1
|
Liu Q, Wang B, Xu W, Yuan Y, Yu J, Cui G. Genome-wide investigation of the PIF gene family in alfalfa (Medicago sativa L.) expression profiles during development and stress. BMC Genom Data 2024; 25:79. [PMID: 39223486 PMCID: PMC11370104 DOI: 10.1186/s12863-024-01264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Phytochrome-interacting factors (PIFs) plays an important role in plants as hubs for intracellular signaling regulation. The PIF gene family has been identified and characterized in many plants, but alfalfa (Medicago sativa L.), an important perennial high-quality legume forage, has not been reported on the PIF gene family. RESULTS In this study, we presented the identification and characterization of five MsPIF genes in alfalfa (Medicago sativa L.). Phylogenetic analysis indicated that PIFs from alfalfa and other four plant species could be divided into three groups supported by similar motif analysis. The collinearity analysis of the MsPIF gene family showed the presence of two gene pairs, and the collinearity analysis with AtPIFs showed three gene pairs, indicating that the evolutionary process of this family is relatively conservative. Analysis of cis-acting elements in promoter regions of MsPIF genes indicated that various elements were related to light, abiotic stress, and plant hormone responsiveness. Gene expression analyses demonstrated that MsPIFs were primarily expressed in the leaves and were induced by various abiotic stresses. CONCLUSION This study conducted genome-wide identification, evolution, synteny analysis, and expression analysis of the PIFs in alfalfa. Our study lays a foundation for the study of the biological functions of the PIF gene family and provides a useful reference for improving abiotic stress resistance in alfalfa.
Collapse
Affiliation(s)
- Qianning Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Baiji Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Wen Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yuying Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinqiu Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Sharma A, Samtani H, Sahu K, Sharma AK, Khurana JP, Khurana P. Functions of Phytochrome-Interacting Factors (PIFs) in the regulation of plant growth and development: A comprehensive review. Int J Biol Macromol 2023:125234. [PMID: 37290549 DOI: 10.1016/j.ijbiomac.2023.125234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Transcription factors play important roles in governing plant responses upon changes in their ambient conditions. Any fluctuation in the supply of critical requirements for plants, such as optimum light, temperature, and water leads to the reprogramming of gene-signaling pathways. At the same time, plants also evaluate and shift their metabolism according to the various stages of development. Phytochrome-Interacting Factors are one of the most important classes of transcription factors that regulate both developmental and external stimuli-based growth of plants. This review focuses on the identification of PIFs in various organisms, regulation of PIFs by various proteins, functions of PIFs of Arabidopsis in diverse developmental pathways such as seed germination, photomorphogenesis, flowering, senescence, seed and fruit development, and external stimuli-induced plant responses such as shade avoidance response, thermomorphogenesis, and various abiotic stress responses. Recent advances related to the functional characterization of PIFs of crops such as rice, maize, and tomato have also been incorporated in this review, to ascertain the potential of PIFs as key regulators to enhance the agronomic traits of these crops. Thus, an attempt has been made to provide a holistic view of the function of PIFs in various processes in plants.
Collapse
Affiliation(s)
- Aishwarye Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Karishma Sahu
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Jitendra Paul Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
3
|
Zhuge Y, Sheng H, Zhang M, Fang J, Lu S. Grape phytochrome-interacting factor VvPIF1 negatively regulates carotenoid biosynthesis by repressing VvPSY expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 331:111693. [PMID: 37001696 DOI: 10.1016/j.plantsci.2023.111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Phytochrome-interacting factors (PIFs) play important roles in light-mediated secondary metabolism; however, the roles of PIFs in grape fruit carotenogenesis remain unclear. Here, by identifying the PIF family genes in grapes, we focused on the role of VvPIF1 in carotenoid metabolism. During grape berry development, VvPIF1 expression was negatively correlated with carotenoid accumulation and the transcription of phytoene synthase 1/2 (VvPSY1/2), which encodes the major flux-controlling enzymes for carotenoid biosynthesis. Light significantly repressed VvPIF1 expression, but induced the expression of carotenogenic genes including VvPSY1/2. VvPIF1 functioned as a nucleus-localized protein and interacted with the light photoreceptor VvphyB. Overexpression of VvPIF1 resulted in the downregulation of the endogenous PIF1 gene, which may unexpectedly induce carotenoid accumulation and PSY expression in tobacco leaves. The transgenic grape leaves and tomato fruits with high VvPIF1 expression produced a significant decrease in carotenoid concentrations, with suppressed transcription of PSY and other carotenogenic genes. Further biochemical assays demonstrated that VvPIF1 bound directly to the promoters of VvPSY1/2 to inhibit their transcription. Collectively, we conclude that VvPIF1 negatively regulates carotenoid biosynthesis by repressing VvPSY expression in grapes. These findings shed light on the role and mode of action of PIFs in the carotenoid regulatory network of grapes.
