1
|
Zheng CC, Gao L, Sun H, Zhao XY, Gao ZQ, Liu J, Guo W. Advancements in enzymatic reaction-mediated microbial transformation. Heliyon 2024; 10:e38187. [PMID: 39430465 PMCID: PMC11489147 DOI: 10.1016/j.heliyon.2024.e38187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Enzymatic reaction-mediated microbial transformation has emerged as a promising technology with significant potential in various industries. These technologies offer the ability to produce enzymes on a large scale, optimize their functionality, and enable sustainable production processes. By utilizing microbial hosts and manipulating their genetic makeup, enzymes can be synthesized efficiently and tailored to meet specific industrial requirements. This leads to enhanced enzyme performance and selectivity, facilitating the development of novel processes and the production of valuable compounds. Moreover, microbial transformation and biosynthesis offer sustainable alternatives to traditional chemical methods, reducing environmental impact and promoting greener production practices. Microbial transformations enrich drug candidate diversity and enhance active ingredient potency, benefiting the pharmaceutical industry. Continued advancements in genetic engineering and bioprocess optimization drive further innovation and application development in Enzymatic reaction-mediated microbial transformation. The integration of AI for predicting enzymatic reactions and optimizing pathways marks a promising direction for future research. In summary, these technologies have the potential to revolutionize several industries by providing cost-effective, sustainable solutions.
Collapse
Affiliation(s)
| | - Liang Gao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao Sun
- Beijing Lu-he Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Zhao
- Beijing Lu-he Hospital, Capital Medical University, Beijing, China
| | - Zhu-qing Gao
- Beijing Ji-shui-tan Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- The affiliated Jiang-ning Hospital of Nanjing Medical University, Jiangsu, China
| | - Wei Guo
- Aviation General Hospital, Beijing, 100012, China
| |
Collapse
|
2
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
4
|
Solanki MK, Joshi NC, Singh PK, Singh SK, Santoyo G, Basilio de Azevedo LC, Kumar A. From concept to reality: Transforming agriculture through innovative rhizosphere engineering for plant health and productivity. Microbiol Res 2024; 279:127553. [PMID: 38007891 DOI: 10.1016/j.micres.2023.127553] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The plant rhizosphere is regarded as a microbial hotspot due to a wide array of root exudates. These root exudates comprise diverse organic compounds such as phenolic, polysaccharides, flavonoids, fatty acids, and amino acids that showed chemotactic responses towards microbial communities and mediate significant roles in root colonization. The rhizospheric microbiome is a crucial driver of plant growth and productivity, contributing directly or indirectly by facilitating nutrient acquisition, phytohormone modulation, and phosphate solubilization under normal and stressful conditions. Moreover, these microbial candidates protect plants from pathogen invasion by secreting antimicrobial and volatile organic compounds. To enhance plant fitness and yield, rhizospheric microbes are frequently employed as microbial inoculants. However, recent developments have shifted towards targeted rhizosphere engineering or microbial recruitments as a practical approach to constructing desired plant rhizospheres for specific outcomes. The rhizosphere, composed of plants, microbes, and soil, can be modified in several ways to improve inoculant efficiency. Rhizosphere engineering is achieved through three essential mechanisms: a) plant-mediated modifications involving genetic engineering, transgenics, and gene editing of plants; b) microbe-mediated modifications involving genetic alterations of microbes through upstream or downstream methodologies; and c) soil amendments. These mechanisms shape the rhizospheric microbiome, making plants more productive and resilient under different stress conditions. This review paper comprehensively summarizes the various aspects of rhizosphere engineering and their potential applications in maintaining plant health and achieving optimum agricultural productivity.
