenced 18 Allioideae plastomes and combined them with publicly available data (a total of 41 plastomes), including 21 Allioideae species, 1 Agapanthoideae species, 14 Amaryllidoideae species, and 5 Asparagaceae species. Comparative analyses were performed including basic characteristics of genome structure, codon usage, repeat elements, IR boundary, and genome divergence. Phylogenetic relationships were detected using single-copy genes (SCGs) and ribosomal internal transcribed spacer sequences (ITS), and the branch-site model was also employed to conduct the positive selection analysis. The results indicated that all Amaryllidaceae species showed a highly conserved typical tetrad structure. The GC content and five codon usage indexes in Allioideae species were lower than those in the other two subfamilies. Comparison analysis of Bayesian and ML phylogeny based on SCGs strongly supports the monophyly of three subfamilies and the sisterhood among them. Besides, positively selected genes (PSGs) were detected in each of the three subfamilies. Almost all genes with significant posterior probabilities for codon sites were associated with self-replication and photosynthesis. Our study investigated the three subfamilies of Amaryllidaceae at the whole chloroplast genome level and suggested the key role of selective pressure in the adaptation and evolution of Amaryllidaceae.
Collapse
|
19
|
Camargo Tavares JC, Achakkagari SR, Archambault A, Stromvik MV. The plastome of the arctic Oxytropis arctobia (Fabaceae) has large differences compared with that of O. splendens and those of related species. Genome 2022; 65:301-313. [PMID: 35245153 DOI: 10.1139/gen-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anatomical and physiological specializations for plant adaptation to harsh climates are the results of molecular mechanisms that can be nuclear or organellar encoded. In this study, the complete plastomes of an arctic species, Oxytropis arctobia Bunge (Fabaceae,) and a closely related temperate species, O. splendens Douglas ex Hook., were assembled, annotated and analyzed to search for differences that might help explain their adaptation to different environments. Consistently with the previously sequenced O. bicolor DC. and O. glabra plastomes, the O. arctobia and O. splendens plastomes both have the common features of the inverted repeat-lacking clade (IRLC), as well as the atpF intron loss, which is unique to the genus. However, significant differences distinguishes the O. arctobia from O. splendens and other closely related plastomes (Oxytropis spp. and Astragalus spp.), including a 3 kb inversion, two large insertions (>1 kb), significant modifications of the accD gene, and an overall larger size.
Collapse
Affiliation(s)
| | | | | | - Martina V Stromvik
- McGill University, 5620, Department of Plant Science, Montreal, Quebec, Canada;
| |
Collapse
|
20
|
Shen J, Li X, Chen X, Huang X, Jin S. The Complete Chloroplast Genome of Carya cathayensis and Phylogenetic Analysis. Genes (Basel) 2022; 13:369. [PMID: 35205413 PMCID: PMC8871582 DOI: 10.3390/genes13020369] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Carya cathayensis, an important economic nut tree, is narrowly endemic to eastern China in the wild. The complete cp genome of C. cathayensis was sequenced with NGS using an Illumina HiSeq2500, analyzed, and compared to its closely related species. The cp genome is 160,825 bp in length with an overall GC content of 36.13%, presenting a quadripartite structure comprising a large single copy (LSC; 90,115 bp), a small single copy (SSC; 18,760 bp), and a pair of inverted repeats (IRs; 25,975 bp). The genome contains 129 genes, including 84 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. A total of 252 simple sequence repeats (SSRs) and 55 long repeats were identified. Gene selective pressure analysis showed that seven genes (rps15, rpoA, rpoB, petD, ccsA, atpI, and ycf1-2) were possibly under positive selection compared with the other Juglandaceae species. Phylogenetic relationships of 46 species inferred that Juglandaceae is monophyletic, and that C. cathayensis is sister to Carya kweichowensis and Carya illinoinensis. The genome comparison revealed that there is a wide variability of the junction sites, and there is higher divergence in the noncoding regions than in coding regions. These results suggest a great potential in phylogenetic research. The newly characterized cp genome of C. cathayensis provides valuable information for further studies of this economically important species.
Collapse
Affiliation(s)
- Jianshuang Shen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.C.); (X.H.)
| | - Xueqin Li
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.C.); (X.H.)
| | - Xia Chen
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.C.); (X.H.)
| | - Xiaoling Huang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.C.); (X.H.)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (J.S.); (X.L.); (X.C.); (X.H.)
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
21
|
Xun LL, Ding FB, Chen C, Liu PL, Lu Y, Zhou YF, Zhang YW, Li SF. The complete chloroplast genome of Carex agglomerata C. B. Clarke (Cyperaceae), an endemic species from China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:3117-3118. [PMID: 34651074 PMCID: PMC8510598 DOI: 10.1080/23802359.2021.1984326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carex agglomerata C. B. Clarke is a sedge with excellent ornamental characters, it is an important ecosystem stabilizer. Here we report the complete chloroplast genome of C. agglomerata to provide a foundation for further phylogenetic studies on the Cyperaceae. The chloroplast (cp) genome is 184,157 bp in size and consists of a large single-copy (LSC) region 106,654 bp in length, a small single-copy (SSC) region of 36,099 bp, two inverted repeats (IR) regions each 20,702 bp. The total GC content of the cp genome is 33.9% with the LSC, SSC, and IR regions 32, 32.5, and 42.9%, respectively. The cp genome contains 128 genes, including 80 protein-coding, 40 tRNA, and eight rRNA genes. The phylogenetic analysis showed C. agglomerata is in a clade with Carex neurocarpa Maxim and Carex siderosticta Hance. This study provides a basis for further phylogenetic studies of Carex.
Collapse
Affiliation(s)
- Lu-Lu Xun
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, Shaanxi, China
| | - Fang-Bin Ding
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, Shaanxi, China
| | - Chen Chen
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, Shaanxi, China
| | - Pei-Liang Liu
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yuan Lu
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, Shaanxi, China
| | - Ya-Fu Zhou
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, Shaanxi, China
| | - Ya-Wei Zhang
- Baoji Animal Husbandry and Veterinary Center, Baoji, Shaanxi, China
| | - Si-Feng Li
- Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an, Shaanxi, China
| |
Collapse
|
22
|
Scobeyeva VA, Artyushin IV, Krinitsina AA, Nikitin PA, Antipin MI, Kuptsov SV, Belenikin MS, Omelchenko DO, Logacheva MD, Konorov EA, Samoilov AE, Speranskaya AS. Gene Loss, Pseudogenization in Plastomes of Genus Allium ( Amaryllidaceae), and Putative Selection for Adaptation to Environmental Conditions. Front Genet 2021; 12:674783. [PMID: 34306019 PMCID: PMC8296844 DOI: 10.3389/fgene.2021.674783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Amaryllidaceae is a large family with more than 1,600 species, belonging to 75 genera. The largest genus—Allium—is vast, comprising about a thousand species. Allium species (as well as other members of the Amaryllidaceae) are widespread and diversified, they are adapted to a wide range of habitats from shady forests to open habitats like meadows, steppes, and deserts. The genes present in chloroplast genomes (plastomes) play fundamental roles for the photosynthetic plants. Plastome traits could thus be associated with geophysical abiotic characteristics of habitats. Most chloroplast genes are highly conserved and are used as phylogenetic markers for many families of vascular plants. Nevertheless, some studies revealed signatures of positive selection in chloroplast genes of many plant families including Amaryllidaceae. We have sequenced plastomes of the following nine Allium (tribe Allieae of Allioideae) species: A. zebdanense, A. moly, A. victorialis, A. macleanii, A. nutans, A. obliquum, A. schoenoprasum, A. pskemense, A. platyspathum, A. fistulosum, A. semenovii, and Nothoscordum bivalve (tribe Leucocoryneae of Allioideae). We compared our data with previously published plastomes and provided our interpretation of Allium plastome genes’ annotations because we found some noteworthy inconsistencies with annotations previously reported. For Allium species we estimated the integral evolutionary rate, counted SNPs and indels per nucleotide position as well as compared pseudogenization events in species of three main phylogenetic lines of genus Allium to estimate whether they are potentially important for plant physiology or just follow the phylogenetic pattern. During examination of the 38 species of Allium and the 11 of other Amaryllidaceae species we found that rps16, rps2, infA, ccsA genes have lost their functionality multiple times in different species (regularly evolutionary events), while the pseudogenization of other genes was stochastic events. We found that the “normal” or “pseudo” state of rps16, rps2, infA, ccsA genes correlates well with the evolutionary line of genus the species belongs to. The positive selection in various NADH dehydrogenase (ndh) genes as well as in matK, accD, and some others were found. Taking into account known mechanisms of coping with excessive light by cyclic electron transport, we can hypothesize that adaptive evolution in genes, coding subunits of NADH-plastoquinone oxidoreductase could be driven by abiotic factors of alpine habitats, especially by intensive light and UV radiation.
