1
|
Branda F, Cella E, Scarpa F, Slavov SN, Bevivino A, Moretti R, Degafu AL, Pecchia L, Rizzo A, Defilippo F, Moreno A, Ceccarelli G, Alcantara LCJ, Ferreira A, Ciccozzi M, Giovanetti M. Wolbachia-Based Approaches to Controlling Mosquito-Borne Viral Threats: Innovations, AI Integration, and Future Directions in the Context of Climate Change. Viruses 2024; 16:1868. [PMID: 39772178 PMCID: PMC11680244 DOI: 10.3390/v16121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Wolbachia-based mosquito control strategies have gained significant attention as a sustainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens, offering a promising alternative to traditional chemical-based interventions. With the growing impact of climate change on mosquito population dynamics and disease transmission, Wolbachia interventions represent an adaptable and resilient strategy for mitigating the public health burden of vector-borne diseases. Changes in temperature, humidity, and rainfall patterns can alter mosquito breeding habitats and extend the geographical range of disease vectors, increasing the urgency for effective control measures. This review highlights innovations in Wolbachia-based mosquito control and explores future directions in the context of climate change. It emphasizes the integration of Wolbachia with other biological approaches and the need for multidisciplinary efforts to address climate-amplified disease risks. As ecosystems shift, Wolbachia interventions could be crucial in reducing mosquito-borne diseases, especially in vulnerable regions. AI integration in Wolbachia research presents opportunities to enhance mosquito control strategies by modeling ecological data, predicting mosquito dynamics, and optimizing intervention outcomes. Key areas include refining release strategies, real-time monitoring, and scaling interventions. Future opportunities lie in advancing AI-driven approaches for integrating Wolbachia with other vector control measures, promoting adaptive, data-driven responses to climate-amplified disease transmission.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| | | | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy; (A.B.); (R.M.)
| | - Riccardo Moretti
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, 00123 Rome, Italy; (A.B.); (R.M.)
| | - Abate Lemlem Degafu
- Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.L.D.); (L.P.)
| | - Leandro Pecchia
- Unit of Intelligent Health Technologies, Sustainable Design Management and Assessment, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (A.L.D.); (L.P.)
| | - Alberto Rizzo
- Laboratory of Clinical Microbiology, Virology and Bioemergencies, Ospedale Sacco, 20157 Milan, Italy;
| | - Francesco Defilippo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini” (IZSLER), 25124 Brescia, Italy;
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “B. Ubertini” (IZSLER), 25124 Brescia, Italy;
| | - Giancarlo Ceccarelli
- Infectious Diseases Department, Azienda Ospedaliero Universitaria Policlinico Umberto I, 00161 Rome, Italy;
| | - Luiz Carlos Junior Alcantara
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (L.C.J.A.); (A.F.)
| | - Alvaro Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (L.C.J.A.); (A.F.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University of Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, 00128 Rome, Italy
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
2
|
Durand S, Pigeault R, Giraud I, Loisier A, Bech N, Grandjean F, Rigaud T, Peccoud J, Cordaux R. Temporal stability of sex ratio distorter prevalence in natural populations of the isopod Armadillidium vulgare. Heredity (Edinb) 2024; 133:287-297. [PMID: 39107546 PMCID: PMC11528029 DOI: 10.1038/s41437-024-00713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 11/02/2024] Open
Abstract
In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points. SRD distribution was heterogeneous among populations despite their close geographic locations, so that when one SRD was frequent in a population, the other SRD was rare. In contrast with spatial heterogeneity, our results overall did not reveal substantial temporal variability in SRD prevalence within populations, suggesting equilibria in SRD evolutionary dynamics may have been reached or nearly so. Temporal stability was also generally reflected in mitochondrial and nuclear variation. Nevertheless, in a population, a Wolbachia strain replacement coincided with changes in mitochondrial composition but no change in nuclear composition, thus constituting a typical example of mitochondrial sweep caused by endosymbiont rise in frequency. Rare incongruence between Wolbachia strains and mitochondrial haplotypes suggested the occurrence of intraspecific horizontal transmission, making it a biologically relevant parameter for Wolbachia evolutionary dynamics in A. vulgare. Overall, our results provide an empirical basis for future studies on SRD evolutionary dynamics in the context of multiple sex determination factors co-existing within a single species, to ultimately evaluate the impact of SRD on the evolution of host sex determination mechanisms and sex chromosomes.
Collapse
Affiliation(s)
- Sylvine Durand
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Romain Pigeault
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Anaïs Loisier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Nicolas Bech
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Thierry Rigaud
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 rue Jacques Fort, TSA 51106, Poitiers, Cedex 9, France.
