1
|
Wang Y, Yu H, Li L, Li J, Sun J, Shi J, Li J. Long-term trend of dust event duration over Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175819. [PMID: 39197795 DOI: 10.1016/j.scitotenv.2024.175819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Dust events in Northwest China have become more variable under regional climate change. Prior research has largely overlooked the spatial-temporal distribution of dust event duration (DED) and its long-term trend. This study systematically analyzed the spatial and temporal variations of DED in Northwest China and explored their associated factors using satellite-derived air quality datasets during 2000-2021. We find that dust event frequency (DEF) and DED generally showed a significant decreasing trend since 2000, but in 2013, DEF and DED started to rebound, with DED in particular, showing a more pronounced rebound in most parts of Northwest China. Correlation analysis with many factors suggests that the rise in near-surface wind speed since 2013 may primarily account for the increase in DEF and DED by enhancing dust generation and suppressing dust dry deposition processes. Further projections reveal that regions close to dust sources are likely to have more frequent and prolonged dust events, while areas far from dust sources will experience a decrease in DEF and DED in the future. These findings are crucial for understanding dust event variations and for guiding local dust management strategies.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| | - Haojie Yu
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China; College of Earth and Environment Sciences, Lanzhou University, Lanzhou, China
| | - Lan Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| | - Jiayi Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| | - Jie Sun
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China
| | - Jinsen Shi
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China.
| | - Jiming Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, and Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Zhao L, Xue J, Wang S, Tian P, Huang M, Bi K, Wang B. Single particle characteristics and ice nucleation potential of particles collected during Asian dust storms in 2021. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174829. [PMID: 39034012 DOI: 10.1016/j.scitotenv.2024.174829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Dust storms have great impacts on air quality and climate. Dust can influence cloud microphysical properties and determine their radiative forcing and precipitation. Asian dust storms (ADS) are important sources of global aerosol. However, the physiochemical characteristics of dust from ADS at a single particle level are less understood, and the exact particles that can serve as ice nucleating particles (INPs) remain unclear. Here, we present the physicochemical properties and ice nucleation ability of dust particles collected in Beijing during two major ADS in March 2021. The particles from two ADS were classified into Illite, Kaolinite, Feldspar, Quartz, Chlorite, Mixed-dust, and Non-dust particles, which contributed 28.6 % ± 3.3 %, 20.0 % ± 3.9 %, 12.3 % ± 2.3 %, 11.1 % ± 2.8 %, 9.8 % ± 0.8 %, 13.7 % ± 1.8 %, and 4.4 % ± 1.7 % in number, respectively. On average, the ADS particles formed ice crystals via deposition ice nucleation from relative humidity with respect to ice (RHice) of 112 % ± 1 % at 250 K to 154 % ± 15 % RHice at 205 K. Part of the samples also formed ice via immersion freezing between 230 K and 250 K. Among the 149 identified INPs, Clay-like particles (Chlorite, Illite, and Kaolinite) contributed 71.1 % ± 6.2 % in number and followed by Mixed-dust-like particles (16.9 % ± 8.7 %) and Feldspar-like particles (10.4 % ± 6.3 %). Enrichment factor of each particle type in INPs is calculated as the ratio of its number fractions in INPs and the aerosol population. It ranges from 0.6 ± 0.7 to 1.3 ± 2.2. The contribution of each particle type to INP was correlated with its fraction in the population. These results imply that each particle type can serve as INP. Clay-like particles are the dominant INPs during the ADS. We conducted ice nucleation kinetic analysis and provided parameterizations of heterogeneous ice nucleation rate coefficient and contact angle for ADS. These parameterizations can be used in the modeling study to evaluate the impact of ADS in atmospheric ice crystal formation in clouds.
Collapse
Affiliation(s)
- Lisi Zhao
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Jiao Xue
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Shengkai Wang
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Ping Tian
- Field Experiment Base of Cloud and Precipitation Research in North China, China Meteorological Administration, Beijing 101200, China
| | - Mengyu Huang
- Field Experiment Base of Cloud and Precipitation Research in North China, China Meteorological Administration, Beijing 101200, China
| | - Kai Bi
- Beijing Weather Modification Center, Beijing 100089, China.
