1
|
Zhang Y, Yang Y, Liu Q, Li S, Song Y. Lipid Accumulation by Snf-β Engineered Mucor circinelloides Strains on Glucose and Xylose. Appl Biochem Biotechnol 2023; 195:7697-7707. [PMID: 37086376 DOI: 10.1007/s12010-023-04531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays the regulatory roles in the utilization of selective carbon sources and lipid metabolism. Previously, the role of β subunit of SNF1 in lipid accumulation was evaluated by overexpression and knockout of Snf-β in oleaginous fungus M. circinelloides. In the present study, the growth and lipid accumulation of Snf-β overexpression and knockout strains were further analyzed and compared with glucose or xylose as a single or mixed carbon sources. The results showed that the lipid contents in Snf-β knockout strain improved by 23.2% (for glucose), 28.4% (for xylose), and 30.5% (for mixed glucose and xylose) compared with that of the control strain, respectively. The deletion of Snf-β subunit also altered the transcriptional level of acetyl-CoA carboxylase (ACC). The highest transcriptional levels of ACC1 in Snf-β knockout strain at 24 h were increased by 2.4-fold (for glucose), 2.8-fold (for xylose), and 3.1-fold (for mixed glucose and xylose) compared with that of the control strain, respectively. Our results indicated that Snf-β subunit enhanced lipid accumulation through the regulation of ACC1 in response to xylose or mixed sugars of glucose and xylose more significantly than that of response to glucose. This is the first study to explore the effect of Snf-β subunit of M. circinelloides in regulating lipid accumulation responding to different carbon nutrient signals of glucose and xylose. This study provides a foundation for the future application of the Snf-β engineered strains in lipid production from lignocellulose.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Yang Y, Zhang H, Liu Q, Song Y. Effect of Different Carbons on Lipid Production and SNF1 Transcription in Mucor Circinelloides. Indian J Microbiol 2023; 63:146-151. [PMID: 37188240 PMCID: PMC10172402 DOI: 10.1007/s12088-023-01070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays an important role in the utilization of selective carbon sources and regulation of lipid metabolism. In order to further explore the function of SNF1 in regulating lipid accumulation by responding nutritional signals from non-glucose carbon sources, in the present study, the lipid production and SNF1 transcriptional levels of Mucor circinelloides were analyzed and compared on different carbon sources. The results indicated that M. circinelloides could effectively utilize some secondary metabolic carbon sources of monosaccharides and disaccharides for growth and lipids production, such as fructose, maltose and galactose. Snf-β subunit was associated with the regulation of lipid metabolism in response to nutritional signals from different carbon sources. This is the first report on the transcriptional analysis of SNF1 subunits on different carbons metabolism in oleaginous filamentous fungi. This research has suggested that genetic engineering of SNF1 subunits will alter the lipid production of M. circinelloides from alternative carbon sources. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01070-z.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022 People’s Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Han Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Qiu Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| |
Collapse
|
3
|
Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228088. [PMID: 36432188 PMCID: PMC9695833 DOI: 10.3390/molecules27228088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022]
Abstract
Pestalotiopsis species have gained attention thanks to their structurally complex and biologically active secondary metabolites. In past decades, several new secondary metabolites were isolated and identified. Their bioactivities were tested, including anticancer, antifungal, antibacterial, and nematicidal activity. Since the previous review published in 2014, new secondary metabolites were isolated and identified from Pestalotiopsis species and unidentified strains. This review gathered published articles from 2014 to 2021 and focused on 239 new secondary metabolites and their bioactivities. To date, 384 Pestalotiopsis species have been discovered in diverse ecological habitats, with the majority of them unstudied. Some may contain secondary metabolites with unique bioactivities that might benefit pharmacology.