- Université Paris-Saclay, CNRS, IRD, UMR Évolution Génomes Comportement Écologie, Gif-sur-Yvette, France.
| |
Collapse
|
3
|
Mioduchowska M, Konecka E, Gołdyn B, Pinceel T, Brendonck L, Lukić D, Kaczmarek Ł, Namiotko T, Zając K, Zając T, Jastrzębski JP, Bartoszek K. Playing Peekaboo with a Master Manipulator: Metagenetic Detection and Phylogenetic Analysis of Wolbachia Supergroups in Freshwater Invertebrates. Int J Mol Sci 2023; 24:ijms24119400. [PMID: 37298356 DOI: 10.3390/ijms24119400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The infamous "master manipulators"-intracellular bacteria of the genus Wolbachia-infect a broad range of phylogenetically diverse invertebrate hosts in terrestrial ecosystems. Wolbachia has an important impact on the ecology and evolution of their host with documented effects including induced parthenogenesis, male killing, feminization, and cytoplasmic incompatibility. Nonetheless, data on Wolbachia infections in non-terrestrial invertebrates are scarce. Sampling bias and methodological limitations are some of the reasons limiting the detection of these bacteria in aquatic organisms. In this study, we present a new metagenetic method for detecting the co-occurrence of different Wolbachia strains in freshwater invertebrates host species, i.e., freshwater Arthropoda (Crustacea), Mollusca (Bivalvia), and water bears (Tardigrada) by applying NGS primers designed by us and a Python script that allows the identification of Wolbachia target sequences from the microbiome communities. We also compare the results obtained using the commonly applied NGS primers and the Sanger sequencing approach. Finally, we describe three supergroups of Wolbachia: (i) a new supergroup V identified in Crustacea and Bivalvia hosts; (ii) supergroup A identified in Crustacea, Bivalvia, and Eutardigrada hosts, and (iii) supergroup E infection in the Crustacea host microbiome community.
Collapse
Affiliation(s)
- Monika Mioduchowska
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdańsk, Poland
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland
- Department of Marine Plankton Research, Institute of Oceanography, University of Gdansk, 81-378 Gdynia, Poland
| | - Edyta Konecka
- Department of Microbiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Bartłomiej Gołdyn
- Department of General Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
- Centre for Environmental Management, University of the Free State, Potchefstroom 2520, South Africa
- Community Ecology Laboratory, Department of Biology, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, KU Leuven, 3000 Leuven, Belgium
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - Dunja Lukić
- Department of Wetland Ecology, Estación Biológica de Doñana-CSIC, 41092 Sevilla, Spain
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznań, Poland
| | - Tadeusz Namiotko
- Department of Evolutionary Genetics and Biosystematics, Faculty of Biology, University of Gdansk, 80-308 Gdańsk, Poland
| | - Katarzyna Zając
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Kraków, Poland
| | - Tadeusz Zając
- Institute of Nature Conservation, Polish Academy of Sciences, 31-120 Kraków, Poland
| | - Jan P Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Division of Statistics and Machine Learning, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
4
|
Prigot-Maurice C, Lheraud B, Guéritault S, Beltran-Bech S, Cordaux R, Peccoud J, Braquart-Varnier C. Investigating Wolbachia symbiont-mediated host protection against a bacterial pathogen using a natural Wolbachia nuclear insert. J Invertebr Pathol 2023; 197:107893. [PMID: 36754115 DOI: 10.1016/j.jip.2023.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Wolbachia bacterial endosymbionts provide protection against pathogens in various arthropod species but the underlying mechanisms remain misunderstood. By using a natural Wolbachia nuclear insert (f-element) in the isopod Armadillidium vulgare, we explored whether Wolbachia presence is mandatory to observe protection in this species or the presence of its genes is sufficient. We assessed survival of closely related females carrying or lacking the f-element (and lacking Wolbachia) challenged with the bacterial pathogen Salmonella enterica. Despite marginal significant effects, the f-element alone did not appear to confer survival benefits to its host, suggesting that Wolbachia presence in cells is crucial for protection.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France.
| | - Baptiste Lheraud
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Samuel Guéritault
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Sophie Beltran-Bech
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Richard Cordaux
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Jean Peccoud
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Laboratoire Écologie et Biologie des Interactions, équipe Écologie, Évolution, Symbiose. Université de Poitiers UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106, F-86073, POITIERS Cedex 9, France
| |
Collapse
|
5
|
Durand S, Lheraud B, Giraud I, Bech N, Grandjean F, Rigaud T, Peccoud J, Cordaux R. Heterogeneous distribution of sex ratio distorters in natural populations of the isopod Armadillidium vulgare. Biol Lett 2023; 19:20220457. [PMID: 36628964 PMCID: PMC9832340 DOI: 10.1098/rsbl.2022.0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
In the isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and the f element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the f element is overall more frequent than Wolbachia. The two SRD never co-occur at high frequency in any population, suggesting an apparent mutual exclusion. We also detected Wolbachia or the f element in some males, which probably reflects insufficient titer to induce feminization or presence of masculinizing alleles. Our results are consistent with a single integration event of a Wolbachia genome in the A. vulgare genome at the origin of the f element, which contradicts an earlier hypothesis of frequent losses and gains. We identified strong linkage between Wolbachia strains and mitochondrial haplotypes, but no association between the f element and mitochondrial background. Our results open new perspectives on SRD evolutionary dynamics in A. vulgare, the evolution of genetic conflicts and their impact on the variability of sex determination systems.