Collapse
Affiliation(s)
- Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
| | - Naveen Chandra Joshi
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Pachhunga University College Campus, Mizoram University (A Central University), Aizawl 796001, India
| | - Sandeep Kumar Singh
- Department of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico
| | - Lucas Carvalho Basilio de Azevedo
- Instituto de Ciências Agrárias, Campus Glória-Bloco CCG, Universidade Federal de Uberlândia, RodoviaBR-050, KM 78, S/N, Uberlândia CEP 38410-337, Brazil
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
5
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
6
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
7
|
Wang Y, Demirer GS. Synthetic biology for plant genetic engineering and molecular farming. Trends Biotechnol 2023; 41:1182-1198. [PMID: 37012119 DOI: 10.1016/j.tibtech.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Many efforts have been put into engineering plants to improve crop yields and stress tolerance and boost the bioproduction of valuable molecules. Yet, our capabilities are still limited due to the lack of well-characterized genetic building blocks and resources for precise manipulation and given the inherently challenging properties of plant tissues. Advancements in plant synthetic biology can overcome these bottlenecks and release the full potential of engineered plants. In this review, we first discuss the recently developed plant synthetic elements from single parts to advanced circuits, software, and hardware tools expediting the engineering cycle. Next, we survey the advancements in plant biotechnology enabled by these recent resources. We conclude the review with outstanding challenges and future directions of plant synthetic biology.
Collapse
Affiliation(s)
- Yunqing Wang
- Department of Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gozde S Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Abstract
Synthetic biology (SynBio) has attracted like no other recent development the attention not only of Life Science researchers and engineers but also of intellectuals, technology think-tanks, and private and public investors. This is largely due to its promise to propel biotechnology beyond its traditional realms in medicine, agriculture, and environment toward new territories historically dominated by the chemical and manufacturing industries─but now claimed to be amenable to complete biologization. For this to happen, it is crucial for the field to remain true to its foundational engineering drive, which relies on mathematics and quantitative tools to construct practical solutions to real-world problems. This article highlights several SynBio themes that, in our view, come with somewhat precarious promises that need to be tackled. First, SynBio must critically examine whether enough basic information is available to enable the design or redesign of life processes and turn biology from a descriptive science into a prescriptive one. Second, unlike circuit boards, cells are built with soft matter and possess inherent abilities to mutate and evolve, even without external cues. Third, the field cannot be presented as the one technical solution to many grave world problems and so must avoid exaggerated claims and hype. Finally, SynBio should pay heed to public sensitivities and involve social science in its development and growth, and thus change the technology narrative from sheer domination of the living world to conversation and win-win partnership.
Collapse
Affiliation(s)
- Andrew D. Hanson
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Víctor de Lorenzo
- Systems
Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
9
|
Nadarajah K, Abdul Rahman NSN. The Microbial Connection to Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:2307. [PMID: 37375932 DOI: 10.3390/plants12122307] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Microorganisms are an important element in modeling sustainable agriculture. Their role in soil fertility and health is crucial in maintaining plants' growth, development, and yield. Further, microorganisms impact agriculture negatively through disease and emerging diseases. Deciphering the extensive functionality and structural diversity within the plant-soil microbiome is necessary to effectively deploy these organisms in sustainable agriculture. Although both the plant and soil microbiome have been studied over the decades, the efficiency of translating the laboratory and greenhouse findings to the field is largely dependent on the ability of the inoculants or beneficial microorganisms to colonize the soil and maintain stability in the ecosystem. Further, the plant and its environment are two variables that influence the plant and soil microbiome's diversity and structure. Thus, in recent years, researchers have looked into microbiome engineering that would enable them to modify the microbial communities in order to increase the efficiency and effectiveness of the inoculants. The engineering of environments is believed to support resistance to biotic and abiotic stressors, plant fitness, and productivity. Population characterization is crucial in microbiome manipulation, as well as in the identification of potential biofertilizers and biocontrol agents. Next-generation sequencing approaches that identify both culturable and non-culturable microbes associated with the soil and plant microbiome have expanded our knowledge in this area. Additionally, genome editing and multidisciplinary omics methods have provided scientists with a framework to engineer dependable and sustainable microbial communities that support high yield, disease resistance, nutrient cycling, and management of stressors. In this review, we present an overview of the role of beneficial microbes in sustainable agriculture, microbiome engineering, translation of this technology to the field, and the main approaches used by laboratories worldwide to study the plant-soil microbiome. These initiatives are important to the advancement of green technologies in agriculture.