Collapse
Affiliation(s)
- Victoria A Scobeyeva
- Department of Evolution, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya V Artyushin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya A Krinitsina
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A Nikitin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim I Antipin
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei V Kuptsov
- Botanical Garden, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim S Belenikin
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Denis O Omelchenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, Moscow, Russia
| | - Maria D Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Evgenii A Konorov
- Laboratory of Animal Genetics, Vavilov Institute of General Genetics, Russian Academy of Science (RAS), Moscow, Russia
| | - Andrey E Samoilov
- Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| | - Anna S Speranskaya
- Department of Higher Plants, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Group of Genomics and Postgenomic Technologies, Central Research Institute of Epidemiology, Moscow, Russia
| |
Collapse
|
23
|
Ma L, Dong C, Song C, Wang X, Zheng X, Niu Y, Chen S, Feng W. De novo genome assembly of the potent medicinal plant Rehmannia glutinosa using nanopore technology. Comput Struct Biotechnol J 2021; 19:3954-3963. [PMID: 34377362 PMCID: PMC8318827 DOI: 10.1016/j.csbj.2021.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 01/16/2023] Open
Abstract
Rehmannia glutinosa is a potent medicinal plant with a significant importance in traditional Chinese medicine. Its root is enriched with various bioactive molecules mainly iridoids, possessing important pharmaceutical properties. However, the molecular biology and evolution of R. glutinosa have been largely unexplored. Here, we report a reference genome of R. glutinosa using Nanopore technology, Illumina and Hi-C sequencing. The assembly genome is 2.49 Gb long with a scaffold N50 length of 70 Mb and high heterozygosity (2%). Since R. glutinosa is an autotetraploid (4n = 56), the difference between each set of chromosomes is very small, and it is difficult to distinguish the two sets of chromosomes using Hi-C. Hence, only one set of the genome size was mounted to the chromosome level. Scaffolds covering 52.61% of the assembled genome were anchored on 14 pseudochromosomes. Over 67% of the genome consists of repetitive sequences dominated by Copia long terminal repeats and 48,475 protein-coding genes were predicted. Phylogenetic analysis corroborates the placement of R. glutinosa in the Orobanchaceae family. Our results indicated an independent and very recent whole genome duplication event that occurred 3.64 million year ago in the R. glutinosa lineage. Comparative genomics analysis demonstrated expansion of the UDP-dependent glycosyltransferases and terpene synthase gene families, known to be involved in terpenoid biosynthesis and diversification. Furthermore, the molecular biosynthetic pathway of iridoids has been clarified in this work. Collectively, the generated reference genome of R. glutinosa will facilitate discovery and development of important pharmacological compounds.
Collapse
Affiliation(s)
- Ligang Ma
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Chengming Dong
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Chi Song
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaolan Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, China
| | - Yan Niu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, China
| |
Collapse
|
24
|
Wei X, Li X, Chen T, Chen Z, Jin Y, Malik K, Li C. Complete chloroplast genomes of Achnatherum inebrians and comparative analyses with related species from Poaceae. FEBS Open Bio 2021; 11:1704-1718. [PMID: 33932143 PMCID: PMC8167873 DOI: 10.1002/2211-5463.13170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
This article reports the complete chloroplast genome of Achnatherum inebrians, a poisonous herb that is widely distributed in the rangelands of Northern China. The genome is 137 714 bp in total and consists of a large single‐copy (81 758 bp) region and small single‐copy (12 682 bp) region separated by a pair of inverted repeats (21 637 bp). The genome contains 130 genes, including 84 protein‐coding genes, 38 tRNA genes and 8 ribosomal RNA genes, and the guanine + cytosine content is 36.17%. We subsequently performed comparative analysis of complete genomes from A. inebrians and other Poaceae‐related species from GenBank. Thirty‐eight simple sequence repeats were identified, further demonstrating rapid evolution in Poaceae. Finally, the phylogenetic trees of 37 species of Poaceae and 2 species of Amaranthaceae were constructed by using maximum likelihood and Bayesian inference methods, based on the genes of the complete chloroplast genome. We identified hotspots that can be used as molecular markers and barcodes for phylogenetic analysis, as well as for species identification. Phylogenetic analysis indicated that A. inebrians is a member of the genus Stipa rather than Achnatherum.
Collapse
Affiliation(s)
- Xuekai Wei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Xiuzhang Li
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining, China
| | - Taixiang Chen
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Zhenjiang Chen
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Yuanyuan Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Kamran Malik
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, China
| |
Collapse
|
25
|
Sun J, Sun M, Wang D, Xu K, Hu R, Zhang Y. Plastomes of two Rehmannia species: comparative genomic and phylogenetic analyses. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:753-754. [PMID: 33763569 PMCID: PMC7954473 DOI: 10.1080/23802359.2021.1878953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Phylogenetic relationships within Rehmannia have not been well solved. Here, we assembled and reported two new complete plastomes of R. glutinosa and R. chingii by de novo assembly. The complete plastomes of R. glutinosa and R. chingii were 153,797 and 153,328 bp in length, respectively. These two plastomes had 98.8% sequence identity and a total of 401 SNPs, 137 indels and 6 inversions. They were highly conserved in GC content (43.1%), gene order, and gene content (133 genes), including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogenomic analysis confirmed the monophyly of Rehmannieae and supported R. chingii as the basal taxon of Rehmannia.