Collapse
Affiliation(s)
- Sylvine Durand
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Baptiste Lheraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Nicolas Bech
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Thierry Rigaud
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B31, 3 Rue Jacques Fort, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|
6
|
Queffelec J, Postma A, Allison JD, Slippers B. Remnants of horizontal transfers of Wolbachia genes in a Wolbachia-free woodwasp. BMC Ecol Evol 2022; 22:36. [PMID: 35346038 PMCID: PMC8962096 DOI: 10.1186/s12862-022-01995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont of many arthropod and nematode species. Due to its capacity to alter host biology, Wolbachia plays an important role in arthropod and nematode ecology and evolution. Sirex noctilio is a woodwasp causing economic loss in pine plantations of the Southern Hemisphere. An investigation into the genome of this wasp revealed the presence of Wolbachia sequences. Due to the potential impact of Wolbachia on the populations of this wasp, as well as its potential use as a biological control agent against invasive insects, this discovery warranted investigation.
Results In this study we first investigated the presence of Wolbachia in S. noctilio and demonstrated that South African populations of the wasp are unlikely to be infected. We then screened the full genome of S. noctilio and found 12 Wolbachia pseudogenes. Most of these genes constitute building blocks of various transposable elements originating from the Wolbachia genome. Finally, we demonstrate that these genes are distributed in all South African populations of the wasp.
Conclusions Our results provide evidence that S. noctilio might be compatible with a Wolbachia infection and that the bacteria could potentially be used in the future to regulate invasive populations of the wasp. Understanding the mechanisms that led to a loss of Wolbachia infection in S. noctilio could indicate which host species or host population should be sampled to find a Wolbachia strain that could be used as a biological control against S. noctilio. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01995-x.
Collapse
Affiliation(s)
- Joséphine Queffelec
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa. .,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| | - Alisa Postma
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeremy D Allison
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Great Lakes Forestry Center, Natural Resources Canada, Canadian Forest Service, Sault St Marie, Canada.,Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Bernard Slippers
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Lunnon Road, Pretoria, 0002, South Africa.,Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Narrow Genetic Diversity of Wolbachia Symbionts in Acrididae Grasshopper Hosts (Insecta, Orthoptera). Int J Mol Sci 2022; 23:ijms23020853. [PMID: 35055035 PMCID: PMC8775660 DOI: 10.3390/ijms23020853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Bacteria of the Wolbachia genus are maternally inherited symbionts of Nematoda and numerous Arthropoda hosts. There are approximately 20 lineages of Wolbachia, which are called supergroups, and they are designated alphabetically. Wolbachia strains of the supergroups A and B are predominant in arthropods, especially in insects, and supergroup F seems to rank third. Host taxa have been studied very unevenly for Wolbachia symbionts, and here, we turn to one of largely unexplored insect families: Acrididae. On the basis of five genes subject to multilocus sequence typing, we investigated the incidence and genetic diversity of Wolbachia in 41 species belonging three subfamilies (Gomphocerinae, Oedipodinae, and Podisminae) collected in Turkey, Kazakhstan, Tajikistan, Russia, and Japan, making 501 specimens in total. Our results revealed a high incidence and very narrow genetic diversity of Wolbachia. Although only the strains belonging to supergroups A and B are commonly present in present, the Acrididae hosts here proved to be infected with supergroups B and F without A-supergroup variants. The only trace of an A-supergroup lineage was noted in one case of an inter-supergroup recombinant haplotype, where the ftsZ gene came from supergroup A, and the others from supergroup B. Variation in the Wolbachia haplotypes in Acrididae hosts within supergroups B and F was extremely low. A comprehensive genetic analysis of Wolbachia diversity confirmed specific features of the Wolbachia allelic set in Acrididae hosts. This result can help to elucidate the crucial issue of Wolbachia biology: the route(s) and mechanism(s) of Wolbachia horizontal transmission.
Collapse
|
8
|
Schrieke H, Maignien L, Constancias F, Trigodet F, Chakloute S, Rakotoarivony I, Marie A, L'Ambert G, Makoundou P, Pages N, Murat Eren A, Weill M, Sicard M, Reveillaud J. The mosquito microbiome includes habitat-specific but rare symbionts. Comput Struct Biotechnol J 2021; 20:410-420. [PMID: 35140881 PMCID: PMC8803474 DOI: 10.1016/j.csbj.2021.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022] Open
Abstract
Microbial communities are known to influence mosquito lifestyles by modifying essential metabolic and behavioral processes that affect reproduction, development, immunity, digestion, egg survival, and the ability to transmit pathogens. Many studies have used 16S rRNA gene amplicons to characterize mosquito microbiota and investigate factors that influence host-microbiota dynamics. However, a relatively low taxonomic resolution due to clustering methods based on arbitrary threshold and the overall dominance of Wolbachia or Asaia symbionts obscured the investigation of rare members of mosquito microbiota in previous studies. Here, we used high resolution Shannon entropy-based oligotyping approach to analyze the microbiota of Culex pipiens, Culex quinquefasciatus and Aedes individuals from continental Southern France and overseas Guadeloupe as well as from laboratories with or without antibiotics treatment. Our experimental design that resulted in a series of mosquito samples with a gradient of Wolbachia density and relative abundance along with high-resolution analyses of amplicon sequences enabled the recovery of a robust signal from typically less accessible bacterial taxa. Our data confirm species-specific mosquito-bacteria associations with geography as a primary factor that influences bacterial community structure. But interestingly, they also reveal co-occurring symbiotic bacterial variants within single individuals for both Elizabethkingia and Erwinia genera, distinct and specific Asaia and Chryseobacterium in continental and overseas territories, and a putative rare Wolbachia variant. Overall, our study reveals the presence of previously overlooked microdiversity and multiple closely related symbiotic strains within mosquito individuals with a remarkable habitat-specificity.