Collapse
|
4
|
Wang W, Zhao Y, Bai N, Zhang KQ, Yang J. AMPK Is Involved in Regulating the Utilization of Carbon Sources, Conidiation, Pathogenicity, and Stress Response of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0222522. [PMID: 35916406 PMCID: PMC9431048 DOI: 10.1128/spectrum.02225-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric complex, can sense energy and nutritional status in eukaryotic cells, thereby participating in the regulation of multiple cellular processes. In this study, we characterized the function of the catalytic α-subunit (SNF1) and the two regulatory β- and γ-subunits (GAL83 and SNF4) of AMPK in a representative nematode-trapping fungus, Arthrobotrys oligospora, by gene knockout, phenotypic analysis, and RNA sequencing. The ability of the AMPK complex mutants (including ΔAosnf1, ΔAogal83, and ΔAosnf4) to utilize a nonfermentable carbon source (glycerol) was reduced, and the spore yields and trap formation were remarkably decreased. Moreover, AMPK plays an important role in regulating stress response and nematode predation efficiency. Transcriptomic profiling between the wild-type strain and ΔAosnf1 showed that differentially expressed genes were enriched for peroxisome, endocytosis, fatty acid degradation, and multilipid metabolism (sphingolipid, ether lipid, glycerolipid, and glycerophospholipid). Meanwhile, a reduced lipid droplet accumulation in ΔAosnf1, ΔAogal83, and ΔAosnf4 mutants was observed, and more vacuoles appeared in the mycelia of the ΔAosnf1 mutant. These results highlight the important regulatory role of AMPK in the utilization of carbon sources and lipid metabolism, as well as providing novel insights into the regulatory mechanisms of the mycelia development, conidiation, and trap formation of nematode-trapping (NT) fungi. IMPORTANCE NT fungi are widely distributed in various ecosystems and are important factors in the control of nematode populations in nature; their trophic mycelia can form unique infectious devices (traps) for capturing nematodes. Arthrobotrys oligospora is a representative NT fungi which can develop complex three-dimensional networks (adhesive networks) for nematode predation. Here, we demonstrated that AMPK plays an important role in the glycerol utilization, conidiation, trap formation, and nematode predation of A. oligospora, which was further confirmed by transcriptomic analysis of the wild-type and mutant strains. In particular, our analysis indicated that AMPK is required for lipid metabolism, which is primarily associated with energy regulation and is essential for trap formation. Therefore, this study extends the functional study of AMPK in NT fungi and helps to elucidate the molecular mechanism of the regulation of trap development, as well as laying the foundation for the development of efficient nematode biocontrol agents.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
5
|
Lengyel S, Rascle C, Poussereau N, Bruel C, Sella L, Choquer M, Favaron F. Snf1 Kinase Differentially Regulates Botrytis cinerea Pathogenicity according to the Plant Host. Microorganisms 2022; 10:microorganisms10020444. [PMID: 35208900 PMCID: PMC8877277 DOI: 10.3390/microorganisms10020444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20–80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.
Collapse
Affiliation(s)
- Szabina Lengyel
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christine Rascle
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Nathalie Poussereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christophe Bruel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Correspondence: (L.S.); (M.C.)
| | - Mathias Choquer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
- Correspondence: (L.S.); (M.C.)
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
| |
Collapse
|
6
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
7
|
The regulation of Saccharomyces cerevisiae Snf1 protein kinase on glucose utilization is in a glucose-dependent manner. Curr Genet 2021; 67:245-248. [PMID: 33385241 DOI: 10.1007/s00294-020-01137-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation catalyzed by protein kinases is the major regulatory mechanism that controls many cellular processes. The regulatory mechanism of one protein kinase in different signals is distinguished, probably inducing multiple phenotypes. The Saccharomyces cerevisiae Snf1 protein kinase, a member of the AMP‑activated protein kinase family, plays important roles in the response to nutrition and environmental stresses. Glucose is an important nutrient for life activities of cells, but glucose repression and osmotic pressure could be produced at certain concentrations. To deeply understand the role of Snf1 in the regulation of nutrient metabolism and stress response of S. cerevisiae cells, the role and the regulatory mechanism of Snf1 in glucose metabolism are discussed in different level of glucose: below 1% (glucose derepression status), in 2% (glucose repression status), and in 30% glucose (1.66 M, an osmotic equivalent to 0.83 M NaCl). In summary, Snf1 regulates glucose metabolism in a glucose-dependent manner, which is associated with the different regulation on activation, localization, and signal pathways of Snf1 by varied glucose. Exploring the regulatory mechanism of Snf1 in glucose metabolism in different concentrations of glucose can provide insights into the study of the global regulatory mechanism of Snf1 in yeast and can help to better understand the complexity of physiological response of cells to stresses.