Collapse
Affiliation(s)
- Kalaivani Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Nur Sabrina Natasha Abdul Rahman
- Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
10
|
Maull V, Solé R. Network-level containment of single-species bioengineering. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210396. [PMID: 35757875 PMCID: PMC9234816 DOI: 10.1098/rstb.2021.0396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/09/2022] [Indexed: 01/03/2023] Open
Abstract
Ecological systems are facing major diversity losses in this century owing to Anthropogenic effects. Habitat loss, overexploitation of resources, invasion and pollution are rapidly jeopardizing the survival of whole communities. It has been recently suggested that a potential approach to flatten the curve of species extinction and prevent catastrophic shifts would involve the engineering of one selected species within one of these communities. Such possibility has started to become part of potential intervention scenarios to preserve biodiversity. Despite its potential, very little is known about the actual dynamic responses of complex ecological networks to the introduction of a synthetic strains derived from a resident species. In this paper, we address this problem by modelling the response of a community to the addition of a synthetic strain derived from a member of a stable ecosystem. We show that the community interaction matrix largely limits the spread of the engineered strain, thus suggesting that species diversity acts as an ecological firewall. The implications for future scenarios of ecosystem engineering are outlined. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Victor Maull
- ICREA-Complex Systems Laboratory, UPF-PRBB, Dr Aiguader 80, Barcelona 08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona 08003, Spain
| | - Ricard Solé
- ICREA-Complex Systems Laboratory, UPF-PRBB, Dr Aiguader 80, Barcelona 08003, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Passeig Maritim de la Barceloneta 37, Barcelona 08003, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
11
|
Li Z, Fattah A, Timashev P, Zaikin A. An Account of Models of Molecular Circuits for Associative Learning with Reinforcement Effect and Forced Dissociation. SENSORS (BASEL, SWITZERLAND) 2022; 22:5907. [PMID: 35957464 PMCID: PMC9371404 DOI: 10.3390/s22155907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The development of synthetic biology has enabled massive progress in biotechnology and in approaching research questions from a brand-new perspective. In particular, the design and study of gene regulatory networks in vitro, in vivo, and in silico have played an increasingly indispensable role in understanding and controlling biological phenomena. Among them, it is of great interest to understand how associative learning is formed at the molecular circuit level. Mathematical models are increasingly used to predict the behaviours of molecular circuits. Fernando's model, which is one of the first works in this line of research using the Hill equation, attempted to design a synthetic circuit that mimics Hebbian learning in a neural network architecture. In this article, we carry out indepth computational analysis of the model and demonstrate that the reinforcement effect can be achieved by choosing the proper parameter values. We also construct a novel circuit that can demonstrate forced dissociation, which was not observed in Fernando's model. Our work can be readily used as reference for synthetic biologists who consider implementing circuits of this kind in biological systems.
Collapse
Affiliation(s)
- Zonglun Li
- Department of Mathematics, University College London, London WC1E 6BT, UK
- Institute for Women’s Health, University College London, London WC1E 6BT, UK
| | - Alya Fattah
- Department of Mathematics, University College London, London WC1E 6BT, UK
| | - Peter Timashev
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow 119991, Russia
| | - Alexey Zaikin
- Department of Mathematics, University College London, London WC1E 6BT, UK
- Institute for Women’s Health, University College London, London WC1E 6BT, UK
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow 119991, Russia
- Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| |
Collapse
|
12
|
Vidiella B, Solé R. Ecological firewalls for synthetic biology. iScience 2022; 25:104658. [PMID: 35832885 PMCID: PMC9272386 DOI: 10.1016/j.isci.2022.104658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently suggested that engineered microbial strains could be used to protect ecosystems from undesirable tipping points and biodiversity loss. A major concern in this context is the potential unintended consequences, which are usually addressed in terms of designed genetic constructs aimed at controlling overproliferation. Here we present and discuss an alternative view grounded in the nonlinear attractor dynamics of some ecological network motifs. These ecological firewalls are designed to perform novel functionalities (such as plastic removal) while containment is achieved within the resident community. That could help provide a self-regulating biocontainment. In this way, engineered organisms have a limited spread while-when required-preventing their extinction. The basic synthetic designs and their dynamical behavior are presented, each one inspired in a given ecological class of interaction. Their possible applications are discussed and the broader connection with invasion ecology outlined.