Collapse
Affiliation(s)
- Hans Schrieke
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| | - Loïs Maignien
- Univ Brest, CNRS, IFREMER, Microbiology of Extreme Environments Laboratory, Plouzané, France
| | | | | | - Sarah Chakloute
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
| | | | - Albane Marie
- EID Méditerranée, 165 Avenue Paul Rimbaud, 34184 Montpellier, France
| | - Gregory L'Ambert
- EID Méditerranée, 165 Avenue Paul Rimbaud, 34184 Montpellier, France
| | - Patrick Makoundou
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nonito Pages
- ASTRE, University of Montpellier, CIRAD, INRAE, Montpellier, France
- CIRAD, UMR ASTRE, Guadeloupe, France
| | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Mylène Weill
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Mathieu Sicard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Julie Reveillaud
- MIVEGEC, University of Montpellier, INRAE, CNRS, IRD, Montpellier, France
| |
Collapse
|
9
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
10
|
Russell A, Borrelli S, Fontana R, Laricchiuta J, Pascar J, Becking T, Giraud I, Cordaux R, Chandler CH. Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod. Heredity (Edinb) 2021; 127:266-277. [PMID: 34272503 PMCID: PMC8405825 DOI: 10.1038/s41437-021-00457-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Sex chromosomes are highly variable in some taxonomic groups, but the evolutionary mechanisms underlying this diversity are not well understood. In terrestrial isopod crustaceans, evolutionary turnovers in sex chromosomes are frequent, possibly caused by Wolbachia, a vertically-transmitted endosymbiont causing male-to-female sex reversal. Here, we use surgical manipulations and genetic crosses, plus genome sequencing, to examine sex chromosomes in the terrestrial isopod Trachelipus rathkei. Although an earlier cytogenetics study suggested a ZZ/ZW sex chromosome system in this species, we surprisingly find multiple lines of evidence that in our study population, sex is determined by an XX/XY system. Consistent with a recent evolutionary origin for this XX/XY system, the putative male-specific region of the genome is small. The genome shows evidence of Y-linked duplications of the gene encoding the androgenic gland hormone, a major component of male sexual differentiation in isopods. Our analyses also uncover sequences horizontally acquired from past Wolbachia infections, consistent with the hypothesis that Wolbachia may have interfered with the evolution of sex determination in T. rathkei. Overall, these results provide evidence for the co-occurrence of multiple sex chromosome systems within T. rathkei, further highlighting the relevance of terrestrial isopods as models for the study of sex chromosome evolution.
Collapse
Affiliation(s)
- Aubrie Russell
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Sevarin Borrelli
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Rose Fontana
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Joseph Laricchiuta
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
| | - Jane Pascar
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christopher H Chandler
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, USA.
| |
Collapse
|
11
|
Cordaux R, Chebbi MA, Giraud I, Pleydell DRJ, Peccoud J. Characterization of a Sex-Determining Region and Its Genomic Context via Statistical Estimates of Haplotype Frequencies in Daughters and Sons Sequenced in Pools. Genome Biol Evol 2021; 13:evab121. [PMID: 34048551 PMCID: PMC8350356 DOI: 10.1093/gbe/evab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Sex chromosomes are generally derived from a pair of autosomes that have acquired a locus controlling sex. Sex chromosomes may evolve reduced recombination around this locus and undergo a long process of molecular divergence. At that point, the original loci controlling sex may be difficult to pinpoint. This difficulty has affected many model species from mammals to birds to flies, which present highly diverged sex chromosomes. Identifying sex-controlling loci is easier in species with molecularly similar sex chromosomes. Here we aimed at pinpointing the sex-determining region (SDR) of Armadillidium vulgare, a terrestrial isopod with female heterogamety (ZW females and ZZ males) and whose sex chromosomes appear to show low genetic divergence. To locate the SDR, we assessed single-nucleotide polymorphism (SNP) allele frequencies in F1 daughters and sons sequenced in pools (pool-seq) in several families. We developed a Bayesian method that uses the SNP genotypes of individually sequenced parents and pool-seq data from F1 siblings to estimate the genetic distance between a given genomic region (contig) and the SDR. This allowed us to assign more than 43 Mb of contigs to sex chromosomes, and to demonstrate extensive recombination and very low divergence between these chromosomes. By taking advantage of multiple F1 families, we delineated a very short genomic region (∼65 kb) that presented no evidence of recombination with the SDR. In this short genomic region, the comparison of sequencing depths between sexes highlighted female-specific genes that have undergone recent duplication, and which may be involved in sex determination in A. vulgare.
