1
|
Quinn CB, Preckler-Quisquater S, Buchalski MR, Sacks BN. Whole Genomes Inform Genetic Rescue Strategy for Montane Red Foxes in North America. Mol Biol Evol 2024; 41:msae193. [PMID: 39288165 PMCID: PMC11424165 DOI: 10.1093/molbev/msae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
A few iconic examples have proven the value of facilitated gene flow for counteracting inbreeding depression and staving off extinction; yet, the practice is often not implemented for fear of causing outbreeding depression. Using genomic sequencing, climatic niche modeling, and demographic reconstruction, we sought to assess the risks and benefits of using translocations as a tool for recovery of endangered montane red fox (Vulpes vulpes) populations in the western United States. We demonstrated elevated inbreeding and homozygosity of deleterious alleles across all populations, but especially those isolated in the Cascade and Sierra Nevada ranges. Consequently, translocations would be expected to increase population growth by masking deleterious recessive alleles. Demographic reconstructions further indicated shallow divergences of less than a few thousand years among montane populations, suggesting low risk of outbreeding depression. These genomic-guided findings set the stage for future management, the documentation of which will provide a roadmap for recovery of other data-deficient taxa.
Collapse
Affiliation(s)
- Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
- National Genomics Center for Wildlife and Fish Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael R Buchalski
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Preckler-Quisquater S, Quinn CB, Sacks BN. Maintenance of a narrow hybrid zone between native and introduced red foxes (Vulpes vulpes) despite conspecificity and high dispersal capabilities. Mol Ecol 2024; 33:e17418. [PMID: 38847182 DOI: 10.1111/mec.17418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024]
Abstract
Human-facilitated introductions of nonnative populations can lead to secondary contact between allopatric lineages, resulting in lineage homogenisation or the formation of stable hybrid zones maintained by reproductive barriers. We investigated patterns of gene flow between the native Sacramento Valley red fox (Vulpes vulpes patwin) and introduced conspecifics of captive-bred origin in California's Central Valley. Considering their recent divergence (20-70 kya), we hypothesised that any observed barriers to gene flow were primarily driven by pre-zygotic (e.g. behavioural differences) rather than post-zygotic (e.g. reduced hybrid fitness) barriers. We also explored whether nonnative genes could confer higher fitness in the human-dominated landscape resulting in selective introgression into the native population. Genetic analysis of red foxes (n = 682) at both mitochondrial (cytochrome b + D-loop) and nuclear (19,051 SNPs) loci revealed narrower cline widths than expected under a simulated model of unrestricted gene flow, consistent with the existence of reproductive barriers. We identified several loci with reduced introgression that were previously linked to behavioural divergence in captive-bred and domestic canids, supporting pre-zygotic, yet possibly hereditary, barriers as a mechanism driving the narrowness and stability of the hybrid zone. Several loci with elevated gene flow from the nonnative into the native population were linked to genes associated with domestication and adaptation to human-dominated landscapes. This study contributes to our understanding of hybridisation dynamics in vertebrates, particularly in the context of species introductions and landscape changes, underscoring the importance of considering how multiple mechanisms may be maintaining lineages at the species and subspecies level.
Collapse
Affiliation(s)
- Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- USDA Forest Service, Rocky Mountain Research Station, National Genomics Center for Wildlife and Fish Conservation, Missoula, Montana, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
3
|
Peng Y, Li H, Liu Z, Zhang C, Li K, Gong Y, Geng L, Su J, Guan X, Liu L, Zhou R, Zhao Z, Guo J, Liang Q, Li X. Chromosome-level genome assembly of the Arctic fox (Vulpes lagopus) using PacBio sequencing and Hi-C technology. Mol Ecol Resour 2021; 21:2093-2108. [PMID: 33829635 DOI: 10.1111/1755-0998.13397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
The Arctic fox (Vulpes lagopus) is the only fox species occurring in the Arctic and has adapted to its extreme climatic conditions. Currently, the molecular basis of its adaptation to the extreme climate has not been characterized. Here, we applied PacBio sequencing and chromosome structure capture technique to assemble the first V. lagopus genome assembly, which is assembled into chromosome fragments. The genome assembly has a total length of 2.345 Gb with a contig N50 of 31.848 Mb and a scaffold N50 of 131.537 Mb, consisting of 25 pseudochromosomal scaffolds. The V. lagopus genome had approximately 32.33% repeat sequences. In total, 21,278 protein-coding genes were predicted, of which 99.14% were functionally annotated. Compared with 12 other mammals, V. lagopus was most closely related to V. Vulpes with an estimated divergence time of ~7.1 Ma. The expanded gene families and positively selected genes potentially play roles in the adaptation of V. lagopus to Arctic extreme environment. This high-quality assembled genome will not only promote future studies of genetic diversity and evolution in foxes and other canids but also provide important resources for conservation of Arctic species.