Collapse
Affiliation(s)
- Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Cerdanyola del Valles, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
13
|
Laibach N, Bröring S. The Emergence of Genome Editing—Innovation Network Dynamics of Academic Publications, Patents, and Business Activities. Front Bioeng Biotechnol 2022; 10:868736. [PMID: 35497359 PMCID: PMC9049213 DOI: 10.3389/fbioe.2022.868736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Transformative societal change can both be triggered and influenced by both macro-level political means and the emergence of technologies. Key enabling technologies and therein biotechnology hold the power to drive those changes forward, evolving from breakthrough academic discoveries into business activities. Due to its increasing empirical relevance, we picked genome editing as an example for an emerging technology and extracted publication, patent, and company data from the years 2000 to 2020. By drawing upon social network analysis, we identify major networks and clusters that are dominating the respective time and layer. Based on these networks, we draw vertical connections between scientific knowledge, patented technologies, and business activities to visualize the interlevel relationships between actors through technological development. Thereby, we identify network dynamics of the emergence of genome editing, the most important actors and clusters evolving, and its spread into different areas.
Collapse
Affiliation(s)
- Natalie Laibach
- Laboratory for Sterol and Terpenoid Metabolism in Plant Development and Stress Responses, Department of Plant Synthetic Biology and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain
- *Correspondence: Natalie Laibach, ; Stefanie Bröring,
| | - Stefanie Bröring
- Chair Entrepreneurship and Innovative Business Models, Center for Entrepreneurship, Innovation and Transformation, Ruhr-University Bochum, Bochum, Germany
- *Correspondence: Natalie Laibach, ; Stefanie Bröring,
| |
Collapse
|
14
|
Mudziwapasi R, Mufandaedza J, Jomane FN, Songwe F, Ndudzo A, Nyamusamba RP, Takombwa AR, Mahla MG, Pullen J, Mlambo SS, Mahuni C, Mufandaedza E, Shoko R. Unlocking the potential of synthetic biology for improving livelihoods in sub-Saharan Africa. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2014986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Reagan Mudziwapasi
- Department of Crop and Soil Sciences, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | | | - Fortune N. Jomane
- Department of Animal Science and Rangeland Management, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Fanuel Songwe
- Department of Biosciences and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
| | - Abigarl Ndudzo
- Department of Crop and Soil Sciences, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Rutendo P. Nyamusamba
- Department of Crop and Soil Sciences, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | | | - Melinda G. Mahla
- Department of Crop and Soil Sciences, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Jessica Pullen
- Department of Crop and Soil Sciences, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Sibonani S. Mlambo
- Department of Biotechnology, Faculty of Agriculture, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | | | - Edward Mufandaedza
- Department of Environmental Sciences, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Ryman Shoko
- Department of Biology, Faculty of Agriculture, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
15
|
Gupta D, Sharma G, Saraswat P, Ranjan R. Synthetic Biology in Plants, a Boon for Coming Decades. Mol Biotechnol 2021; 63:1138-1154. [PMID: 34420149 DOI: 10.1007/s12033-021-00386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023]
Abstract
Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is 'Synthetic Biology' (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Gauri Sharma
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Pooja Saraswat
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
16
|
Yang Y, Lee JH, Poindexter MR, Shao Y, Liu W, Lenaghan SC, Ahkami AH, Blumwald E, Stewart CN. Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1354-1369. [PMID: 33471413 PMCID: PMC8313130 DOI: 10.1111/pbi.13550] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Accepted: 01/09/2021] [Indexed: 05/27/2023]
Abstract
Abiotic stress resistance traits may be especially crucial for sustainable production of bioenergy tree crops. Here, we show the performance of a set of rationally designed osmotic-related and salt stress-inducible synthetic promoters for use in hybrid poplar. De novo motif-detecting algorithms yielded 30 water-deficit (SD) and 34 salt stress (SS) candidate DNA motifs from relevant poplar transcriptomes. We selected three conserved water-deficit stress motifs (SD18, SD13 and SD9) found in 16 co-expressed gene promoters, and we discovered a well-conserved motif for salt response (SS16). We characterized several native poplar stress-inducible promoters to enable comparisons with our synthetic promoters. Fifteen synthetic promoters were designed using various SD and SS subdomains, in which heptameric repeats of five-to-eight subdomain bases were fused to a common core promoter downstream, which, in turn, drove a green fluorescent protein (GFP) gene for reporter assays. These 15 synthetic promoters were screened by transient expression assays in poplar leaf mesophyll protoplasts and agroinfiltrated Nicotiana benthamiana leaves under osmotic stress conditions. Twelve synthetic promoters were induced in transient expression assays with a GFP readout. Of these, five promoters (SD18-1, SD9-2, SS16-1, SS16-2 and SS16-3) endowed higher inducibility under osmotic stress conditions than native promoters. These five synthetic promoters were stably transformed into Arabidopsis thaliana to study inducibility in whole plants. Herein, SD18-1 and SD9-2 were induced by water-deficit stress, whereas SS16-1, SS16-2 and SS16-3 were induced by salt stress. The synthetic biology design pipeline resulted in five synthetic promoters that outperformed endogenous promoters in transgenic plants.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Jun Hyung Lee