Collapse
Affiliation(s)
- Richard Cordaux
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Isabelle Giraud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - David Richard John Pleydell
- UMR Animal, Santé, Territoires, Risques et Écosystèmes, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, France
| | - Jean Peccoud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| |
Collapse
|
12
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021. [PMID: 33945798 DOI: 10.20944/preprints202103.0338.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
13
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879-893. [PMID: 33945798 PMCID: PMC8192442 DOI: 10.1016/j.chom.2021.03.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
14
|
Zilber-Rosenberg I, Rosenberg E. Microbial driven genetic variation in holobionts. FEMS Microbiol Rev 2021; 45:6261188. [PMID: 33930136 DOI: 10.1093/femsre/fuab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variation in holobionts, (host and microbiome), occurring by changes in both host and microbiome genomes, can be observed from two perspectives: observable variations and the processes that bring about the variation. The observable includes the enormous genetic diversity of prokaryotes, which gave rise to eukaryotic organisms. Holobionts then evolved a rich microbiome with a stable core containing essential genes, less so common taxa, and a more diverse non-core enabling considerable genetic variation. The result being that, the human gut microbiome, for example, contains 1,000 times more unique genes than are present in the human genome. Microbial driven genetic variation processes in holobionts include: (1) Acquisition of novel microbes from the environment, which bring in multiple genes in one step, (2) amplification/reduction of certain microbes in the microbiome, that contribute to holobiont` s adaptation to changing conditions, (3) horizontal gene transfer between microbes and between microbes and host, (4) mutation, which plays an important role in optimizing interactions between different microbiota and between microbiota and host. We suggest that invertebrates and plants, where microbes can live intracellularly, have a greater chance of genetic exchange between microbiota and host, thus a greater chance of vertical transmission and a greater effect of microbiome on evolution of host than vertebrates. However, even in vertebrates the microbiome can aid in environmental fluctuations by amplification/reduction and by acquisition of novel microorganisms.
Collapse
Affiliation(s)
- Ilana Zilber-Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| | - Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| |
Collapse
|
15
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
16
|
Cormier A, Chebbi MA, Giraud I, Wattier R, Teixeira M, Gilbert C, Rigaud T, Cordaux R. Comparative Genomics of Strictly Vertically Transmitted, Feminizing Microsporidia Endosymbionts of Amphipod Crustaceans. Genome Biol Evol 2020; 13:5995313. [PMID: 33216144 DOI: 10.1093/gbe/evaa245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Microsporidia are obligate intracellular eukaryotic parasites of vertebrates and invertebrates. Microsporidia are usually pathogenic and undergo horizontal transmission or a mix of horizontal and vertical transmission. However, cases of nonpathogenic microsporidia, strictly vertically transmitted from mother to offspring, have been reported in amphipod crustaceans. Some of them further evolved the ability to feminize their nontransmitting male hosts into transmitting females. However, our understanding of the evolution of feminization in microsporidia is hindered by a lack of genomic resources. We report the sequencing and analysis of three strictly vertically transmitted microsporidia species for which feminization induction has been demonstrated (Nosema granulosis) or is strongly suspected (Dictyocoela muelleri and Dictyocoela roeselum), along with a draft genome assembly of their host Gammarus roeselii. Contrary to horizontally transmitted microsporidia that form environmental spores that can be purified, feminizing microsporidia cannot be easily isolated from their host cells. Therefore, we cosequenced symbiont and host genomic DNA and devised a computational strategy to obtain genome assemblies for the different partners. Genomic comparison with feminizing Wolbachia bacterial endosymbionts of isopod crustaceans indicated independent evolution of feminization in microsporidia and Wolbachia at the molecular genetic level. Feminization thus represents a remarkable evolutionary convergence of eukaryotic and prokaryotic microorganisms. Furthermore, a comparative genomics analysis of microsporidia allowed us to identify several candidate genes for feminization, involving functions such as DNA binding and membrane fusion. The genomic resources we generated contribute to establish Gammarus roeselii and its microsporidia symbionts as a new model to study the evolution of symbiont-mediated feminization.
Collapse
Affiliation(s)
- Alexandre Cormier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| | - Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| | - Rémi Wattier
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Maria Teixeira
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Thierry Rigaud
- Laboratoire Biogéosciences, Université Bourgogne Franche-Comté, UMR CNRS 6282, Dijon, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, France
| |
Collapse
|
17
|
Price TAR, Windbichler N, Unckless RL, Sutter A, Runge JN, Ross PA, Pomiankowski A, Nuckolls NL, Montchamp-Moreau C, Mideo N, Martin OY, Manser A, Legros M, Larracuente AM, Holman L, Godwin J, Gemmell N, Courret C, Buchman A, Barrett LG, Lindholm AK. Resistance to natural and synthetic gene drive systems. J Evol Biol 2020; 33:1345-1360. [PMID: 32969551 PMCID: PMC7796552 DOI: 10.1111/jeb.13693] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.