Collapse
Affiliation(s)
- Yaxian Zhuge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Sheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mengwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Suwen Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
4
|
Zeng L, Zhou X, Fu X, Hu Y, Gu D, Hou X, Dong F, Yang Z. Effect of the biosynthesis of the volatile compound phenylacetaldehyde on chloroplast modifications in tea ( Camellia sinensis) plants. HORTICULTURE RESEARCH 2023; 10:uhad003. [PMID: 37786771 PMCID: PMC10541522 DOI: 10.1093/hr/uhad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 10/03/2023]
Abstract
Plant volatile compounds have important physiological and ecological functions. Phenylacetaldehyde (PAld), a volatile phenylpropanoid/benzenoid, accumulates in the leaves of tea (Camellia sinensis) plants grown under continuous shading. This study was conducted to determine whether PAld production is correlated with light and to elucidate the physiological functions of PAld in tea plants. Specifically, the upstream mechanism modulating PAld biosynthesis in tea plants under different light conditions as well as the effects of PAld on chloroplast/chlorophyll were investigated. The biosynthesis of PAld was inhibited under light, whereas it was induced in darkness. The structural gene encoding aromatic amino acid aminotransferase 1 (CsAAAT1) was expressed at a high level in darkness, consistent with its importance for PAld accumulation. Additionally, the results of a transcriptional activation assay and an electrophoretic mobility shift assay indicated CsAAAT1 expression was slightly activated by phytochrome-interacting factor 3-2 (CsPIF3-2), which is a light-responsive transcription factor. Furthermore, PAld might promote the excitation of chlorophyll in dark-treated chloroplasts and mediate electron energy transfer in cells. However, the accumulated PAld can degrade chloroplasts and chlorophyll, with potentially detrimental effects on photosynthesis. Moreover, PAld biosynthesis is inhibited in tea leaves by red and blue light, thereby decreasing the adverse effects of PAld on chloroplasts during daytime. In conclusion, the regulated biosynthesis of PAld in tea plants under light and in darkness leads to chloroplast modifications. The results of this study have expanded our understanding of the biosynthesis and functions of volatile phenylpropanoids/benzenoids in tea leaves.
Collapse
Affiliation(s)
- Lanting Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiaochen Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiumin Fu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dachuan Gu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Fang Dong
- Guangdong Food and Drug Vocational College, No. 321 Longdongbei Road, Tianhe District, Guangzhou 510520, China
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, No. 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
5
|
Nie N, Huo J, Sun S, Zuo Z, Chen Y, Liu Q, He S, Gao S, Zhang H, Zhao N, Zhai H. Genome-Wide Characterization of the PIFs Family in Sweet Potato and Functional Identification of IbPIF3.1 under Drought and Fusarium Wilt Stresses. Int J Mol Sci 2023; 24:ijms24044092. [PMID: 36835500 PMCID: PMC9965949 DOI: 10.3390/ijms24044092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Phytochrome-interacting factors (PIFs) are essential for plant growth, development, and defense responses. However, research on the PIFs in sweet potato has been insufficient to date. In this study, we identified PIF genes in the cultivated hexaploid sweet potato (Ipomoea batatas) and its two wild relatives, Ipomoea triloba, and Ipomoea trifida. Phylogenetic analysis revealed that IbPIFs could be divided into four groups, showing the closest relationship with tomato and potato. Subsequently, the PIFs protein properties, chromosome location, gene structure, and protein interaction network were systematically analyzed. RNA-Seq and qRT-PCR analyses showed that IbPIFs were mainly expressed in stem, as well as had different gene expression patterns in response to various stresses. Among them, the expression of IbPIF3.1 was strongly induced by salt, drought, H2O2, cold, heat, Fusarium oxysporum f. sp. batatas (Fob), and stem nematodes, indicating that IbPIF3.1 might play an important role in response to abiotic and biotic stresses in sweet potato. Further research revealed that overexpression of IbPIF3.1 significantly enhanced drought and Fusarium wilt tolerance in transgenic tobacco plants. This study provides new insights for understanding PIF-mediated stress responses and lays a foundation for future investigation of sweet potato PIFs.