Collapse
Affiliation(s)
- Jing Sun
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Mengqi Sun
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Danchou Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Kailun Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Renyong Hu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China.,National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, China
| | - Yonghua Zhang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China.,National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, China
| |
Collapse
|
26
|
Yang H, Sasaki Y, Lian C, Wang L, Zhang F, Zhang X, Chen S. The complete chloroplast genome sequence of Rehmannia glutinosa (Gaertn.) DC. Wild. ( Rehmannia). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:769-770. [PMID: 33763573 PMCID: PMC7954418 DOI: 10.1080/23802359.2021.1881837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we constructed and annotated a complete circular chloroplast genome of wild R. glutinosa. The chloroplast genome of wild R. glutinosa is 153,678 bp in length, including two inverted repeat (IR) regions of 25,759 bp, separated by a large single copy (LSC) region of 84,544 bp and a small single copy (SSC) region of 17,616 bp. The genome contains 149 genes, including 104 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Neighbor-joining method phylogenomic analysis showed that wild R. glutinosa formed a monophyletic group, and was sister to other groups of R. glutinosa.
Collapse
Affiliation(s)
- Hao Yang
- Pharmacy College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yohei Sasaki
- College of Health and Medicine, Kanazawa University, Kanazawa, Japan
| | - Conglong Lian
- Pharmacy College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Lili Wang
- Pharmacy College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Fei Zhang
- Pharmacy College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xueyu Zhang
- Pharmacy College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Suiqing Chen
- Pharmacy College of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
27
|
Xia Z, Li C, Hu S, Chen S, Xu Y. The complete chloroplast genome of Chinese medicine cultivar species of Rehmannia glutinosa (Orobanchaceae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:290-292. [PMID: 33659651 PMCID: PMC7872587 DOI: 10.1080/23802359.2020.1863163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cultivar of Rehmannia glutinosa (Orobanchaceae) is one of the four famous ‘Huai’ medicine cultivar species endemic to Henan Province in central China. In this study, we report the complete chloroplast (cp) genome of R. glutinosa cultivar Wen 85-5. The cp genome of R. glutinosa cultivar Wen 85-5 was 155,499 bp in length and contained a pair of inverted repeat regions (IR, 25,748 bp) separated by a small single copy (SSC, 17,600 bp) and a large single copy (LSC, 84,403 bp) region. Chloroplast genome sequences of two cultivar of R. glutinosa (Wen 85-5 and Jiwang 1) are identical to each other. The sequence of cp genome of R. glutinosa cultivar Wen 85-5 was 99.70% similar to the wild population of R. glutinosa. Some distinctive insert and deletion in R. glutinosa cultivar Wen 85-5 by comparison with wild population were reported. The maximum-likelihood phylogenetic analysis revealed that R. glutinosa cultivar Wen 85-5.was sister to the R. glutinosa cultivar Jiwang 1 (BS = 100%), and further clustering with R. glutinosa (BS = 100%). This result will be helpful for the conservation and breeding programs of the cultivar of R. glutinosa.
Collapse
Affiliation(s)
- Zhi Xia
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Cuicui Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Saiwen Hu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Sheng Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yuan Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
28
|
Li L, Hu Y, Wu L, Chen R, Luo S. The complete chloroplast genome sequence of Camellia sinensis cv. Dahongpao: a most famous variety of Wuyi tea (Synonym: Thea bohea L.). Mitochondrial DNA B Resour 2021; 6:3-5. [PMID: 33490583 PMCID: PMC7801067 DOI: 10.1080/23802359.2020.1844093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Here, combining PacBio and Illumina sequencing data, we reported the complete chloroplast genome of the first Wuyi tea (Bohea), Camellia sinensis cv. Dahongpao (DHP) with very high economic value. The chloroplast genome was 157,077 bp in length, with a large single copy (LSC) region of 86,633 bp, a small single-copy (SSC) region of 18,282 bp, separated by two inverted repeat (IR) regions of 26,081 bp each. It contained a total of 137 genes, with an overall GC content of 37.29%. The phylogenetic analysis showed that DHP was sister to C. sinensis cv. Longjing.
Collapse
Affiliation(s)
- Li Li
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Yunfei Hu
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Linhui Wu
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Rongbing Chen
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | | |
Collapse
|
29
|
Yang Q, Fu GF, Wu ZQ, Li L, Zhao JL, Li QJ. Chloroplast Genome Evolution in Four Montane Zingiberaceae Taxa in China. FRONTIERS IN PLANT SCIENCE 2021; 12:774482. [PMID: 35082807 PMCID: PMC8784687 DOI: 10.3389/fpls.2021.774482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878-163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.
Collapse
Affiliation(s)
- Qian Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Gao-Fei Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Qiang Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- *Correspondence: Jian-Li Zhao,
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
30
|
Wang W, Li ZJ, Zhang YL, Xu XQ. Current Situation, Global Potential Distribution and Evolution of Six Almond Species in China. FRONTIERS IN PLANT SCIENCE 2021; 12:619883. [PMID: 33968095 PMCID: PMC8102835 DOI: 10.3389/fpls.2021.619883] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/29/2021] [Indexed: 05/05/2023]
Abstract
Almond resources are widely distributed in Central Asia; its distribution has not been studied in detail. Based on the first-hand data of field investigation, climate variables and chloroplast genome data, climatic characteristics of six almond species in China were analyzed, and the global distribution and evolutionary relationship were predicted. The six almond species are concentrated between 27.99°N and 60.47°N. Different almond species have different climatic characteristics. The climate of the almond species distribution has its characteristics, and the distribution of almond species was consistent with the fatty acid cluster analysis. All the test AUC (area under curve) values of MaxEnt model were larger than 0.92. The seven continents except for Antarctica contain suitable areas for the six almond species, and such areas account for approximately 8.08% of the total area of these six continents. Based on the analysis of chloroplast DNA and the distribution characteristics, the evolutionary relationship of the six almond species was proposed, which indicated that China was not the origin of almond. In this study, the construction of a phylogenetic tree based on the chloroplast genome and the characteristics of geographical distribution were constructed. The six almond species in China may have evolved from "Unknown almond species" through two routes. The MaxEnt model for each almond species provided satisfactory results. The prediction results can provide the important reference for Prunus dulcis cultivation, wild almond species development and protection.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
| | - Zhen-Jian Li
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
| | - Ying-Long Zhang
- Shenmu County Association of Ecological Protection and Construction, Shenmu, China
| | - Xin-Qiao Xu
- Key Laboratory of Silviculture of the State Forestry Administration, The Institute of Forestry, The Chinese Academy of Forestry, Beijing, China
- *Correspondence: Xin-Qiao Xu,
| |
Collapse
|
31
|
Zhang R, Xu B, Li J, Zhao Z, Han J, Lei Y, Yang Q, Peng F, Liu ZL. Transit From Autotrophism to Heterotrophism: Sequence Variation and Evolution of Chloroplast Genomes in Orobanchaceae Species. Front Genet 2020; 11:542017. [PMID: 33133143 PMCID: PMC7573133 DOI: 10.3389/fgene.2020.542017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/07/2020] [Indexed: 01/15/2023] Open
Abstract
The family Orobanchaceae including autotrophic, hemiparasitic, and holoparasitic species, is becoming a key taxa to study the evolution of chloroplast genomes in different lifestyles. But the early evolutionary trajectory in the transit from autotrophism to hemiparasitism still maintains unclear for the inadequate sampling. In this study, we compared 50 complete chloroplast genomes in Orobanchaceae, containing four newly sequenced plastomes from hemiparasitic Pedicularis, to elucidate the sequence variation patterns in the evolution of plastomes. Contrasted to the sequence and structural hypervariabilities in holoparasites, hemiparasitic plastomes exhibited high similarity to those of autotrophs in gene and GC contents. They are generally characterized with functional or physical loss of ndh/tRNA genes and the inverted small-single-copy region. Gene losses in Orobanchaceae were lineage-specific and convergent, possibly related to structural reconfiguration and expansion/contraction of the inverted region. Pseudogenization of ndh genes was unique in hemiparasites. At least in Pedicularis, the ndhF gene might be most sensitive to the environmental factors and easily pseudogenized when autotrophs transit to hemiparasites. And the changes in gene contents and structural variation potentially deeply rely on the feeding type. Selective pressure, together with mutational bias, was the dominant factor of shaping the codon usage patterns. The relaxed selective constraint, potentially with genome-based GC conversion (gBGC) and preferential codon usage, drive the fluctuation of GC contents among taxa with different lifestyles. Phylogenetic analysis in Orobanchaceae supported that parasitic species were single-originated while holoparasites were multiple-originated. Overall, the comparison of plastomes provided a good opportunity to understand the evolution process in Orobanchaceae with different lifestyles.