Collapse
Affiliation(s)
- Tom A. R. Price
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | - Andreas Sutter
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan-Niklas Runge
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Perran A. Ross
- Bio21 and the School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Pomiankowski
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | | | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Oliver Y. Martin
- Department of Biology (D-BIOL) & Institute of Integrative Biology (IBZ), ETH Zurich, Universitätsstrasse 16, CH 8092 Zurich, Switzerland
| | - Andri Manser
- Department of Ecology, Evolution and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Matthieu Legros
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | | | - Luke Holman
- School of Biosciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John Godwin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Neil Gemmell
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Saclay, Gif sur Yvette 91190, France
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Anna Buchman
- University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
- Verily Life Sciences, 269 E Grand Ave, South San Francisco, CA 94080
| | - Luke G. Barrett
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Anna K. Lindholm
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
18
|
Gabaldón T. Patterns and impacts of nonvertical evolution in eukaryotes: a paradigm shift. Ann N Y Acad Sci 2020; 1476:78-92. [PMID: 32860228 PMCID: PMC7589212 DOI: 10.1111/nyas.14471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Evolution of eukaryotic species and their genomes has been traditionally understood as a vertical process in which genetic material is transmitted from parents to offspring along a lineage, and in which genetic exchange is restricted within species boundaries. However, mounting evidence from comparative genomics indicates that this paradigm is often violated. Horizontal gene transfer and mating between diverged lineages blur species boundaries and challenge the reconstruction of evolutionary histories of species and their genomes. Nonvertical evolution might be more restricted in eukaryotes than in prokaryotes, yet it is not negligible and can be common in certain groups. Recognition of such processes brings about the need to incorporate this complexity into our models, as well as to conceptually reframe eukaryotic diversity and evolution. Here, I review the recent work from genomics studies that supports the effects of nonvertical modes of evolution including introgression, hybridization, and horizontal gene transfer in different eukaryotic groups. I then discuss emerging patterns and effects, illustrated by specific examples, that support the conclusion that nonvertical processes are often at the root of important evolutionary transitions and adaptations. I will argue that a paradigm shift is needed to naturally accommodate nonvertical processes in eukaryotic evolution.
Collapse
Affiliation(s)
- Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Barcelona, Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
19
|
Horizontal Transfer and Gene Loss Shaped the Evolution of Alpha-Amylases in Bilaterians. G3-GENES GENOMES GENETICS 2020; 10:709-719. [PMID: 31810981 PMCID: PMC7003070 DOI: 10.1534/g3.119.400826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The subfamily GH13_1 of alpha-amylases is typical of Fungi, but it is also found in some unicellular eukaryotes (e.g., Amoebozoa, choanoflagellates) and non-bilaterian Metazoa. Since a previous study in 2007, GH13_1 amylases were considered ancestral to the Unikonts, including animals, except Bilateria, such that it was thought to have been lost in the ancestor of this clade. The only alpha-amylases known to be present in Bilateria so far belong to the GH13_15 and 24 subfamilies (commonly called bilaterian alpha-amylases) and were likely acquired by horizontal transfer from a proteobacterium. The taxonomic scope of Eukaryota genomes in databases has been greatly increased ever since 2007. We have surveyed GH13_1 sequences in recent data from ca. 1600 bilaterian species, 60 non-bilaterian animals and also in unicellular eukaryotes. As expected, we found a number of those sequences in non-bilaterians: Anthozoa (Cnidaria) and in sponges, confirming the previous observations, but none in jellyfishes and in Ctenophora. Our main and unexpected finding is that such fungal (also called Dictyo-type) amylases were also consistently retrieved in several bilaterian phyla: hemichordates (deuterostomes), brachiopods and related phyla, some molluscs and some annelids (protostomes). We discuss evolutionary hypotheses possibly explaining the scattered distribution of GH13_1 across bilaterians, namely, the retention of the ancestral gene in those phyla only and/or horizontal transfers from non-bilaterian donors.
Collapse
|
20
|
Ote M, Yamamoto D. Impact of Wolbachia infection on Drosophila female germline stem cells. CURRENT OPINION IN INSECT SCIENCE 2020; 37:8-15. [PMID: 31726321 DOI: 10.1016/j.cois.2019.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/02/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia pipientis, one of the most dominant insect-symbiotic bacteria, highjacks the female germline of insects for its own propagation across host generations. Such strict dependence on female gametes in trans-generational propagation has driven Wolbachia to devise ingenious strategies to enhance female fertility. In Drosophila melanogaster females with female-sterile mutant alleles of the master sex-determining gene Sex-lethal (Sxl), Wolbachia colonizing female germline stem cells (GSCs) support the maintenance of GSCs, thereby rescuing the defective ovarian development. In the germ cell cytoplasm, Wolbachia are often found in proximity to ribonucleoprotein-complex processing bodies (P bodies), where the Wolbachia-derived protein TomO interacts with RNAs encoding Nanos and Orb proteins, which support the GSC maintenance and oocyte polarization, respectively. Thus, manipulation of host RNA is the key to successful vertical transmission of Wolbachia.