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Magen R. Poindexter
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Yuanhua Shao
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Wusheng Liu
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- Department of Horticultural ScienceNorth Carolina State UniversityRaleighNCUSA
| | - Scott C. Lenaghan
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Food ScienceUniversity of TennesseeKnoxvilleTNUSA
| | - Amir H. Ahkami
- Environmental Molecular Sciences Laboratory (EMSL)Pacific Northwest National Laboratory (PNNL)RichlandWAUSA
| | | | - Charles Neal Stewart
- Center for Agricultural Synthetic BiologyUniversity of Tennessee Institute of AgricultureKnoxvilleTNUSA
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
17
|
Dixon TA, Williams TC, Pretorius IS. Bioinformational trends in grape and wine biotechnology. Trends Biotechnol 2021; 40:124-135. [PMID: 34108075 DOI: 10.1016/j.tibtech.2021.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/08/2023]
Abstract
The creative destruction caused by the coronavirus pandemic is yielding immense opportunity for collaborative innovation networks. The confluence of biosciences, information sciences, and the engineering of biology, is unveiling promising bioinformational futures for a vibrant and sustainable bioeconomy. Bioinformational engineering, underpinned by DNA reading, writing, and editing technologies, has become a beacon of opportunity in a world paralysed by uncertainty. This article draws on lessons from the current pandemic and previous agricultural blights, and explores bioinformational research directions aimed at future-proofing the grape and wine industry against biological shocks from global blights and climate change.
Collapse
Affiliation(s)
- Thomas A Dixon
- Department of Modern History, Politics and International Relations, Macquarie University, Sydney, NSW 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, NSW 2109, Australia
| | - Isak S Pretorius
- Department of Molecular Sciences and ARC Centre of Excellence in Synthetic Biology, Centre Headquarters, Macquarie University, Sydney, NSW 2109, Australia; Chancellery, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
18
|
Trivedi P, Mattupalli C, Eversole K, Leach JE. Enabling sustainable agriculture through understanding and enhancement of microbiomes. THE NEW PHYTOLOGIST 2021; 230:2129-2147. [PMID: 33657660 DOI: 10.1111/nph.17319] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 05/18/2023]
Abstract
Harnessing plant-associated microbiomes offers an invaluable strategy to help agricultural production become more sustainable while also meeting growing demands for food, feed and fiber. A plethora of interconnected interactions among the host, environment and microbes, occurring both above and below ground, drive recognition, recruitment and colonization of plant-associated microbes, resulting in activation of downstream host responses and functionality. Dissecting these complex interactions by integrating multiomic approaches, high-throughput culturing, and computational and synthetic biology advances is providing deeper understanding of the structure and function of native microbial communities. Such insights are paving the way towards development of microbial products as well as microbiomes engineered with synthetic microbial communities capable of delivering agronomic solutions. While there is a growing market for microbial-based solutions to improve crop productivity, challenges with commercialization of these products remain. The continued translation of plant-associated microbiome knowledge into real-world scenarios will require concerted transdisciplinary research, cross-training of a next generation of scientists, and targeted educational efforts to prime growers and the general public for successful adoption of these innovative technologies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| | - Chakradhar Mattupalli
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, 16650 State Route 536, Mount Vernon, WA, 98273, USA
| | - Kellye Eversole
- Eversole Associates, 5207 Wyoming Road, Bethesda, MD, 20816, USA
- International Alliance for Phytobiomes Research, 2841 NE Marywood Ct, Lee's Summit, MO, 64086, USA
| | - Jan E Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| |
Collapse
|
19
|
Dixon TA, Williams TC, Pretorius IS. Sensing the future of bio-informational engineering. Nat Commun 2021; 12:388. [PMID: 33452260 PMCID: PMC7810845 DOI: 10.1038/s41467-020-20764-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
The practices of synthetic biology are being integrated into 'multiscale' designs enabling two-way communication across organic and inorganic information substrates in biological, digital and cyber-physical system integrations. Novel applications of 'bio-informational' engineering will arise in environmental monitoring, precision agriculture, precision medicine and next-generation biomanufacturing. Potential developments include sentinel plants for environmental monitoring and autonomous bioreactors that respond to biosensor signaling. As bio-informational understanding progresses, both natural and engineered biological systems will need to be reimagined as cyber-physical architectures. We propose that a multiple length scale taxonomy will assist in rationalizing and enabling this transformative development in engineering biology.