| | - Bingbing Wang
- College of Ocean and Earth Sciences, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Mousavi H, Moshir Panahi D, Kalantari Z. Dust and climate interactions in the Middle East: Spatio-temporal analysis of aerosol optical depth and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172176. [PMID: 38575026 DOI: 10.1016/j.scitotenv.2024.172176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The Middle East (ME) is grappling with an alarming increase in dust levels, measured as aerosol optical depth (AOD), which poses significant threats to air quality, human health, and ecological stability. This study aimed to investigate correlations between climate and non-climate driving factors and AOD in the ME over the last four-decade (1980-2020), based on analysis of three variables: actual evapotranspiration (AET), potential evapotranspiration (PET), and precipitation (P). A comprehensive analysis is conducted to discern patterns and trends, with a particular focus on regions such as Rub al-Khali, Ad-Dahna, An-Nafud Desert, and southern Iraq, where consistently high dust levels were observed. 77 % of the study area is classified as arid or semi-arid based on the aridity index. Our results indicate an upward trend in dust levels in Iraq, Iran, Yemen, and Saudi Arabia. We noted an increasing AET trend in regions such as the Euphrates and Tigris basin, northern-Iran, and the Nile region, along with rising PET levels in arid and semi-arid zones such as Iran, Iraq, and Syria. Conversely, P showed a notable decrease in northern-Iraq, Syria, southwestern Iran, and southern-Turkey. Comparison of long-term changes (10-year moving averages) of AOD and P showed a consistent increase in AOD with P levels decreasing in all climate regions. The Budyko space analysis indicates shifts in evaporation ratio across different climate classes from 1980 to 2020, with predominant movement patterns towards higher aridity indices in arid and semi-arid regions, while factors beyond long-term aridity changes influence shifts in evaporation ratio across various climatic zones. The Middle East experiences complex and intricate interactions between dust events and their drivers. To address this issue, a comprehensive and multi-system approach is necessary, which considers both climate and non-climate drivers. Moreover, an efficient dust control strategy should include soil and water conservation, advanced monitoring, and public awareness campaigns that involve regional and international collaboration.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Davood Moshir Panahi
- School of Civil Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Zahra Kalantari
- Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
4
|
Alipour H. Dust temporal and spatial deposition affected by climate and soil mineralogical and chemical properties in a semi-arid area. Heliyon 2023; 9:e15181. [PMID: 37113775 PMCID: PMC10126863 DOI: 10.1016/j.heliyon.2023.e15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The important process of aerosol dusting is of economic, environmental and heath significance. The objective was to investigate the climatic parameters including rainfall (R), wind speed (WS), temperature (T), and relative humidity (RH), as well as soil mineralogical and chemical properties affecting dust deposition rate (DDR), in a unique and rarely studied area, the Kuhdasht watershed (456 km2) of Lorestan province, Iran. Data were collected seasonally using glass-traps inserted in ten research stations to indicate DDR seasonal and spatial variations using ARC-GIS. The spatial distribution of organic matter (OM), clay and CaCO3, and the mineralogical properties (using diffractograms obtained by XRD) of the dust and soil samples were determined. The city had the highest DDR decreasing toward the mountains. Spring (3.28-4.18 ton/km2) and autumn (1.82-2.52 ton/km2) resulted in the highest and the least DDR, respectively. The diffractograms indicated the sources of dust were local or from out of the borders. The clay minerals (kaolinite and illite) and the evaporating minerlas (gypsum, calcite, dolomite, and halite), detected in the soil and dust samples indicated their contribution to the process of DDR. According to the regression models and the correlation coefficients, DDR was highly and significantly correlated with R (R2= 0.691), WS (0.685) and RH (0.463) indicating such parameters can importantly affect DDR in the semi-arid areas.