Collapse
Affiliation(s)
- Nan Nie
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinxi Huo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sifan Sun
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhidan Zuo
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanqi Chen
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-62732559
| |
Collapse
|
6
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
7
|
Wang XR, Wang YH, Jia M, Zhang RR, Liu H, Xu ZS, Xiong AS. The phytochrome-interacting factor DcPIF3 of carrot plays a positive role in drought stress by increasing endogenous ABA level in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111367. [PMID: 35788027 DOI: 10.1016/j.plantsci.2022.111367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 05/22/2023]
Abstract
The phytochrome-interacting factor (PIF) subfamily of basic helix-loop-helix (bHLH) transcription factors plays a critical role in plant growth and development. However, there has been no detailed report on the PIFs in carrot. In this study, we present the identification and characterization of DcPIF gene family in carrot (Daucus carota L.). Phylogenetic analysis indicated that PIFs from carrot and other five plant species could be divided into four groups supported by similar gene structure and motif analysis. Expression profiles showed that all DcPIF genes were tissue-specific and could be induced by drought or abscisic acid (ABA) treatment except DcPIF7.1, among which DcPIF3 was the most responsive. The DcPIF3-overexpressed Arabidopsis plants exhibited more tolerance to drought stress, with higher antioxidant capacity and lower malondialdehyde content after drought treatment than wild type plants. Further stress tolerance assays revealed that DcPIF3 plays a positive role in drought stress by increasing endogenous ABA level and promoting the expression of ABA-related genes. Our results can enrich the understanding of DcPIF family genes and lay a foundation for further investigation of DcPIF3 function to defend against drought stress in carrot.
Collapse
Affiliation(s)
- Xin-Rui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Min Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
8
|
Ma Z, Wei C, Cheng Y, Shang Z, Guo X, Guan J. RNA-Seq Analysis Identifies Transcription Factors Involved in Anthocyanin Biosynthesis of 'Red Zaosu' Pear Peel and Functional Study of PpPIF8. Int J Mol Sci 2022; 23:4798. [PMID: 35563188 PMCID: PMC9099880 DOI: 10.3390/ijms23094798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Red-skinned pears are favored by people for their attractive appearance and abundance of anthocyanins. However, the molecular basis of anthocyanin biosynthesis in red pears remains elusive. Here, a comprehensive transcriptome analysis was conducted to explore the potential regulatory mechanism of anthocyanin biosynthesis in 'Red Zaosu' pear (Pyrus pyrifolia × Pyrus communis). Gene co-expression analysis and transcription factor mining identified 263 transcription factors, which accounted for 6.59% of the total number of transcription factors in the pear genome in two gene modules that are highly correlated with anthocyanin biosynthesis. Clustering, gene network modeling with STRING-DB, and local motif enrichment analysis (CentriMo) analysis suggested that PpPIF8 may play a role in anthocyanin biosynthesis. Furthermore, eight PIFs were identified in the pear genome, of which only PpPIF8 was rapidly induced by light. Functional studies showed that PpPIF8 localizes in the nucleus and is preferentially expressed in the tissue of higher levels of anthocyanin. The overexpression of PpPIF8 in pear peel and pear calli promotes anthocyanin biosynthesis and upregulates the expression of anthocyanin biosynthesis genes. Yeast-one hybrid and transgenic analyses indicated that PpPIF8 binds to the PpCHS promoter to induce PpCHS expression. The positive effect of PpPIF8 on anthocyanin biosynthesis is different from previously identified negative regulators of PyPIF5 and MdPIF7 in pear and apple. Taken together, our data not only provide a comprehensive view of transcription events during the coloration of pear peel, but also resolved the regulatory role of PpPIF8 in the anthocyanin biosynthesis pathway.
Collapse
Affiliation(s)
- Zhenyu Ma
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (Z.M.); (Z.S.)
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Chuangqi Wei
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Yudou Cheng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Zhonglin Shang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; (Z.M.); (Z.S.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| | - Junfeng Guan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (C.W.); (Y.C.); (X.G.)
- Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China
| |
Collapse
|
9
|
Zhang P, Lu S, Liu Z, Zheng T, Dong T, Jin H, Jia H, Fang J. Transcriptomic and Metabolomic Profiling Reveals the Effect of LED Light Quality on Fruit Ripening and Anthocyanin Accumulation in Cabernet Sauvignon Grape. Front Nutr 2022; 8:790697. [PMID: 34970581 PMCID: PMC8713590 DOI: 10.3389/fnut.2021.790697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Different light qualities have various impacts on the formation of fruit quality. The present study explored the influence of different visible light spectra (red, green, blue, and white) on the formation of quality traits and their metabolic pathways in grape berries. We found that blue light and red light had different effects on the berries. Compared with white light, blue light significantly increased the anthocyanins (malvidin-3-O-glucoside and peonidin-3-O-glucoside), volatile substances (alcohols and phenols), and soluble sugars (glucose and fructose), reduced the organic acids (citric acid and malic acid), whereas red light achieved the opposite effect. Transcriptomics and metabolomics analyses revealed that 2707, 2547, 2145, and 2583 differentially expressed genes (DEGs) and (221, 19), (254, 22), (189, 17), and (234, 80) significantly changed metabolites (SCMs) were filtered in the dark vs. blue light, green light, red light, and white light, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of the DEGs identified were involved in photosynthesis and biosynthesis of flavonoids and flavonols. Using weighted gene co-expression network analysis (WGCNA) of 23410 highly expressed genes, two modules significantly related to anthocyanins and soluble sugars were screened out. The anthocyanins accumulation is significantly associated with increased expression of transcription factors (VvHY5, VvMYB90, VvMYB86) and anthocyanin structural genes (VvC4H, Vv4CL, VvCHS3, VvCHI1, VvCHI2, VvDFR), while significantly negatively correlated with VvPIF4. VvISA1, VvISA2, VvAMY1, VvCWINV, VvβGLU12, and VvFK12 were all related to starch and sucrose metabolism. These findings help elucidate the characteristics of different light qualities on the formation of plant traits and can inform the use of supplemental light in the field and after harvest to improve the overall quality of fruit.
Collapse
Affiliation(s)
- Peian Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Suwen Lu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Ting Zheng
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Huanchun Jin
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| | - Jingggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Li W, Liu Y, Wang W, Liu J, Yao M, Guan M, Guan C, He X. Phytochrome-interacting factor (PIF) in rapeseed (Brassica napus L.): Genome-wide identification, evolution and expression analyses during abiotic stress, light quality and vernalization. Int J Biol Macromol 2021; 180:14-27. [PMID: 33722620 DOI: 10.1016/j.ijbiomac.2021.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Phytochrome-interacting factors (PIFs) are members of basic helix-loop-helix (bHLH) transcription factors and the primary partners of phytochromes (PHY) in light signaling. PIFs interact with the Pfr forms of phytochrome to play an important role in the pathways of response to light and temperature in plants. In this study, 30, 12, and 16 potential PIF genes were identified in Brassica napus, Brassica rapa, Brassica oleracea, respectively, which could be divided into three subgroups. The Br/Bo/BnaPIF genes are intron-rich and similar to the PIF genes in Arabidopsis. However, unlike the AtPIFs that exist in multiple alternative-splicing forms, the majority of Br/Bo/BnaPIF genes have no alternative-splicing forms. A total of 52 Br/Bo/BnaPIF proteins have both the conserved active PHYB binding (APB) and bHLH domains. The Ka/Ks ratio revealed that most BnaPIFs underwent purifying selection. A promoter analysis found that light-related, abscisic acid-related and MYB-binding sites were the most abundant in the promoters of BnaPIFs. BnaPIF genes displayed different spatiotemporal patterns of expression and were regulated by light quality, circadian rhythms, cold, heat, and vernalization. Our results are useful for understanding the biological functions of PIF proteins in rapeseed.