Collapse
Affiliation(s)
- Thomas A Dixon
- Department of Modern History, Politics and International Relations, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Thomas C Williams
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, 2109, Australia
| | | |
Collapse
|
20
|
Tebeje A, Tadesse H, Mengesha Y. Synthetic bio/techno/logy and its application. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1960189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Alemu Tebeje
- Department of Agricultural Biotechnology, Biotechnology Institute, University of Gondar, Gondar, Ethiopia
| | - Henok Tadesse
- Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Yizengaw Mengesha
- Department of Agricultural Biotechnology, Biotechnology Institute, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
21
|
Kumar P, Sinha R, Shukla P. Artificial intelligence and synthetic biology approaches for human gut microbiome. Crit Rev Food Sci Nutr 2020; 62:2103-2121. [PMID: 33249867 DOI: 10.1080/10408398.2020.1850415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The gut microbiome comprises a variety of microorganisms whose genes encode proteins to carry out crucial metabolic functions that are responsible for the majority of health-related issues in human beings. The advent of the technological revolution in artificial intelligence (AI) assisted synthetic biology (SB) approaches will play a vital role in the modulating the therapeutic and nutritive potential of probiotics. This can turn human gut as a reservoir of beneficial bacterial colonies having an immense role in immunity, digestion, brain function, and other health benefits. Hence, in the present review, we have discussed the role of several gene editing tools and approaches in synthetic biology that have equipped us with novel tools like Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR-Cas) systems to precisely engineer probiotics for diagnostic, therapeutic and nutritive value. A brief discussion over the AI techniques to understand the metagenomic data from the healthy and diseased gut microbiome is also presented. Further, the role of AI in potentially impacting the pace of developments in SB and its current challenges is also discussed. The review also describes the health benefits conferred by engineered microbes through the production of biochemicals, nutraceuticals, drugs or biotherapeutics molecules etc. Finally, the review concludes with the challenges and regulatory concerns in adopting synthetic biology engineered microbes for clinical applications. Thus, the review presents a synergistic approach of AI and SB toward human gut microbiome for better health which will provide interesting clues to researchers working in the area of rapidly evolving food and nutrition science.
Collapse
Affiliation(s)
- Prasoon Kumar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India.,Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Ahmedabad, India
| | | | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
22
|
Sudheer S, Bai RG, Usmani Z, Sharma M. Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects. Curr Genomics 2020; 21:321-333. [PMID: 33093796 PMCID: PMC7536804 DOI: 10.2174/1389202921999200603165934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/05/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background Enhanced agricultural production is essential for increasing demand of the growing world population. At the same time, to combat the adverse effects caused by conventional agriculture practices to the environment along with the impact on human health and food security, a sustainable and healthy agricultural production needs to be practiced using beneficial microorganisms for enhanced yield. It is quite challenging because these microorganisms have rich biosynthetic repositories to produce biomolecules of interest; however, the intensive research in allied sectors and emerging genetic tools for improved microbial consortia are accepting new approaches that are helpful to farmers and agriculturists to meet the ever-increasing demand of sustainable food production. An important advancement is improved strain development via genetically engineered microbial systems (GEMS) as well as genetically modified microorganisms (GMOs) possessing known and upgraded functional characteristics to promote sustainable agriculture and food security. With the development of novel technologies such as DNA automated synthesis, sequencing and influential computational tools, molecular biology has entered the systems biology and synthetic biology era. More recently, CRISPR/Cas has been engineered to be an important tool in genetic engineering for various applications in the agri sector. The research in sustainable agriculture is progressing tremendously through GMOs/GEMS for their potential use in biofertilizers and as biopesticides. Conclusion In this review, we discuss the beneficial effects of engineered microorganisms through integrated sustainable agriculture production practices to improve the soil microbial health in order to increase crop productivity.