Collapse
|
5
|
Bartkowski B, Schepanski K, Bredenbeck S, Müller B. Wind erosion in European agricultural landscapes: More than physics. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
| | | | - Simon Bredenbeck
- Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| | - Birgit Müller
- Helmholtz Centre for Environmental Research – UFZ Leipzig Germany
| |
Collapse
|
6
|
Duniway MC, Benson C, Nauman TW, Knight A, Bradford JB, Munson SM, Witwicki D, Livensperger C, Van Scoyoc M, Fisk TT, Thoma D, Miller ME. Geologic, geomorphic, and edaphic underpinnings of dryland ecosystems: Colorado Plateau landscapes in a changing world. Ecosphere 2022. [DOI: 10.1002/ecs2.4273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | - Travis W. Nauman
- US Geological Survey Southwest Biological Science Center Moab Utah USA
| | - Anna Knight
- US Geological Survey Southwest Biological Science Center Moab Utah USA
| | - John B. Bradford
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Seth M. Munson
- US Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Dana Witwicki
- National Park Service Northern Colorado Plateau Network Moab Utah USA
- National Park Service Natural Resource Condition Assessment Fort Collins Colorado USA
| | - Carolyn Livensperger
- National Park Service Northern Colorado Plateau Network Moab Utah USA
- National Park Service Capitol Reef National Park Fruita Utah USA
| | | | - Terry T. Fisk
- National Park Service Southeast Utah Group Parks Moab Utah USA
- National Park Service Water Resources Division Fort Collins Colorado USA
| | - David Thoma
- National Park Service Northern Colorado Plateau Network Moab Utah USA
| | - Mark E. Miller
- National Park Service Southeast Utah Group Parks Moab Utah USA
- National Park Service Wrangell‐St. Elias National Park and Preserve Copper Center Alaska USA
| |
Collapse
|
7
|
Sorkheh M, Asgari HM, Zamani I, Ghanbari F. The Relationship Between Dust Sources and Airborne Bacteria in the Southwest of Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82045-82063. [PMID: 35748994 PMCID: PMC9244375 DOI: 10.1007/s11356-022-21563-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 05/30/2023]
Abstract
The biological agents are carried from deserts and dried lands to long distances by high dust volumes. Their adverse effects can be reduced by specifying and controlling dust sources and their related biological agents. Thus, the current work examined the relationship between the bacteria in air and soil samples by taking samples from the soil surface of two dust sources, as well as from air samples during spring from Khorramshahr and Abadan cities. The dust event is the most influential factor on airborne bacteria. There is an insignificant negative (-0.06), insignificant positive (0.14), and weak positive (0.24) correlation between airborne bacteria and UV radiation, relative humidity, and temperature, respectively. After preparing a 16S ribosomal DNA (rDNA) clone library from the soil and air samples, operational taxonomic unit picking and taxonomic assignment were conducted using QIIME Virtual Box. In the present work, Bacillus was the dominant species. The relationship between dust sources and air samples was determined by principal component analysis. Bacteria in the Hoor-Al-Azim dust source and airborne bacteria on dusty and non-dusty days showed a more significant correlation compared to bacteria in the Shadegan dust source. Source Tracker software was used to estimate the contribution of dust sources. The primary source of dust was associated with the dried areas of Hoor-Al-Azim on the non-dusty and dusty days. Finally, the long transport of airborne bacteria was assessed by moderate resolution imaging spectroradiometer (MODIS) and the back trajectory model of Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) data. The research findings can help decision-makers prioritize dust sources to control the adverse effects of dust.
Collapse
Affiliation(s)
- Maryam Sorkheh
- Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Hossein Mohammad Asgari
- Department of Marine Environment, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran.
| | - Isaac Zamani
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
8
|
Al-Abadleh HA, Motaghedi F, Mohammed W, Rana MS, Malek KA, Rastogi D, Asa-Awuku AA, Guzman MI. Reactivity of aminophenols in forming nitrogen-containing brown carbon from iron-catalyzed reactions. Commun Chem 2022; 5:112. [PMID: 36697654 PMCID: PMC9814260 DOI: 10.1038/s42004-022-00732-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization of o- and p-aminophenols under simulated aerosol and cloud conditions (pH 1-7, and ionic strength 0.01-1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4-0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products of o- and p-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.
Collapse
Affiliation(s)
- Hind A Al-Abadleh
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - Fatemeh Motaghedi
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Wisam Mohammed
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Md Sohel Rana
- Department of Chemistry, University of Kentucky, Kentucky, 40506, USA
| | - Kotiba A Malek
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Dewansh Rastogi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Akua A Asa-Awuku
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Marcelo I Guzman
- Department of Chemistry, University of Kentucky, Kentucky, 40506, USA.
| |
Collapse
|
9
|
Insights into Variations and Potential Long-Range Transport of Atmospheric Aerosols from the Aral Sea Basin in Central Asia. REMOTE SENSING 2022. [DOI: 10.3390/rs14133201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dramatic shrinkage of the Aral Sea in the past decades has inevitably led to an environmental calamity. Existing knowledge on the variations and potential transport of atmospheric aerosols from the Aral Sea Basin (ASB) is limited. To bridge this knowledge gap, this study tried to identify the variations and long-range transport of atmospheric aerosols from the ASB in recent years. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data were used to gain new insight into the types, variation and long-range transport of atmospheric aerosols from the ASB. The results showed five types of tropospheric aerosols and one type of stratospheric aerosol were observed over the ASB. Polluted dust and dust were the dominant subtypes through the year. Sulfate/other was the only stratospheric aerosol detected. The occurrence frequency of aerosols over the ASB showed obvious seasonal variation. Maximum occurrence frequency of dust appeared in spring (MAM) and that of polluted dust peaked in summer (JJA). The monthly occurrence frequency of dust and polluted dust exhibited unimodal distribution. Polluted dust and dust were distributed over wide ranges from 1 km to 5 km vertically. The multi-year average thickness of polluted dust and dust layers was around 1.3 km. Their potential long-range transport in different directions mainly impacts Uzbekistan, Turkmenistan, Kazakhstan and eastern Iran, and may reach as far as the Caucasus region, part of China, Mongolia and Russia. Combining aerosol lidar, atmospheric climate models and geochemical methods is strongly suggested to gain clarity on the variations and long-range transport of atmospheric aerosols from the Aral Sea Basin.