Collapse
Affiliation(s)
- Wenqian Li
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yan Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Weiping Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Juncen Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mingyao Yao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Mei Guan
- Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China
| | - Chunyun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China
| | - Xin He
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China.
| |
Collapse
|
11
|
Wang X, Liu Y, Huai D, Chen Y, Jiang Y, Ding Y, Kang Y, Wang Z, Yan L, Jiang H, Lei Y, Liao B. Genome-wide identification of peanut PIF family genes and their potential roles in early pod development. Gene 2021; 781:145539. [PMID: 33631242 DOI: 10.1016/j.gene.2021.145539] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Peanut is typically a geocarpic plant. The developing gynophore ('peg') in air could not swell normally until it buries into soil, indicating light-to-dark conversion is necessary for early pod development in peanut. As the subfamily of basic helix-loop-helix (bHLH) transcription factors, phytochrome interacting factors (PIFs) are key regulators involved in light signaling pathways, and play crucial roles in plant growth and development. In the current study, a total of 14 AhPIFs were identified in cultivated peanut genome (Arachis hypogaea L., AABB), while seven AdPIFs and six AiPIFs were discovered in the two wild diploids (A. duranensis (AA), A. ipaensis (BB)) respectively. Phylogenetic analysis revealed that peanut PIFs were clustered into four distinct clades, and members within the same subgroup had conserved motifs and displayed similar exon-intron distribution patterns. Gene synteny analysis indicated most of the PIFs exhibit one-to-one homology relationship between AA and BB subgenome in A. hypogaea, as well as among the three peanut species. Gene duplication detection showed that segmental duplication and purifying selection contributed to the expansion and evolution of peanut PIF gene family. Transcript profiles combined with subcellular localization analysis suggested AhPIF3A4 and AhPIF3B4 may possibly be involved in regulation of peanut early pod development. This study could further facilitate functional characterization of PIFs in peanut and other legumes.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yue Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yifei Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yingbin Ding
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| |
Collapse
|
12
|
Meng X, Li Y, Yuan Y, Zhang Y, Li H, Zhao J, Liu M. The regulatory pathways of distinct flowering characteristics in Chinese jujube. HORTICULTURE RESEARCH 2020; 7:123. [PMID: 32821406 PMCID: PMC7395098 DOI: 10.1038/s41438-020-00344-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/12/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Flowering is the most important event in higher plants. Compared to most fruit tree species, Chinese jujube (Ziziphus jujuba Mill.), the most important member of the large, diverse Rhamnaceae family and a leading dry fruit-producing species, has unique characteristics that include a short juvenile phase and extremely fast flower bud differentiation. However, the distinct mechanism of flowering regulation in Chinese jujube is still unclear. The morphological and cytological development period of jujube flowering was first investigated, and the crucial developmental stages were defined. Flower bud differentiation in Chinese jujube took only approximately 11-13 days, which is a distinct characteristic of perennial fruit trees. Afterward, 44 genes related to six flowering pathways were identified in the jujube genome and were found to be randomly distributed among 11 of the 12 chromosomes. Tissue-specific and spatiotemporal expression patterns showed that all these genes were expressed in the flowers. Overall, photoperiod-related genes were highly expressed during flower bud differentiation. These genes were also positively responsive to photoperiod regulation and phase change processes, indicating that photoperiod- related genes play crucial roles in jujube flower bud differentiation. Under protected cultivation, ZjPIF4, a temperature-related gene, was expressed in the early stages of flowering and responded to increasing temperatures. Moreover, STRING analysis and yeast two-hybrid screening indicated that photoperiod-related (ZjCO) and temperature-related (ZjPIF4) proteins could interact with ZjFT, the key protein involved in the determination of flowering time, indicating crosstalk between photoperiod-related pathways and ambient temperature-related pathways in jujube. This study is the first report to comprehensively analyze the flowering pathways in Chinese jujube and revealed that photoperiod-related and ambient temperature-related pathways are the main mechanisms regulating the distinct flowering process and that members of the ZjPHY family (ZjPIF4, ZjFT, and ZjCO5) are the key factors involved in the regulatory network. These results will increase our understanding of the molecular and genetic mechanisms of flowering in Chinese jujube and provide meaningful clues for the flowering regulation of other fruit tree species.