Collapse
Affiliation(s)
- Surya Sudheer
- 1Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 2School of Natural Sciences and Health, Tallinn University, Narva mnt 29, Tallinn10120, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Department of Food Technology, ACA, Eternal University, Baru Sahib, 173001, Himachal Pradesh, India
| | - Renu Geetha Bai
- 1Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 2School of Natural Sciences and Health, Tallinn University, Narva mnt 29, Tallinn10120, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Department of Food Technology, ACA, Eternal University, Baru Sahib, 173001, Himachal Pradesh, India
| | - Zeba Usmani
- 1Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 2School of Natural Sciences and Health, Tallinn University, Narva mnt 29, Tallinn10120, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Department of Food Technology, ACA, Eternal University, Baru Sahib, 173001, Himachal Pradesh, India
| | - Minaxi Sharma
- 1Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, Estonia; 2School of Natural Sciences and Health, Tallinn University, Narva mnt 29, Tallinn10120, Estonia; 3Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn12612, Estonia; 4Department of Food Technology, ACA, Eternal University, Baru Sahib, 173001, Himachal Pradesh, India
| |
Collapse
|
23
|
Wurtzel ET, Vickers CE, Hanson AD, Millar AH, Cooper M, Voss-Fels KP, Nikel PI, Erb TJ. Revolutionizing agriculture with synthetic biology. NATURE PLANTS 2019; 5:1207-1210. [PMID: 31740769 DOI: 10.1038/s41477-019-0539-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/27/2019] [Indexed: 05/26/2023]
Abstract
Synthetic biology is here to stay and will transform agriculture if given the chance. The huge challenges facing food, fuel and chemical production make it vital to give synthetic biology that chance-notwithstanding the shifts in mindset, training and infrastructure investment this demands. Here, we assess opportunities for agricultural synthetic biology and ways to remove barriers to their realization.
Collapse
Affiliation(s)
- Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, USA.
- Graduate School and University Center-CUNY, New York, NY, USA.
| | - Claudia E Vickers
- CSIRO Synthetic Biology Future Science Platform, Canberra, Australia.
- Australian Institute for Bioengineering & Nanotechnology, University of Queensland, Brisbane, Queensland, Australia.
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture & Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture & Food Innovation, University of Queensland, St. Lucia, Queensland, Australia
| | - Pablo I Nikel
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Tobias J Erb
- Max-Planck-Institute for Terrestrial Microbiology, Department of Biochemistry & Synthetic Metabolism, Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
24
|
Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol 2019; 35:154. [PMID: 31576429 PMCID: PMC6773674 DOI: 10.1007/s11274-019-2728-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023]
Abstract
Yeasts occur in all environments and have been described as potent antagonists of various plant pathogens. Due to their antagonistic ability, undemanding cultivation requirements, and limited biosafety concerns, many of these unicellular fungi have been considered for biocontrol applications. Here, we review the fundamental research on the mechanisms (e.g., competition, enzyme secretion, toxin production, volatiles, mycoparasitism, induction of resistance) by which biocontrol yeasts exert their activity as plant protection agents. In a second part, we focus on five yeast species (Candida oleophila, Aureobasidium pullulans, Metschnikowia fructicola, Cryptococcus albidus, Saccharomyces cerevisiae) that are or have been registered for the application as biocontrol products. These examples demonstrate the potential of yeasts for commercial biocontrol usage, but this review also highlights the scarcity of fundamental studies on yeast biocontrol mechanisms and of registered yeast-based biocontrol products. Yeast biocontrol mechanisms thus represent a largely unexplored field of research and plentiful opportunities for the development of commercial, yeast-based applications for plant protection exist.
Collapse
Affiliation(s)
- Florian M Freimoser
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland.