Collapse
Affiliation(s)
- Ruiting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Bei Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jianfang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Zhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jie Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Yunjing Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Fangfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
32
|
Androsiuk P, Jastrzębski JP, Paukszto Ł, Makowczenko K, Okorski A, Pszczółkowska A, Chwedorzewska KJ, Górecki R, Giełwanowska I. Evolutionary dynamics of the chloroplast genome sequences of six Colobanthus species. Sci Rep 2020; 10:11522. [PMID: 32661280 PMCID: PMC7359349 DOI: 10.1038/s41598-020-68563-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/25/2020] [Indexed: 11/08/2022] Open
Abstract
The complete plastome sequences of six species were sequenced to better understand the evolutionary relationships and mutation patterns in the chloroplast genome of the genus Colobanthus. The length of the chloroplast genome sequences of C. acicularis, C. affinis, C. lycopodioides, C. nivicola, C. pulvinatus and C. subulatus ranged from 151,050 to 151,462 bp. The quadripartite circular structure of these genome sequences has the same overall organization and gene content with 73 protein-coding genes, 30 tRNA genes, four rRNA genes and five conserved chloroplast open reading frames. A total of 153 repeat sequences were revealed. Forward repeats were dominant, whereas complementary repeats were found only in C. pulvinatus. The mononucleotide SSRs composed of A/T units were most common, and hexanucleotide SSRs were detected least often. Eleven highly variable regions which could be utilized as potential markers for phylogeny reconstruction, species identification or phylogeography were identified within Colobanthus chloroplast genomes. Seventy-three protein-coding genes were used in phylogenetic analyses. Reconstructed phylogeny was consistent with the systematic position of the studied species, and the representatives of the same genus were grouped in one clade. All studied Colobanthus species formed a single group and C. lycopodioides was least similar to the remaining species.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Karol Makowczenko
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Environmental Management and Agriculture, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720, Olsztyn, Poland
| | | | - Ryszard Górecki
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Irena Giełwanowska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719, Olsztyn, Poland
| |
Collapse
|
33
|
Comparative and Phylogenetic Analyses of the Complete Chloroplast Genomes of Six Almond Species (Prunus spp. L.). Sci Rep 2020; 10:10137. [PMID: 32576920 PMCID: PMC7311419 DOI: 10.1038/s41598-020-67264-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/12/2020] [Indexed: 11/08/2022] Open
Abstract
As a source of genetic variation, almond germplasm resources are of great significance in breeding. To better reveal the mutation characteristics and evolution patterns of the almond chloroplast (cp) genome, the complete cp genomes from six almond species were analyzed. The lengths of the chloroplast genome of the six almond species ranged from 157,783 bp to 158,073 bp. For repeat sequence analysis, 53 pairs of repeats (30 bp or longer) were identified. A total of 117 SSR loci were observed, including 96 polymorphic SSR loci. Nine highly variable regions with a nucleotide variability (Pi) higher than 0.08, including rps16, rps16-psbK, atpF-atpH, rpoB, ycf3-rps4, rps4-ndhJ, accD-psaI and rps7-orf42 (two highly variable regions) were located. Based on the chloroplast genome evolution analysis, three species (P. tenella, P. pedunculata and P. triloba) and wild cherry (P. tomentosa) were grouped into clade I. Clade II consisted of two species (P. mongolica and P. tangutica) and wild peach (P. davidiana). Clade III included the common almond (P. dulcis), cultivated peach (P. persica) and GanSu peach (P. kansuensis). This result expands the researchers' vision of almond plant diversity and promotes an understanding of the evolutionary relationship among almond species. In brief, this study provides abundant resources for the study of the almond chloroplast genome, and has an important reference value for study of the evolution and species identification of almond.
Collapse
|
34
|
Liu F, Movahedi A, Yang W, Xu L, Xie J, Zhang Y. The complete chloroplast genome and characteristics analysis of Callistemon rigidus R.Br. Mol Biol Rep 2020; 47:5013-5024. [PMID: 32515001 DOI: 10.1007/s11033-020-05567-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Callistemon rigidus R.Br. one of the traditional Chinese medicinal plants, is acrid-flavored and mild-natured, with the prominent effects reducing swelling, resolving phlegm, and dispelling rheumatism. Clinically, it has been commonly used to treat cold, cough and asthma, pain and swelling from impact injuries, eczema, rheumatic arthralgia. The chloroplast genome study on Callistemon rigidus R.Br. is a few seen. This study demonstrates the data collected from the assembly and annotation of the chloroplast (cp) genome of Callistemon rigidus R.Br., followed by furthers comparative analysis with the cp genomes of closely related species. C. rigidus R.Br. showed a cp genome in the size of 158, 961 bp long with 36.78% GC content, among which a pair of inverted repeats (IRs) of 26, 671 bp separated a large single-copy (LSC) region of 87, 162 bp and a small single-copy (SSC) region of 18, 457 bp. Altogether 131 genes were hosted, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. 284 simple sequence repeats (SSRs) were also marked out. A comparative analysis of the genome structure and the sequence data of closely related species unveiled the conserved gene order in the IR and LSC/SSC regions, a quite constructive finding for future phylogenetic research. Overall, this study providing C. rigidus R.Br. genomic resources could positively contribute to the evolutionary study and the phylogenetic reconstruction of Myrtaceae.