Collapse
|
10
|
Relationships between Near-Surface Horizontal Dust Fluxes and Dust Depositions at the Centre and Edge of the Taklamakan Desert. LAND 2022. [DOI: 10.3390/land11070959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The emission, transport, and deposition of dust are frequently the focus of dust aerosol studies. However, owing to limited observation data, few studies have examined the relationships between the key parameters of dust transport, especially in typical dust source areas. Therefore, investigating the relationship between near-surface horizontal dust fluxes and dust depositions in typical desert source areas can further help us to understand the movement and transport patterns of dust aerosols. Based on observational experiments on two key transport parameters, this study focused on the quantitative relationship between the horizontal dust flux (Q) and dust deposition (D). A 13-month long dust sample collection experiment was conducted from August 2017 to August 2018 at Xiaotang Station (hereafter XT,40°48′ N, 84°18′ E) and Tazhong Station (hereafter TZ, 39°00′ N, 83°40′ E). The results show that the observed D and Q peaks coincided with periods of high dust storm incidence, with the greatest accumulation observed in spring. Moreover, both Q and D decreased with increasing height in XT, and this phenomenon remained on a monthly scale. In contrast, no clear decreasing pattern in Q and D with increasing height was observed in TZ. Additionally, relatively coarse particles, primarily from local sources, dominated dust depositions in both locations. The proportion of deposited dust particles with a size <20 μm was slightly higher in XT than that in TZ. Specifically, dust depositions in XT contained finer local dust particles and more dust from long-distance transport. Furthermore, D and Q had a significantly positive linear correlation in XT; however, no significant correlation was observed in TZ. Analysis of the wind dynamics and surface dust particle size indicated that topographic differences between the two stations caused these differences in correlation.
Collapse
|
11
|
Regional Analysis of Dust Day Duration in Central Iran. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The duration of dust days (DDD) is one of the most important parameters that may worsen the effects of the presence of dust in the affected areas. Persistent pollution over consecutive dusty days can have particularly negative effects on the human respiratory system. The present analysis was conducted in Central Iran, where the phenomenon of dust is one of the most important problems. In this study, using dust codes recorded at 35 synoptic stations, the homogeneity of DDD across the region was investigated using the L-moments method. Then, characteristics of DDD over the period 1999–2018 were calculated. The results showed that the region is statistically homogeneous. Furthermore, Zabol and Zahdan are the stations worst affected, with the longest durations of 22 and 21 days in 2014. Additionally, the values of DDD with return periods of 5, 10, 25, and 50 years were calculated using fitted statistical distributions and kriging and mapped. Finally, using the K nearest neighbor method the most important factor affecting DDD of the spatial characteristics, including longitude, latitude, elevation, average daily temperature (tm), dew point (td), wind altitude (u), maximum wind speed (ffmax), and direction of the fastest wind (ddmax), was determined. It was found that the southeastern parts of the study area are affected by the longest dust storm duration in all return periods; over longer return periods, long dust storms are also found in the central parts, especially the central desert of Iran. Therefore, these areas should be given priority in fighting and controlling wind erosion. Furthermore, the results showed that the maximum wind speed has the greatest effect on DDD.
Collapse
|
12
|
Large-Scale Saharan Dust Episode in April 2019: Study of Desert Aerosol Loads over Sofia, Bulgaria, Using Remote Sensing, In Situ, and Modeling Resources. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Emissions of immense amounts of desert dust into the atmosphere, spreading over vast geographical areas, are in direct feedback relation with ongoing global climate changes. An extreme large-scale Saharan dust episode occurred over Mediterranean and Europe in April 2019, driven by a dynamic blocking synoptic pattern (omega block) creating conditions for a powerful northeastward circulation of air masses rich in dust and moisture. Here, we study and characterize the effects of related dust intrusion over Sofia, Bulgaria, using lidar remote sensing combined with in situ measurements, satellite imagery, and modeling data. Optical and microphysical parameters of the desert aerosols were obtained and vertically profiled, namely, backscatter coefficients and backscatter-related Ångström exponents, as well as statistical distributions of the latter as qualitative analogs of the actual particle size distributions. Dynamical and topological features of the dust-dominated aerosol layers were determined. Height profiles of the aerosol/dust mass concentration were obtained by synergistic combining and calibrating lidar and in situ data. The comparison of the retrieved mass concentration profiles with the dust modeling ones shows a satisfactory compliance. The local meteorological conditions and the aerosol composition and structure of the troposphere above Sofia during the dust event were seriously affected by the desert air masses.