Collapse
Affiliation(s)
- Yongdong Peng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Hong Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhengzhu Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Chuansheng Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Keqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Mathematics and Information Science, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuanfang Gong
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Liying Geng
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jingjing Su
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, China
| | - Xuemin Guan
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lei Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai-an, China
| | - Ruihong Zhou
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Ziya Zhao
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jianxu Guo
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xianglong Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation (Under Planning), College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
4
|
Kuo YH, Vanderzwan SL, Kasprowicz AE, Sacks BN. Using Ancestry-Informative SNPs to Quantify Introgression of European Alleles into North American Red Foxes. J Hered 2020; 110:782-792. [PMID: 31562767 DOI: 10.1093/jhered/esz053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/18/2019] [Indexed: 11/13/2022] Open
Abstract
A recent study demonstrated that British red foxes introduced to the mid-Atlantic coastal plain (ACP) of the eastern United States during the late 18th century successfully interbred with indigenous American red foxes despite half a million year's divergence. However, a large disparity in frequency of European mitochondria (27%) versus Y chromosomes (1%) left unclear the magnitude of genetic exchange. We sought to quantify genomic introgression using 35 autosomal and 5 X-chromosome ancestry-informative markers (AIMs) in conjunction with diagnostic Y chromosome single nucleotide polymorphism (Y-SNP) markers to characterize the modern state of red foxes in the eastern United States and to gain insight into the potential role of reproductive barriers. European admixture was highest in the ACP and apparently restricted to the central eastern United States. We estimated only slightly (and nonsignificantly) European ancestry in autosomal than X-chromosome markers. European ancestry from autosomal and X-chromosome markers (36.4%) was higher than the corresponding mitochondrial (mt) DNA estimate (26.4%) in the ACP. Only 1 of 124 males (<1%) in the ACP had European Y chromosomes, which was similar to the neighboring regions, in which 2 of 99 (2%) males carried a European Y chromosome (the same haplotype). Although we could not rule out drift as the cause of low European Y-chromosome frequency, results were also consistent with F1 male infertility. In the future, more extensive genomic sequencing will enable a more thorough investigation of possible barrier genes on the X chromosome as well as throughout the genome.
Collapse
Affiliation(s)
- Yi Hung Kuo
- Forensic Sciences Graduate Program, University of California, Davis, Davis, CA.,The Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | - Stevi L Vanderzwan
- The Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA
| | | | - Benjamin N Sacks
- The Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA
| |
Collapse
|
5
|
Rosenfeld CS, Hekman JP, Johnson JL, Lyu Z, Ortega MT, Joshi T, Mao J, Vladimirova AV, Gulevich RG, Kharlamova AV, Acland GM, Hecht EE, Wang X, Clark AG, Trut LN, Behura SK, Kukekova AV. Hypothalamic transcriptome of tame and aggressive silver foxes (Vulpes vulpes) identifies gene expression differences shared across brain regions. GENES BRAIN AND BEHAVIOR 2019; 19:e12614. [PMID: 31605445 DOI: 10.1111/gbb.12614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The underlying neurological events accompanying dog domestication remain elusive. To reconstruct the domestication process in an experimental setting, silver foxes (Vulpes vulpes) have been deliberately bred for tame vs aggressive behaviors for more than 50 generations at the Institute for Cytology and Genetics in Novosibirsk, Russia. The hypothalamus is an essential part of the hypothalamic-pituitary-adrenal axis and regulates the fight-or-flight response, and thus, we hypothesized that selective breeding for tameness/aggressiveness has shaped the hypothalamic transcriptomic profile. RNA-seq analysis identified 70 differentially expressed genes (DEGs). Seven of these genes, DKKL1, FBLN7, NPL, PRIMPOL, PTGRN, SHCBP1L and SKIV2L, showed the same direction expression differences in the hypothalamus, basal forebrain and prefrontal cortex. The genes differentially expressed across the three tissues are involved in cell division, differentiation, adhesion and carbohydrate processing, suggesting an association of these processes with selective breeding. Additionally, 159 transcripts from the hypothalamus demonstrated differences