| | - Maria Paula Rueda-Mejia
- Agroscope, Research Division Plant Protection, Müller-Thurgau-Strasse 29, 8820, Wädenswil, Switzerland
| | - Bruno Tilocca
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Quirico Migheli
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
- Istituto Nazionale di Biostrutture e Biosistemi and NRD - Nucleo di Ricerca sulla Desertificazione, Università degli Studi di Sassari, Viale Italia 39, 07100, Sassari, Italy
| |
Collapse
|
25
|
DeLisi C. The role of synthetic biology in climate change mitigation. Biol Direct 2019; 14:14. [PMID: 31429783 PMCID: PMC6700980 DOI: 10.1186/s13062-019-0247-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
There is growing agreement that the aim of United Nations Framework Convention on Climate Change, which is to avoid dangerous anthropogenic interference with the climate system, is not likely to be met without inclusion of methods to physically remove atmospheric carbon. A number of approaches have been suggested, but the community appears to be silent on the potential of one of the most revolutionary technologies of the current century, systems and synthetic biology (SSB). The potential of SSB to modulate the fast carbon cycle, and thereby mitigate climate change is in itself enormous, but if the history of genomics is any measure, it is also reasonable to expect sizeable economic returns on any investment. More generally, the approach to climate control has been badly unbalanced. The last three decades have seen intense international attention to emission control, with no parallel plan to test, scale and implement carbon removal technologies, including attention to their economic, legal and ethical implications. REVIEWERS: This article was reviewed by Richard Roberts, Aristides Patrinos, and Eugene Koonin, all of whom were nominated by Itai Yanai. For the full reviews, please go to the Reviewers' comments section.
Collapse
Affiliation(s)
- Charles DeLisi
- Department of Biomedical Engineering, Boston University, 24 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
26
|
Coleman MA, Goold HD. Harnessing synthetic biology for kelp forest conservation 1. JOURNAL OF PHYCOLOGY 2019; 55:745-751. [PMID: 31152453 DOI: 10.1111/jpy.12888] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Environmental and climatic change is outpacing the ability of organisms to adapt, at an unprecedented level, resulting in range contractions and global ecosystem shifts to novel states. At the same time, scientific advances continue to accelerate, providing never-before imagined solutions to current and emerging environmental problems. Synthetic biology, the creation of novel and engineered genetic variation, is perhaps the fastest developing and transformative scientific field. Its application to solve extant and emerging environmental problems is vast, at times controversial, and technological advances have outpaced the social, ethical, and practical considerations of its use. Here, we discuss the potential direct and indirect applications of synthetic biology to kelp forest conservation. Rather than advocate or oppose its use, we identify where and when it may play a role in halting or reversing global kelp loss and discuss challenges and identify pathways of research needed to bridge the gap between technological advances and organismal biology and ecology. There is a pressing need for prompt collaboration and dialogue among synthetic biologists, ecologists, and conservationists to identify opportunities for use and ensure that extant research directions are set on trajectories to allow these currently disparate fields to converge toward practical environmental solutions.
Collapse
Affiliation(s)
- Melinda A Coleman
- Department of Primary Industries, NSW Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, New South Wales, 2450, Australia
- Southern Cross University, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, New South Wales, 2450, Australia
- University of Western Australia Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Hugh D Goold
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Road, Menangle, New South Wales, 2568, Australia
- Department of Molecular Sciences, Macquarie University, North Ryde, New South Wales, 2109, Australia
| |
Collapse
|
27
|
Wright RC, Nemhauser J. Plant Synthetic Biology: Quantifying the "Known Unknowns" and Discovering the "Unknown Unknowns". PLANT PHYSIOLOGY 2019; 179:885-893. [PMID: 30630870 PMCID: PMC6393784 DOI: 10.1104/pp.18.01222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 05/03/2023]
Abstract
Biosensors, advanced microscopy, and single- cell transcriptomics are advancing plant synthetic biology.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
28
|
Davies JA. Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be? Life (Basel) 2019; 9:life9010006. [PMID: 30621107 PMCID: PMC6463249 DOI: 10.3390/life9010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022] Open
Abstract
Authors often assert that a key feature of 21st-century synthetic biology is its use of an 'engineering approach'; design using predictive models, modular architecture, construction using well-characterized standard parts, and rigorous testing using standard metrics. This article examines whether this is, or even should be, the case. A brief survey of synthetic biology projects that have reached, or are near to, commercial application outside laboratories shows that they showed very few of these attributes. Instead, they featured much trial and error, and the use of specialized, custom components and assays. What is more, consideration of the special features of living systems suggest that a conventional engineering approach will often not be helpful. The article concludes that the engineering approach may be useful in some projects, but it should not be used to define or constrain synthetic biological endeavour, and that in fact the conventional engineering has more to gain by expanding and embracing more biological ways of working.
Collapse
Affiliation(s)
- Jamie A Davies
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK.
| |
Collapse
|