Collapse
Affiliation(s)
- Fenxiang Liu
- School of Business and Trade, Nanjing Institute of Industry Technology, Nanjing, 210023, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Wenguo Yang
- Department of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lei Xu
- Genepioneer Biotechnologies Inc., Nanjing, 210023, China
| | - Jigang Xie
- School of Business and Trade, Nanjing Institute of Industry Technology, Nanjing, 210023, China
| | - Yu Zhang
- School of Business and Trade, Nanjing Institute of Industry Technology, Nanjing, 210023, China
| |
Collapse
|
35
|
Unraveling the Chloroplast Genomes of Two Prosopis Species to Identify Its Genomic Information, Comparative Analyses and Phylogenetic Relationship. Int J Mol Sci 2020; 21:ijms21093280. [PMID: 32384622 PMCID: PMC7247323 DOI: 10.3390/ijms21093280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Genus Prosopis (family Fabaceae) are shrubby trees, native to arid and semi-arid regions of Asia, Africa, and America and known for nitrogen fixation. Here, we have sequenced the complete chloroplast (cp) genomes of two Prosopis species (P. juliflora and P. cineraria) and compared them with previously sequenced P. glandulosa, Adenanthera microsperma, and Parkia javanica belonging to the same family. The complete genome sequences of Prosopis species and related species ranged from 159,389 bp (A. microsperma) to 163,677 bp (P. cineraria). The overall GC contents of the genomes were almost the similar (35.9–36.6%). The P. juliflora and P. cineraria genomes encoded 132 and 131 genes, respectively, whereas both the species comprised of 85 protein-coding genes higher than other compared species. About 140, 134, and 129 repeats were identified in P. juliflora, P. cineraria and P. glandulosa cp genomes, respectively. Similarly, the maximum number of simple sequence repeats were determined in P. juliflora (88), P. cineraria (84), and P. glandulosa (78). Moreover, complete cp genome comparison determined a high degree of sequence similarity among P. juliflora, P. cineraria, and P. glandulosa, however some divergence in the intergenic spacers of A. microsperma and Parkia javanica were observed. The phylogenetic analysis showed that P. juliflora is closer to P. cineraria than P. glandulosa.
Collapse
|
36
|
Oyebanji O, Zhang R, Chen SY, Yi TS. New Insights Into the Plastome Evolution of the Millettioid/Phaseoloid Clade (Papilionoideae, Leguminosae). FRONTIERS IN PLANT SCIENCE 2020; 11:151. [PMID: 32210983 PMCID: PMC7076112 DOI: 10.3389/fpls.2020.00151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
The Millettioid/Phaseoloid (MP) clade from the subfamily Papilionoideae (Leguminosae) consists of six tribes and ca. 3,000 species. Previous studies have revealed some plastome structural variations (PSVs) within this clade. However, many deep evolutionary relationships within the clade remain unresolved. Due to limited taxon sampling and few genetic markers in previous studies, our understanding of the evolutionary history of this clade is limited. To address this issue, we sampled 43 plastomes (35 newly sequenced) representing all the six tribes of the MP clade to examine genomic structural variations and phylogenetic relationships. Plastomes of the species from the MP clade were typically quadripartite (size ranged from 140,029 to 160,040 bp) and contained 109-111 unique genes. We revealed four independent gene losses (ndhF, psbI, rps16, and trnS-GCU), multiple IR-SC boundary shifts, and six inversions in the tribes Desmodieae, Millettieae, and Phaseoleae. Plastomes of the species from the MP clade have experienced significant variations which provide valuable information on the evolution of the clade. Plastid phylogenomic analyses using Maximum Likelihood and Bayesian methods yielded a well-resolved phylogeny at the tribal and generic levels within the MP clade. This result indicates that plastome data is useful and reliable data for resolving the evolutionary relationships of the MP clade. This study provides new insights into the phylogenetic relationships and PSVs within this clade.
Collapse
Affiliation(s)
- Oyetola Oyebanji
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Si-Yun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
37
|
Liu X, Fu W, Tang Y, Zhang W, Song Z, Li L, Yang J, Ma H, Yang J, Zhou C, Davis CC, Wang Y. Diverse trajectories of plastome degradation in holoparasitic Cistanche and genomic location of the lost plastid genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:877-892. [PMID: 31639183 DOI: 10.1093/jxb/erz456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The plastid genomes (plastomes) of non-photosynthetic plants generally undergo gene loss and pseudogenization. Despite massive plastomes reported in different parasitism types of the broomrape family (Orobanchaceae), more plastomes representing different degradation patterns in a single genus are expected to be explored. Here, we sequence and assemble the complete plastomes of three holoparasitic Cistanche species (C. salsa, C. mongolica, and C. sinensis) and compare them with the available plastomes of Orobanchaceae. We identified that the diverse degradation trajectories under purifying selection existed among three Cistanche clades, showing obvious size differences in the entire plastome, long single copy region, and non-coding region, and different patterns of the retention/loss of functional genes. With few exceptions of putatively functional genes, massive plastid fragments, which have been lost and transferred into the mitochondrial or nuclear genomes, are non-functional. In contrast to the equivalents of the Orobanche species, some plastid-derived genes with diverse genomic locations are found in Cistanche. The early and initially diverged clades in different genera such as Cistanche and Aphyllon possess obvious patterns of plastome degradation, suggesting that such key lineages should be considered prior to comparative analysis of plastome evolution, especially in the same genus.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Weirui Fu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiwei Tang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Plant Biology, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Department of Biology, Institute of Molecular Evolutionary Genetics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jianhua Yang
- College of Pharmacy, The First Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Chan Zhou
- Department of Population and Quantitative Health Sciences, Massachusetts General Hospital, 55 Lake Ave, North Worcester, MA, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, USA
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Conservation and innovation: Plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau. Mol Phylogenet Evol 2019; 144:106713. [PMID: 31863901 DOI: 10.1016/j.ympev.2019.106713] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
The amount of plastome sequence data available has soared in the last decade, but the nature of plastome evolution during rapid radiations is largely unknown. Moreover, although there is increasing evidence showing that plastomes may have undergone adaptive evolution in order to allow adaptation to various environments, few studies have systematically investigated the role of the plastome in alpine adaptation. To address these questions, we sequenced and analyzed 12 representative species of Rhodiola, a genus which includes ca. 70 perennial herbs mainly growing in alpine habitats in the Qinghai-Tibet Plateau and the Hengduan Mountains. Rapid radiation in this genus was triggered by the uplift of the Qinghai-Tibet Plateau. We also included nine species of Crassulaceae as the outgroups. All plastomes were conserved with respect to size, structure, and gene content and order, with few variations: each contained 134 genes, including 85 protein-coding genes, 37 tRNAs, 8 rRNAs, and 4 potential pseudogenes. Four types of repeat sequence were detected. Slight contraction and expansion of the inverted repeats were also revealed. Both the genome-wide alignment and sequence polymorphism analyses showed that the inverted repeats and coding regions were more conserved than the single-copy regions and the non-coding regions. Positive selection analyses identified three genes containing sites of positive selection (rpl16, ndhA, ndhH), and one gene with a faster than average rate of evolution (psaA). The products of these genes may be involved in the adaptation of Rhodiola to alpine environments such as low CO2 concentration and high-intensity light.