Collapse
Affiliation(s)
- Manabu Ote
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Japan.
| |
Collapse
|
21
|
Palmer DH, Rogers TF, Dean R, Wright AE. How to identify sex chromosomes and their turnover. Mol Ecol 2019; 28:4709-4724. [PMID: 31538682 PMCID: PMC6900093 DOI: 10.1111/mec.15245] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Although sex is a fundamental component of eukaryotic reproduction, the genetic systems that control sex determination are highly variable. In many organisms the presence of sex chromosomes is associated with female or male development. Although certain groups possess stable and conserved sex chromosomes, others exhibit rapid sex chromosome evolution, including transitions between male and female heterogamety, and turnover in the chromosome pair recruited to determine sex. These turnover events have important consequences for multiple facets of evolution, as sex chromosomes are predicted to play a central role in adaptation, sexual dimorphism, and speciation. However, our understanding of the processes driving the formation and turnover of sex chromosome systems is limited, in part because we lack a complete understanding of interspecific variation in the mechanisms by which sex is determined. New bioinformatic methods are making it possible to identify and characterize sex chromosomes in a diverse array of non-model species, rapidly filling in the numerous gaps in our knowledge of sex chromosome systems across the tree of life. In turn, this growing data set is facilitating and fueling efforts to address many of the unanswered questions in sex chromosome evolution. Here, we synthesize the available bioinformatic approaches to produce a guide for characterizing sex chromosome system and identity simultaneously across clades of organisms. Furthermore, we survey our current understanding of the processes driving sex chromosome turnover, and highlight important avenues for future research.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Thea F. Rogers
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Rebecca Dean
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Alison E. Wright
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
22
|
Becking T, Chebbi MA, Giraud I, Moumen B, Laverré T, Caubet Y, Peccoud J, Gilbert C, Cordaux R. Sex chromosomes control vertical transmission of feminizing Wolbachia symbionts in an isopod. PLoS Biol 2019; 17:e3000438. [PMID: 31600190 PMCID: PMC6805007 DOI: 10.1371/journal.pbio.3000438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/22/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023] Open
Abstract
Microbial endosymbiosis is widespread in animals, with major ecological and evolutionary implications. Successful symbiosis relies on efficient vertical transmission through host generations. However, when symbionts negatively affect host fitness, hosts are expected to evolve suppression of symbiont effects or transmission. Here, we show that sex chromosomes control vertical transmission of feminizing Wolbachia endosymbionts in the isopod Armadillidium nasatum. Theory predicts that the invasion of an XY/XX species by cytoplasmic sex ratio distorters is unlikely because it leads to fixation of the unusual (and often lethal or infertile) YY genotype. We demonstrate that A. nasatum X and Y sex chromosomes are genetically highly similar and that YY individuals are viable and fertile, thereby enabling Wolbachia spread in this XY-XX species. Nevertheless, we show that Wolbachia cannot drive fixation of YY individuals, because infected YY females do not transmit Wolbachia to their offspring, unlike XX and XY females. The genetic basis fits the model of a Y-linked recessive allele (associated with an X-linked dominant allele), in which the homozygous state suppresses Wolbachia transmission. Moreover, production of all-male progenies by infected YY females restores a balanced sex ratio at the host population level. This suggests that blocking of Wolbachia transmission by YY females may have evolved to suppress feminization, thereby offering a whole new perspective on the evolutionary interplay between microbial symbionts and host sex chromosomes.
Collapse
Affiliation(s)
- Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Tiffany Laverré
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Yves Caubet
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
23
|
Gilbert SF. Developmental symbiosis facilitates the multiple origins of herbivory. Evol Dev 2019; 22:154-164. [PMID: 31332951 DOI: 10.1111/ede.12291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Developmental bias toward particular evolutionary trajectories can be facilitated through symbiosis. Organisms are holobionts, consisting of zygote-derived cells and a consortia of microbes, and the development, physiology, and immunity of animals are properties of complex interactions between the zygote-derived cells and microbial symbionts. Such symbionts can be agents of developmental plasticity, allowing an organism to develop in particular directions. This plasticity can lead to genetic assimilation either through the incorporation of microbial genes into host genomes or through the direct maternal transmission of the microbes. Such plasticity can lead to niche construction, enabling the microbes to remodel host anatomy and/or physiology. In this article, I will focus on the ability of symbionts to bias development toward the evolution of herbivory. I will posit that the behavioral and morphological manifestations of herbivorous phenotypes must be preceded by the successful establishment of a community of symbiotic microbes that can digest cell walls and detoxify plant poisons. The ability of holobionts to digest plant materials can range from being a plastic trait, dependent on the transient incorporation of environmental microbes, to becoming a heritable trait of the holobiont organism, transmitted through the maternal propagation of symbionts or their genes.