in the abundance of alternative spliced forms between the tame and aggressive foxes. Weighted gene coexpression network analyses also suggested that gene modules in hypothalamus were significantly associated with tame vs aggressive behavior. Pathways associated with these modules include signal transduction, interleukin signaling, cytokine-cytokine receptor interaction and peptide ligand-binding receptors (eg, G-protein coupled receptor [GPCR] ligand binding). Current studies show the selection for tameness vs aggressiveness in foxes is associated with unique hypothalamic gene profiles partly shared with other brain regions and highlight DEGs involved in biological processes such as development, differentiation and immunological responses. The role of these processes in fox and dog domestication remains to be determined.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri.,MU Informatics Institute, University of Missouri, Columbia, Missouri
| | - Jessica P Hekman
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana, Illinois.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jennifer L Johnson
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana, Illinois
| | - Zhen Lyu
- Department of Computer Science, University of Missouri, Columbia, Missouri
| | - Madison T Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,MU Informatics Institute, University of Missouri, Columbia, Missouri.,Department of Computer Science, University of Missouri, Columbia, Missouri.,Department of Health Management and Informatics, University of Missouri, Columbia, Missouri
| | - Jiude Mao
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Anastasiya V Vladimirova
- The Laboratory of Evolutionary Genetics, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Rimma G Gulevich
- The Laboratory of Evolutionary Genetics, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasiya V Kharlamova
- The Laboratory of Evolutionary Genetics, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Gregory M Acland
- Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, New York
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Xu Wang
- Department of Pathobiology, Auburn University, College of Veterinary Medicine, Auburn, Alabama
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Lyudmila N Trut
- The Laboratory of Evolutionary Genetics, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Susanta K Behura
- MU Informatics Institute, University of Missouri, Columbia, Missouri.,Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | - Anna V Kukekova
- Department of Animal Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois, Urbana, Illinois
| |
Collapse
|
6
|
Rando HM, Wadlington WH, Johnson JL, Stutchman JT, Trut LN, Farré M, Kukekova AV. The Red Fox Y-Chromosome in Comparative Context. Genes (Basel) 2019; 10:E409. [PMID: 31142040 PMCID: PMC6627929 DOI: 10.3390/genes10060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
While the number of mammalian genome assemblies has proliferated, Y-chromosome assemblies have lagged behind. This discrepancy is caused by biological features of the Y-chromosome, such as its high repeat content, that present challenges to assembly with short-read, next-generation sequencing technologies. Partial Y-chromosome assemblies have been developed for the cat (Feliscatus), dog (Canislupusfamiliaris), and grey wolf (Canislupuslupus), providing the opportunity to examine the red fox (Vulpesvulpes) Y-chromosome in the context of closely related species. Here we present a data-driven approach to identifying Y-chromosome sequence among the scaffolds that comprise the short-read assembled red fox genome. First, scaffolds containing genes found on the Y-chromosomes of cats, dogs, and wolves were identified. Next, analysis of the resequenced genomes of 15 male and 15 female foxes revealed scaffolds containing male-specific k-mers and patterns of inter-sex copy number variation consistent with the heterogametic chromosome. Analyzing variation across these two metrics revealed 171 scaffolds containing 3.37 Mbp of putative Y-chromosome sequence. The gene content of these scaffolds is consistent overall with that of the Y-chromosome in other carnivore species, though the red fox Y-chromosome carries more copies of BCORY2 and UBE1Y than has been reported in related species and fewer copies of SRY than in other canids. The assignment of these scaffolds to the Y-chromosome serves to further characterize the content of the red fox draft genome while providing resources for future analyses of canid Y-chromosome evolution.
Collapse
Affiliation(s)
- Halie M Rando
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - William H Wadlington
- Tropical Research and Education Center, Agronomy Department, University of Florida, Homestead, FL 33031, USA.
| | - Jennifer L Johnson
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jeremy T Stutchman
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lyudmila N Trut
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.