Collapse
|
39
|
Ma Q, Wang Y, Zhu L, Bi C, Li S, Li S, Wen J, Yan K, Li Q. Characterization of the Complete Chloroplast Genome of Acer truncatum Bunge (Sapindales: Aceraceae): A New Woody Oil Tree Species Producing Nervonic Acid. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7417239. [PMID: 31886246 PMCID: PMC6925723 DOI: 10.1155/2019/7417239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
Acer truncatum, which is a new woody oil tree species, is an important ornamental and medicinal plant in China. To assess the genetic diversity and relationships of A. truncatum, we analyzed its complete chloroplast (cp) genome sequence. The A. truncatum cp genome comprises 156,492 bp, with the large single-copy, small single-copy, and inverted repeat (IR) regions consisting of 86,010, 18,050, and 26,216 bp, respectively. The A. truncatum cp genome contains 112 unique functional genes (i.e., 4 rRNA, 30 tRNA, and 78 protein-coding genes) as well as 78 simple sequence repeats, 9 forward repeats, 1 reverse repeat, 5 palindromic repeats, and 7 tandem repeats. We analyzed the expansion/contraction of the IR regions in the cp genomes of six Acer species. A comparison of these cp genomes indicated the noncoding regions were more diverse than the coding regions. A phylogenetic analysis revealed that A. truncatum is closely related to A. miaotaiense. Moreover, a novel ycf4-cemA indel marker was developed for distinguishing several Acer species (i.e., A. buergerianum, A. truncatum, A. henryi, A. negundo, A. ginnala, and A. tonkinense). The results of the current study provide valuable information for future evolutionary studies and the molecular barcoding of Acer species.
Collapse
Affiliation(s)
- Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanan Wang
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210037, China
| | - Shuxian Li
- The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing, China
| | - Shushun Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Wen
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kunyuan Yan
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
40
|
Gruzdev EV, Kadnikov VV, Beletsky AV, Mardanov AV, Ravin NV. Extensive plastome reduction and loss of photosynthesis genes in Diphelypaea coccinea, a holoparasitic plant of the family Orobanchaceae. PeerJ 2019; 7:e7830. [PMID: 31592357 PMCID: PMC6778433 DOI: 10.7717/peerj.7830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Parasitic plants have the ability to obtain nutrients from their hosts and are less dependent on their own photosynthesis or completely lose this capacity. The reduction in plastid genome size and gene content in parasitic plants predominantly results from loss of photosynthetic genes. Plants from the family Orobanchaceae are used as models for studying plastid genome evolution in the transition from an autotrophic to parasitic lifestyle. Diphelypaea is a poorly studied genus of the Orobanchaceae, comprising two species of non-photosynthetic root holoparasites. In this study, we sequenced the plastid genome of Diphelypaea coccinea and compared it with other Orobanchaceae, to elucidate patterns of plastid genome evolution. In addition, we used plastid genome data to define the phylogenetic position of Diphelypaea spp. METHODS The complete nucleotide sequence of the plastid genome of D. coccinea was obtained from total plant DNA, using pyrosequencing technology. RESULTS The D. coccinea plastome is only 66,616 bp in length, and is highly rearranged; however, it retains a quadripartite structure. It contains only four rRNA genes, 25 tRNA genes and 25 protein-coding genes, being one of the most highly reduced plastomes among the parasitic Orobanchaceae. All genes related to photosynthesis, including the ATP synthase genes, had been lost, whereas most housekeeping genes remain intact. The plastome contains two divergent, but probably intact clpP genes. Intron loss had occurred in some protein-coding and tRNA genes. Phylogenetic analysis yielded a fully resolved tree for the Orobanchaceae, with Diphelypaea being a sister group to Orobanche sect. Orobanche.
Collapse
Affiliation(s)
- Eugeny V. Gruzdev
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Moscow State University, Moscow, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Moscow State University, Moscow, Russia
| |
Collapse
|
41
|
Zhou T, Ruhsam M, Wang J, Zhu H, Li W, Zhang X, Xu Y, Xu F, Wang X. The Complete Chloroplast Genome of Euphrasia regelii, Pseudogenization of ndh Genes and the Phylogenetic Relationships Within Orobanchaceae. Front Genet 2019; 10:444. [PMID: 31156705 PMCID: PMC6528182 DOI: 10.3389/fgene.2019.00444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Euphrasia (Orobanchaceae) is a genus which is widely distributed in temperate regions of the southern and northern hemisphere. The taxonomy of Euphrasia is still controversial due to the similarity of morphological characters and a lack of genomic resources. Here, we present the first complete chloroplast (cp) genome of this taxonomically challenging genus. The cp genome of Euphrasia regelii consists of 153,026 bp, including a large single-copy region (83,893 bp), a small single-copy region (15,801 bp) and two inverted repeats (26,666 bp). There are 105 unique genes, including 71 protein-coding genes, 30 tRNA and 4 rRNA genes. Although the structure and gene order is comparable to the one in other angiosperm cp genomes, genes encoding the NAD(P)H dehydrogenase complex are widely pseudogenized due to mutations resulting in frameshifts, and stop codon positions. We detected 36 dispersed repeats, 7 tandem repeats and 65 simple sequence repeat loci in the E. regelii plastome. Comparative analyses indicated that the cp genome of E. regelii is more conserved compared to other hemiparasitic taxa in the Pedicularideae and Buchnereae. No structural rearrangements or loss of genes were detected. Our analyses suggested that three genes (clpP, ycf2 and rps14) were under positive selection and other genes under purifying selection. Phylogenetic analysis of monophyletic Orobanchaceae based on 45 plastomes indicated a close relationship between E. regelii and Neobartsia inaequalis. In addition, autotrophic lineages occupied the earliest diverging branches in our phylogeny, suggesting that autotrophy is the ancestral trait in this parasitic family.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, Edinburgh, United Kingdom
| | - Jian Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Honghong Zhu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Wenli Li
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), School of Life Sciences, Northwest University, Xi’an, China
| | - Yucan Xu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Fusheng Xu
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
42
|
Jiang Y, Yang Y, Lu Z, Wan D, Ren G. Interspecific delimitation and relationships among four Ostrya species based on plastomes. BMC Genet 2019; 20:33. [PMID: 30866795 PMCID: PMC6417023 DOI: 10.1186/s12863-019-0733-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Ostrya (Betulaceae) contains eight species and four of them are distributed in China. However, studies based on limited informative sites of several chloroplast markers failed to resolve interspecific delimitation and relationships among the four Chinese species. In this study, we aimed to use the whole chloroplast genomes to address these two issues. RESULTS We assembled and annotated 33 complete chloroplast genomes (plastomes) of the four Chinese species, representing 17 populations across most of their geographical distributions. Each species contained samples of several individuals that cover most of geographic distributions of the species. All plastomes are highly conserved in genome structure and gene order, with a total length of 158-159 kb and 122 genes. Phylogenetic analyses of whole plastomes, non-coding regions and protein-coding genes produced almost the same topological relationships. In contrast to the well-delimitated species boundary inferred from the nuclear ITS sequence variations, three of the four species are non-monophyletic in the plastome trees, which is consistent with previous studies based on a few chloroplast markers. CONCLUSIONS The high incongruence between the ITS and plastome trees may suggest the widespread occurrences of hybrid introgression and incomplete lineage sorting during the divergence of these species. In addition, the plastomes with more informative sites compared with a few chloroplast markers still failed to resolve the phylogenetic relationships of the four species, and further studies involving population genomic data may be needed to better understand their evolutionary histories.