Collapse
Affiliation(s)
- Xianwei Meng
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000 China
| | - Ying Li
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000 China
| | - Ye Yuan
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000 China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000 China
| | - Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, 071000 China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000 China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, 071000 China
| |
Collapse
|
13
|
Zeng J, Haider MS, Huang J, Xu Y, Pervaiz T, Feng J, Zheng H, Tao J. Functional Characterization of VvSK Gene Family in Grapevine ( Vitis vinifera L.) Revealing their Role in Berry Ripening. Int J Mol Sci 2020; 21:E4336. [PMID: 32570751 PMCID: PMC7352762 DOI: 10.3390/ijms21124336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase that plays important roles in brassinosteroid signaling, abiotic stress responses, cell division, and elongation, etc. In this study, we characterized seven grape GSK3 genes, showing high similarities with homologs from other species including Arabidopsis, white pear, apple, orange, and peach. Gene chip microarray data derived from an online database revealed very diverse developmental and tissue-specific expression patterns of VvSKs. VvSK3 and VvSK7 showed much higher expression levels in almost every tissue compared with other members. VvSK7 was highly enriched in young tissues like berries before the veraison stage, young leaves and green stems, etc., but immediately downregulated after these tissues entered maturation or senescence phases. Prediction of cis-elements in VvSK promoters indicated that VvSKs might be sensitive to light stimulation, which is further confirmed by the qPCR data. Constitutive overexpression of VvSK7 in Arabidopsis leads to dwarf plants that resembles BR-deficient mutants. The photosynthetic rate was significantly reduced in these plants, even though they accumulated more chlorophyll in leaves. Transient overexpression of VvSKs in tomatoes delayed the fruit ripening process, consistent with the observation in grapevine which blocks VvSKs by EBR- or BIKININ-promoted berry expansion and soluble solids accumulation. Data presented in the current study may serve as a theoretical basis for the future application of BRs or related compounds in quality grape production.
Collapse
Affiliation(s)
- Jingjue Zeng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (M.S.H.); (J.H.); (J.F.); (J.T.)
| | - Muhammad Salman Haider
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (M.S.H.); (J.H.); (J.F.); (J.T.)
| | - Junbo Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (M.S.H.); (J.H.); (J.F.); (J.T.)
| | - Yanshuai Xu
- College of Horticulture, Hunan Agricultural University, Changsha 410000, China;
| | - Tariq Pervaiz
- Advance innovation center for tree breeding, Beijing Forestry University, Beijing 100083, China;
| | - Jiao Feng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (M.S.H.); (J.H.); (J.F.); (J.T.)
| | - Huan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (M.S.H.); (J.H.); (J.F.); (J.T.)
| | - Jianmin Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Z.); (M.S.H.); (J.H.); (J.F.); (J.T.)
| |
Collapse
|
14
|
Li H, Gao W, Xue C, Zhang Y, Liu Z, Zhang Y, Meng X, Liu M, Zhao J. Genome-wide analysis of the bHLH gene family in Chinese jujube (Ziziphus jujuba Mill.) and wild jujube. BMC Genomics 2019; 20:568. [PMID: 31291886 PMCID: PMC6617894 DOI: 10.1186/s12864-019-5936-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background The bHLH (basic helix-loop-helix) transcription factor is one of the largest families of transcription factors in plants, containing a large number of members with diverse functions. Chinese jujube (Ziziphus jujuba Mill.) is the species with the highest economic value in the family Rhamnaceae. However, the characteristics of the bHLH family in the jujube genome are still unclear. Hence, ZjbHLHs were first searched at a genome-wide level, their expression levels under various conditions were investigated systematically, and their protein-protein interaction networks were predicted. Results We identified 92 ZjbHLHs in the jujube genome, and these genes were classified into 16 classes according to bHLH domains. Ten ZjbHLHs with atypical bHLH domains were found. Seventy ZjbHLHs were mapped to but not evenly distributed on 12 pseudo- chromosomes. The domain sequences among ZjbHLHs were highly conserved, and their conserved residues were also identified. The tissue-specific expression of 37 ZjbHLH genes in jujube and wild jujube showed diverse patterns, revealing that these genes likely perform multiple functions. Many ZjbHLH genes were screened and found to be involved in flower and fruit development, especially in earlier developmental stages. A few genes responsive to phytoplasma invasion were also verified. Based on protein-protein interaction prediction and homology comparison, protein-protein interaction networks composed of 92 ZjbHLHs were also established. Conclusions This study provides a comprehensive bioinformatics analysis of 92 identified ZjbHLH genes. We explored their expression patterns in various tissues, the flowering process, and fruit ripening and under phytoplasma stress. The protein-protein interaction networks of ZjbHLHs provide valuable clues toward further studies of their biological functions. Electronic supplementary material The online version of this article (10.1186/s12864-019-5936-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongtai Li
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China.,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Yu Zhang
- College of Forestry, Hebei Agricultural University, Baoding, China
| | - Xianwei Meng
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China. .,Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|