Collapse
|
8
|
Li Y, Yan P, Lu X, Qiu Y, Liang S, Liu G, Li S, Mou L, Xie N. Involvement of PaSNF1 in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus Podospora anserina. Front Microbiol 2020; 11:1038. [PMID: 32587577 PMCID: PMC7299030 DOI: 10.3389/fmicb.2020.01038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/27/2020] [Indexed: 02/05/2023] Open
Abstract
The sucrose non-fermenting 1/AMP-activated protein kinase (SNF1/AMPK) is a central regulator of carbon metabolism and energy production in the eukaryotes. In this study, the functions of the Podospora anserina SNF1 (PaSNF1) ortholog were investigated. The ΔPaSNF1 mutant displays a delayed development of mycelium and fruiting bodies and fails to form ascospores. The expression of the PaSNF1 gene in the strain providing female organs in a cross is sufficient to ensure fertility, indicating a maternal effect. Results of environmental stress showed that ΔPaSNF1 was hypersensitive to stress, such as osmotic pressure and heat shock, and resistant to fluconazole. Interestingly, the knockout of PaSNF1 significantly promoted sterigmatocystin (ST) synthesis but suppressed cellulase [filter paperase (FPA), endoglucanase (EG), and β-glucosidase (BG)] activity. Further, transcriptome analysis indicated that PaSNF1 made positive regulatory effects on the expression of genes encoding cellulolytic enzymes. These results suggested that PaSNF1 may function in balancing the operation of primary and secondary metabolism. This study suggested that SNF1 was a key regulator concerting vegetative growth, sexual development, and stress tolerance. Our study provided the first genetic evidence that SNF1 was involved in the ST biosynthesis and that it may also be a major actor of lignocellulose degradation in P. anserina.
Collapse
Affiliation(s)
- Yuanjing Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xiaojie Lu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yanling Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shang Liang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Lin Mou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Wāng Y, Wang R, Wáng Y, Li Y, Yang RH, Gong M, Shang JJ, Zhang JS, Mao WJ, Zou G, Bao DP. Diverse function and regulation of CmSnf1 in entomopathogenic fungus Cordyceps militaris. Fungal Genet Biol 2020; 142:103415. [PMID: 32497577 DOI: 10.1016/j.fgb.2020.103415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
SNF1/AMPK protein kinases play important roles in fungal development and activation of catabolite-repressed genes. In this study, we characterized the role of SNF1 ortholog in Cordyceps militaris (CmSnf1). The vegetative growth of a CmSnf1 deletion mutant was (ΔCmSnf1) reduced by 42.2% with arabinose as a sole carbon source. Most strikingly, the ΔCmSnf1 produced only a few conidia and exhibited delayed conidial germination. We found that CmSnf1 was necessary for mycelium to penetrate the insect cuticle to form the fruiting body on silkworm pupae, consistent with the down-regulation of chitinase- and protease-encoding genes in ΔCmSnf1. However, cordycepin content increased by more than 7 times in culture supernatants. Correspondingly, the relative expression levels of cordycepin gene cluster members were also elevated. In particular, the expression of cns4 associated with cordycepin transfer was up-regulated >10-fold. Furthermore, transcriptional analysis showed that CmSnf1 regulated the expression of genes involved in cell autophagy and oxidative stress tolerance. We speculated that under environmental stress, both the ATG and SNF1 pathways might collaborate to sustain adverse environments. Our study provides an initial framework to probe the diverse function and regulation of CmSnf1 in C. militaris, which will shed more light on the direction of molecular improvement of medicinal fungi.
Collapse
Affiliation(s)
- Ying Wāng
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Rong Wang
- Plant Immunity Center, Haixia Institute of Science and Technology, Fujian Agriculture and Foresty University, Fujian 350002, PR China
| | - Ying Wáng
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Yan Li
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Rui-Heng Yang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Ming Gong
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jun-Jun Shang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Jin-Song Zhang
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Wen-Jun Mao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Gen Zou
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| | - Da-Peng Bao
- National Engineering Research Centre of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|