Collapse
Affiliation(s)
- Yanyou Jiang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Zhiqiang Lu
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Dongshi Wan
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
43
|
The Complete Plastid Genome of Magnolia zenii and Genetic Comparison to Magnoliaceae species. Molecules 2019; 24:molecules24020261. [PMID: 30641990 PMCID: PMC6359370 DOI: 10.3390/molecules24020261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
Magnolia zenii is a critically endangered species known from only 18 trees that survive on Baohua Mountain in Jiangsu province, China. Little information is available regarding its molecular biology, with no genomic study performed on M. zenii until now. We determined the complete plastid genome of M. zenii and identified microsatellites. Whole sequence alignment and phylogenetic analysis using BI and ML methods were also conducted. The plastome of M. zenii was 160,048 bp long with 39.2% GC content and included a pair of inverted repeats (IRs) of 26,596 bp that separated a large single-copy (LSC) region of 88,098 bp and a small single-copy (SSC) region of 18,757 bp. One hundred thirty genes were identified, of which 79 were protein-coding genes, 37 were transfer RNAs, and eight were ribosomal RNAs. Thirty seven simple sequence repeats (SSRs) were also identified. Comparative analyses of genome structure and sequence data of closely-related species revealed five mutation hotspots, useful for future phylogenetic research. Magnolia zenii was placed as sister to M. biondii with strong support in all analyses. Overall, this study providing M. zenii genomic resources will be beneficial for the evolutionary study and phylogenetic reconstruction of Magnoliaceae.
Collapse
|
44
|
Gao C, Deng Y, Wang J. The Complete Chloroplast Genomes of Echinacanthus Species (Acanthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:1989. [PMID: 30687376 PMCID: PMC6335349 DOI: 10.3389/fpls.2018.01989] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/20/2018] [Indexed: 05/28/2023]
Abstract
Among the four species of Echinacanthus (Acanthaceae), one distributed in the West Himalayan region and three restricted to the Sino-Vietnamese karst region. Because of its ecological significance, molecular markers are necessary for proper assessment of its genetic diversity and phylogenetic relationships. Herein, the complete chloroplast genomes of four Echinacanthus species were determined for the first time. The results indicated that all the chloroplast genomes were mapped as a circular structure and each genomes included 113 unique genes, of which 80 were protein-coding, 29 were tRNAs, and 4 were rRNAs. However, the four cp genomes ranged from 151,333 to 152,672 bp in length. Comparison of the four cp genomes showed that the divergence level was greater between geographic groups. We also analyzed IR expansion or contraction in the four cp genomes and the fifth type of the large single copy/inverted repeat region in Lamiales was suggested. Furthermore, based on the analyses of comparison and nucleotide variability, six most divergent sequences (rrn16, ycf1, ndhA, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, and psaA-ycf3) were identified. A total of 37-45 simple sequence repeats were discovered in the four species and 22 SSRs were identified as candidate effective molecular markers for detecting interspecies polymorphisms. These SSRs and hotspot regions could be used as potential molecular markers for future study. Phylogenetic analysis based on Bayesian and parsimony methods did not support the monophyly of Echinacanthus. The phylogenetic relationships among the four species were clearly resolved and the results supported the recognition of the Sino-Vietnamese Echinacanthus species as a new genus. Based on the protein sequence evolution analysis, 12 genes (rpl14, rpl16, rps4, rps15, rps18, rps19, psbK, psbN, ndhC, ndhJ, rpoB, and infA) were detected under positive selection in branch of Sino-Vietnamese Echinacanthus species. These genes will lead to understanding the adaptation of Echinacanthus species to karst environment. The study will help to resolve the phylogenetic relationship and understand the adaptive evolution of Echinacanthus. It will also provide genomic resources and potential markers suitable for future species identification and speciation studies of the genus.
Collapse
Affiliation(s)
- Chunming Gao
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Jun Wang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| |
Collapse
|
45
|
Li Y, Yang Y, Yu L, Du X, Ren G. Plastomes of nine hornbeams and phylogenetic implications. Ecol Evol 2018; 8:8770-8778. [PMID: 30271544 PMCID: PMC6157693 DOI: 10.1002/ece3.4414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 11/06/2022] Open
Abstract
Poor phylogenetic resolution and inconsistency of gene trees are major complications when attempting to construct trees of life for various groups of organisms. In this study, we addressed these issues in analyses of the genus Carpinus (hornbeams) of the Betulaceae. We assembled and annotated the chloroplast (cp) genomes (plastomes) of nine hornbeams representing main clades previously distinguished in this genus. All nine plastomes are highly conserved, with four regions, and about 158-160 kb long, including 121-123 genes. Phylogenetic analyses of whole plastome sequences, noncoding sequences, and the well-aligned coding genes resulted in high resolution of the sampled species in contrast to the failure based on a few cpDNA markers. Phylogenetic relationships in a few clades based only on the coding genes are slightly inconsistent with those based on the noncoding and total plastome datasets. Moreover, these plastome trees are highly incongruent with those based on bi-parentally inherited internal transcribed spacer (ITS) sequence variations. Such high inconsistencies suggest widespread occurrence of incomplete lineage sorting and hybrid introgression during diversification of these hornbeams.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Grassland Agro‐EcosystemSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Yongzhi Yang
- State Key Laboratory of Grassland Agro‐EcosystemSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Le Yu
- State Key Laboratory of Grassland Agro‐EcosystemSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Xin Du
- State Key Laboratory of Grassland Agro‐EcosystemSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro‐EcosystemSchool of Life SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
46
|
Choi KS, Kwak M, Lee B, Park S. Complete chloroplast genome of Tetragonia tetragonioides: Molecular phylogenetic relationships and evolution in Caryophyllales. PLoS One 2018; 13:e0199626. [PMID: 29933404 PMCID: PMC6014681 DOI: 10.1371/journal.pone.0199626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/11/2018] [Indexed: 01/09/2023] Open
Abstract
The chloroplast genome of Tetragonia tetragonioides (Aizoaceae; Caryophyllales) was sequenced to provide information for studies on phylogeny and evolution within Caryophyllales. The chloroplast genome of Tetragonia tetragonioides is 149,506 bp in length and includes a pair of inverted repeats (IRs) of 24,769 bp that separate a large single copy (LSC) region of 82,780 bp and a small single copy (SSC) region of 17,188 bp. Comparative analysis of the chloroplast genome showed that Caryphyllales species have lost many genes. In particular, the rpl2 intron and infA gene were not found in T. tetragonioides, and core Caryophyllales lack the rpl2 intron. Phylogenetic analyses were conducted using 55 genes in 16 complete chloroplast genomes. Caryophyllales was found to divide into two clades; core Caryophyllales and noncore Caryophyllales. The genus Tetragonia is closely related to Mesembryanthemum. Comparisons of the synonymous (Ks), nonsynonymous (Ka), and Ka/Ks substitution rates revealed that nonsynonymous substitution rates were lower than synonymous substitution rates and that Ka/Ks rates were less than 1. The findings of the present study suggest that most genes are a purified selection.