| | - Marta Farré
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Anna V Kukekova
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
7
|
Ruvinskiy D, Larkin DM, Farré M. A Near Chromosome Assembly of the Dromedary Camel Genome. Front Genet 2019; 10:32. [PMID: 30804979 PMCID: PMC6371769 DOI: 10.3389/fgene.2019.00032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
The dromedary camel is an economically and socially important species of livestock in many parts of the world, being used for transport and the production of milk and meat. Much like cattle and horses, the camel may be found in industrial farming conditions as well as used in sporting. Camel racing is a multi-million dollar industry, with some specimens being valued at upward of 9.5 million USD. Despite its apparent value to humans, the dromedary camel is a neglected species in genomics. While cattle and other domesticated species have had much attention in terms of genome assembly, the camel has only been assembled to scaffold level, which does not give a clear indication of the order or chromosomal location of sequenced fragments. In this study, the Reference Assistant Chromosome Assembly (RACA) algorithm was implemented to use read-pair information of camel scaffolds, aligned with the cattle and human genomes in order to organize and orient these scaffolds in a near-chromosome level assembly. This method generated 72 large size fragments (N50 54.36 Mb). These predicted chromosome fragments (PCFs) were then compared with comparative maps of camel and cytogenetic map of alpaca chromosomes, allowing us to further upgrade the assembly. This dromedary camel assembly will be an invaluable tool to verify future camel assemblies generated with chromatin conformation or/and long read technologies. This study provides the first near-chromosome assembly of the dromedary camel, thus adding this economically important species to a growing pool of knowledge regarding the genome structure of domesticated livestock.
Collapse
Affiliation(s)
- Daniil Ruvinskiy
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Denis M Larkin
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.,The Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Marta Farré
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
8
|
Farré M, Li Q, Zhou Y, Damas J, Chemnick LG, Kim J, Ryder OA, Ma J, Zhang G, Larkin DM, Lewin HA. A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert. Gigascience 2019; 8:5289690. [PMID: 30649288 PMCID: PMC6351727 DOI: 10.1093/gigascience/giy162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Background The gemsbok (Oryx gazella) is one of the largest antelopes in Africa. Gemsbok are heterothermic and thus highly adapted to live in the desert, changing their feeding behavior when faced with extreme drought and heat. A high-quality genome sequence of this species will assist efforts to elucidate these and other important traits of gemsbok and facilitate research on conservation efforts. Findings Using 180 Gbp of Illumina paired-end and mate-pair reads, a 2.9 Gbp assembly with scaffold N50 of 1.48 Mbp was generated using SOAPdenovo. Scaffolds were extended using Chicago library sequencing, which yielded an additional 114.7 Gbp of DNA sequence. The HiRise assembly using SOAPdenovo + Chicago library sequencing produced a scaffold N50 of 47 Mbp and a final genome size of 2.9 Gbp, representing 90.6% of the estimated genome size and including 93.2% of expected genes according to Benchmarking Universal Single-Copy Orthologs analysis. The Reference-Assisted Chromosome Assembly tool was used to generate a final set of 47 predicted chromosome fragments with N50 of 86.25 Mbp and containing 93.8% of expected genes. A total of 23,125 protein-coding genes and 1.14 Gbp of repetitive sequences were annotated using de novo and homology-based predictions. Conclusions Our results provide the first high-quality, chromosome-scale genome sequence assembly for gemsbok, which will be a valuable resource for studying adaptive evolution of this species and other ruminants.
Collapse
Affiliation(s)
- Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, UK
| | - Qiye Li
- State Key Laboratory of Genetic Resources and Department of Comparative Biomedical Sciences Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,China National Genebank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China
| | - Yang Zhou
- China National Genebank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, UK
| | - Leona G Chemnick
- Institute for Conservation Research, San Diego Zoo, Escondido, California, USA
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, South Korea
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, California, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, USA
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Department of Comparative Biomedical Sciences Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,China National Genebank, BGI-Shenzhen, Dapeng New District, Shenzhen 518120, China.,Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, UK
| | - Harris A Lewin
- The UC Davis Genome Center, Department of Evolution and Ecology, College of Biological Sciences, and the Department of Reproduction and Population Health, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
9
|
Iannucci A, Svartman M, Bellavita M, Chelazzi G, Stanyon R, Ciofi C. Insights into Emydid Turtle Cytogenetics: The European Pond Turtle as a Model Species. Cytogenet Genome Res 2019; 157:166-171. [PMID: 30630162 DOI: 10.1159/000495833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
Our knowledge of Testudines evolution is limited by the lack of modern cytogenetic data. Compared to other reptiles, there is little information even on chromosome banding, let alone molecular cytogenetic data. Here, we provide detailed information on the karyotype of the European pond turtle Emys orbicularis, a model Emydidae, employing both chromosome banding and molecular cytogenetics. We provide a high-resolution G-banded karyotype and a map of rDNA genes and telomeric sequences using fluorescence in situ hybridization. We test hypotheses of sex-determining mechanisms in Emys by comparative genomic hybridization to determine if Emys has a cryptic sex-specific region. Our results provide valuable data to guide future efforts on genome sequencing and anchoring in Emydidae and for understanding karyotype evolution in Testudines.
Collapse
|