Collapse
Affiliation(s)
- Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania
| |
Collapse
|
24
|
Callier V. Core Concept: Gene transfers from bacteria and viruses may be shaping complex organisms. Proc Natl Acad Sci U S A 2019; 116:13714-13716. [PMID: 31291702 PMCID: PMC6628661 DOI: 10.1073/pnas.1909030116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Chebbi MA, Becking T, Moumen B, Giraud I, Gilbert C, Peccoud J, Cordaux R. The Genome ofArmadillidium vulgare(Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination. Mol Biol Evol 2019; 36:727-741. [DOI: 10.1093/molbev/msz010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mohamed Amine Chebbi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Thomas Becking
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Ecologie, CNRS Université Paris-Sud UMR 9191, IRD UMR 247, Gif sur Yvette, France
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
26
|
Ramírez-Santos E, Rendón P, Bourtzis K, Schetelig MF, Cáceres C, Targovska A, Rehling T, Guillén-Navarro GK, Ruiz-Montoya L, Toledo J, Liedo P. Evaluation of horizontal gene transfer risk between the Mediterranean fruit fly Ceratitis capitata (Tephritidae) and its parasitoid Fopius ceratitivorus (Braconidae). PLoS One 2018; 13:e0207999. [PMID: 30513101 PMCID: PMC6279227 DOI: 10.1371/journal.pone.0207999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022] Open
Abstract
The transgenic strain of the Mediterranean fruit fly (medfly), Ceratitis capitata (Wied.) VIENNA 8 1260, developed from the classical genetic sexing strain VIENNA 8, has two molecular markers that exhibit red fluorescence in the body and green fluorescence in testicles and sperm. These traits offer a precise tool to discriminate between mass-reared sterile males and wild fertile males, and they could potentially increase the effectiveness of control programs for this pest. To assess the risk of horizontal transfer of the fluorescence transgenes in natural ecosystems, we used the VIENNA 8 1260 strain and the medfly parasitoid Fopius ceratitivorus. The fluorescence signal and the inheritance of the fluorescence gene markers were monitored for over 16 generations (about two years) in both species using fluorescence microscopy and a PCR-based assay. The PCR analysis was performed in four independent laboratories. Both fluorescence microscopy and PCR analysis indicated that no horizontal gene transfer of the DsRed transgene occurred during 16 generations of medfly parasitoid rearing under experimental conditions.
Collapse
Affiliation(s)
- Edwin Ramírez-Santos
- El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, Mexico
- Laboratorio El Pino, Programa MOSCAMED, Km. 47.5 carretera a El Salvador, Parque Nacional Laguna El Pino, Santa Rosa, Guatemala
- * E-mail:
| | | | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Marc F. Schetelig
- Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Asya Targovska
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Seibersdorf, Austria
| | - Tanja Rehling
- Institute for Insect Biotechnology, Justus-Liebig-University Gießen, Gießen, Germany
| | | | - Lorena Ruiz-Montoya
- El Colegio de la Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Jorge Toledo
- El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, Mexico
| | - Pablo Liedo
- El Colegio de la Frontera Sur (ECOSUR), Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, Mexico
| |
Collapse
|
27
|
Badawi M, Moumen B, Giraud I, Grève P, Cordaux R. Investigating the Molecular Genetic Basis of Cytoplasmic Sex Determination Caused by Wolbachia Endosymbionts in Terrestrial Isopods. Genes (Basel) 2018; 9:genes9060290. [PMID: 29890648 PMCID: PMC6026926 DOI: 10.3390/genes9060290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 12/24/2022] Open
Abstract
In animals, sexual differences between males and females are usually determined by sex chromosomes. Alternatively, sex may also be determined by vertically transmitted intracellular microbial endosymbionts. The best known cytoplasmic sex manipulative endosymbiont is Wolbachia which can, for instance, feminize genetic males into phenotypic females in the terrestrial isopod Armadillidium vulgare. However, the molecular genetic basis of cytoplasmic sex determination is unknown. To identify candidate genes of feminization induced by Wolbachia strain wVulC from A. vulgare, we sequenced the genome of Wolbachia strain wCon from Cylisticus convexus, the most closely related known Wolbachia strain to wVulC that does not induce feminization, and compared it to the wVulC genome. Then, we performed gene expression profiling of the 216 resulting wVulC candidate genes throughout host developmental stages in A. vulgare and the heterologous host C. convexus. We identified a set of 35 feminization candidate genes showing differential expression during host sexual development. Interestingly, 27 of the 35 genes are present in the f element, which is a piece of a feminizing Wolbachia genome horizontally transferred into the nuclear genome of A. vulgare and involved in female sex determination. Assuming that the molecular genetic basis of feminization by Wolbachia and the f element is the same, the 27 genes are candidates for acting as master sex determination genes in A. vulgare females carrying the f element.
Collapse
Affiliation(s)
- Myriam Badawi
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, UMR CNRS 7267, Bât. B8, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers CEDEX 9, France.
| |
Collapse
|