Collapse
Affiliation(s)
- Kyoung Su Choi
- Division of Forest Biodiversity, Korea National Arboretum of the Korea Forest Service, Pochen, Republic of Korea
| | - Myounghai Kwak
- Plant Resources Division, National Institute of Biological Resources of Korea, Incheon, Republic of Korea
| | - Byoungyoon Lee
- Plant Resources Division, National Institute of Biological Resources of Korea, Incheon, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
47
|
Xia Z, Wen J. The complete chloroplast genome of the endangered species Triaenophora shennongjiaensis (Orobanchaceae s.l.). Mitochondrial DNA B Resour 2018; 3:506-507. [PMID: 33474222 PMCID: PMC7799507 DOI: 10.1080/23802359.2018.1467242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triaenophora shennongjiaensis (Orobanchaceae sensu lato) is a recently described rare and endangered species endemic to Central China. In this study, the complete chloroplast (cp) genome of T. shennpongjiaensis was assembled based on reads obtained with the Illumina HiSeq platform. The cp genome of T. shennongjiaensis was 15,5319 bp in length and contained a pair of inverted repeat (IR, 27,484 bp) regions separated by a small single copy (SSC, 15,450 bp) and a large single copy (LSC, 84,901 bp) region. It encoded 112 genes including 78 protein-coding genes, 30 tRNA genes, and eight ribosomal RNA genes. The overall AT content of T. shennongjiaensis cp genome is 61.9%. The maximum likelihood phylogenetic analysis supports T. shennongjiaensis as sister to Rehmannia. This result will be helpful for the systematics, conservation, and breeding programs of Triaenophora.
Collapse
Affiliation(s)
- Zhi Xia
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
48
|
Chi X, Wang J, Gao Q, Zhang F, Chen S. The Complete Chloroplast Genomes of Two Lancea Species with Comparative Analysis. Molecules 2018; 23:E602. [PMID: 29518967 PMCID: PMC6017492 DOI: 10.3390/molecules23030602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/03/2018] [Accepted: 03/04/2018] [Indexed: 11/16/2022] Open
Abstract
The genus Lancea is native to the Qinghai-Tibetan Plateau and consists of two species, Lancea tibetica Hook. f. et Thoms. and Lancea hirsuta Bonati. Here, we report the complete sequences of the chloroplast genomes of L. tibetica and L. hirsuta, which were 153,665 and 154,045 bp in length, respectively, and each included a pair of inverted repeated regions (25,624 and 25,838 bp in length, respectively) that were separated by a large single copy region (84,401 and 84,588 bp in length, respectively) and a smaller single copy region (18,016 and 17,781 bp in length, respectively). A total of 106 genes in L. tibetica and 105 in L. hirsuta comprised 79 protein-coding genes, and 4 ribosomal RNA (rRNA) genes, as well as 23 and 22 transfer RNA (tRNA) genes in L. tibetica and L. hirsuta, respectively. The gene order, content, and orientation of the two Lancea chloroplast genomes exhibited high similarity. A large number of informative repetitive sequences, including SSRs, were observed in both genomes. Comparisons of the genomes with those of three other Lamiales species revealed 12 highly divergent regions in the intergenic spacers and in the matK, rpoA, rps19, ndhF, ccsA, ndhD, and ycf1 coding regions. A phylogenomic analysis suggested that Lancea forms a monophyletic group that is closely related to the clade composed of the families Phrymaceae, Paulowniaceae, and Rehmanniaceae.
Collapse
Affiliation(s)
- Xiaofeng Chi
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China.
| | - Jiuli Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China.
| | - Qingbo Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China.
| | - Faqi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China.
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China.
- Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China.
| |
Collapse
|
49
|
Yu WB, Randle CP, Lu L, Wang H, Yang JB, dePamphilis CW, Corlett RT, Li DZ. The Hemiparasitic Plant Phtheirospermum (Orobanchaceae) Is Polyphyletic and Contains Cryptic Species in the Hengduan Mountains of Southwest China. FRONTIERS IN PLANT SCIENCE 2018; 9:142. [PMID: 29479366 PMCID: PMC5812252 DOI: 10.3389/fpls.2018.00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Phtheirospermum (Orobanchaceae), a hemiparasitic genus of Eastern Asia, is characterized by having long and viscous glandular hairs on stems and leaves. Despite this unifying character, previous phylogenetic analyses indicate that Phtheirospermum is polyphyletic, with Phtheirospermum japonicum allied with tribe Pedicularideae and members of the Ph. tenuisectum complex allied with members of tribe Rhinantheae. However, no analyses to date have included broad phylogenetic sampling necessary to test the monophyly of Phtheirospermum species, and to place these species into the existing subfamiliar taxonomic organization of Orobanchaceae. Two other genera of uncertain phylogenetic placement are Brandisia and Pterygiella, also both of Eastern Asia. In this study, broadly sampled phylogenetic analyses of nrITS and plastid DNA revealed hard incongruence between these datasets in the placement of Brandisia. However, both nrITS and the plastid datasets supported the placement of Ph. japonicum within tribe Pedicularideae, and a separate clade consisting of the Ph. tenuisectum complex and a monophyletic Pterygiella. Analyses were largely in agreement that Pterygiella, the Ptheirospermum complex, and Xizangia form a clade not nested within any of the monophyletic tribes of Orobanchaceae recognized to date. Ph. japonicum, a model species for parasitic plant research, is widely distributed in Eastern Asia. Despite this broad distribution, both nrITS and plastid DNA regions from a wide sampling of this species showed high genetic identity, suggesting that the wide species range is likely due to a recent population expansion. The Ph. tenuisectum complex is mainly distributed in the Hengduan Mountains region. Two cryptic species were identified by both phylogenetic analyses and morphological characters. Relationships among species of the Ph. tenuisectum complex and Pterygiella remain uncertain. Estimated divergence ages of the Ph. tenuisectum complex corresponding to the last two uplifts of the Qinghai-Tibet Plateau at around 8.0-7.0 Mya and 3.6-1.5 Mya indicated that the development of a hot-dry valley climate during these uplifts may have driven species diversification in the Ph. tenuisectum complex.
Collapse
Affiliation(s)
- Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden (CAS), Mengla, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Christopher P. Randle
- Department of Biological Sciences, Sam Houston State University, Huntsville, TX, United States
| | - Lu Lu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jun-Bo Yang
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Claude W. dePamphilis
- Department of Biology, Graduate Program in Plant Biology, The Pennsylvania State University, State College, PA, United States
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden (CAS), Mengla, China
| | - De-Zhu Li
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
50
|
Chloroplast genomic resources for phylogeny and DNA barcoding: a case study on Fritillaria. Sci Rep 2018; 8:1184. [PMID: 29352182 PMCID: PMC5775360 DOI: 10.1038/s41598-018-19591-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
The genus Fritillaria comprises approximately 130 perennial herbaceous species. In the Pharmacopoeia of the People’s Republic of China, the bulbs of 11 Fritillaria species are used in Chinese herbal medicines. However, the traditional methods of morphological classification cannot accurately identify closely related species of Fritillaria. Previous studies have attempted to identify these species with universal molecular markers, but insufficient phylogenetic signal was available. In this study, the complete chloroplast genomes of eight Fritillaria species were compared. The length of the eight Fritillaria chloroplast genomes ranges from 151,009 bp to 152,224 bp. A total of 136 SSR loci were identified, including 124 polymorphic SSR loci. For large repeat sequences, 108 repeat loci and four types of repeats were observed. Ten highly variable regions were identified as potential molecular markers. These SSRs, large repeat sequences and highly variable regions provide important information for the development of genetic markers and DNA fingerprints. Phylogenetic analyses showed that the topological structures of all data sets (except the IR regions) were in complete agreement and well resolved. Overall, this study provides comprehensive chloroplast genomic resources, which will be valuable for future studies of evolution and species identification in Fritillaria.
Collapse
|