Collapse
|
13
|
Variability of Near-Surface Aerosol Composition in Moscow in 2020–2021: Episodes of Extreme Air Pollution of Different Genesis. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During 2020–2021, a comprehensive experiment was conducted to study the composition of near-surface atmospheric aerosol in Moscow. The paper considers the experimental data together with synoptic and meteorological conditions. Attention is focused on six episodes of extremely high aerosol mass concentration values: in March and October 2020, as well in March, April, May and July 2021. In all these cases (and only in them), the average daily mass concentration of PM10 aerosol exceeded the Maximum Permissible Concentration (MPC) value (according to Russian standards, 60 μg/m3). The origin of the aerosol during these periods of extreme pollution is revealed, which is the main result of the work. It was shown that the July episode of 2021 was associated with a local intensive anthropogenic source that arose as a result of the active dismantling and demolition of multistory industrial buildings. The remaining spring and autumn episodes were caused by atmospheric transport of both smoke aerosol from various regions with strong biomass fires and dust aerosol from arid zones of the south of European territory of Russia (ETR) with dust wind storms. The cases of atmospheric pollution transport to Moscow region from the other regions are confirmed with the help of air mass transport trajectories (HYSPLIT 4 model) and MERRA-2 reanalysis data on black carbon and/or dust distribution in the atmosphere over ETR. Differences in the elemental composition of the near-surface aerosol of Moscow air during periods with extremely high aerosol concentrations are analyzed in comparison with each other and with unperturbed conditions for the season.
Collapse
|
14
|
Wang R, Yang N, Li J, Xu L, Tsona NT, Du L, Wang W. Heterogeneous reaction of SO 2 on CaCO 3 particles: Different impacts of NO 2 and acetic acid on the sulfite and sulfate formation. J Environ Sci (China) 2022; 114:149-159. [PMID: 35459480 DOI: 10.1016/j.jes.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 06/14/2023]
Abstract
Despite the heterogeneous reaction of sulfur dioxide (SO2) on mineral dust particles significantly affects the atmospheric environment, the effect of acidic gases on the formation of sulfite and sulfate from this reaction is not particularly clear. In this work, using the in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique, we employed a mineral dust particle model (CaCO3) combined with NO2 and acetic acid to investigate their effects on the heterogeneous reaction of SO2 on CaCO3 particles. It was found that water vapor can promote the formation of sulfite and simulated radiation can facilitate the oxidation of sulfite to sulfate. The addition of NO2 or acetic acid to the reaction system altered the production of sulfate and sulfite accordingly. There was a synergistic effect between NO2 and SO2 that promoted the oxidation of sulfite to sulfate, and a competitive effect between acetic acid and SO2 that inhibited the formation of sulfite. Moreover, light and water vapor can also affect the heterogeneous reaction of SO2 with the coexistence of multiple gases. These findings improve our understanding of the effects of organic and inorganic gases and environmental factors on the formation of sulfite and sulfate in heterogeneous reactions.
Collapse
Affiliation(s)
- Ruixue Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ning Yang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Li Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Narcisse T Tsona
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| |
Collapse
|
15
|
Modification of Temperature Lapse Rates and Cloud Properties during a Spatiotemporally Extended Dust Aerosol Episode (16–18 June 2016) over the Mediterranean Basin Based on Satellite and Reanalysis Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14030679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A spatiotemporally extended dust aerosol episode that occurred over the Mediterranean Basin (MB) from 16 to 18 June 2016 is investigated using observational satellite and reanalysis data, focusing on the effects of high dust loads on cloud formation and temperature fields, including the creation of temperature inversions. The atmospheric conditions before and during the 3-day dust aerosol episode case (DAEC) are also analyzed. The dust episode, which is identified using a contemporary satellite algorithm, consists of long-range transport of African dust to the western and central MB. The day to day, before and during the DAEC, atmospheric circulation, dust-cloud interactions, and dust effect on temperature are examined using a variety of Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3 Collection 6.1 satellite and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data. According to the obtained results, the dust export from N. Africa, which occurs under the prevalence of a trough over the western MB, and a ridge over the central MB, extends from southwest to northeast along two axes, one in the western and another in the central Mediterranean, covering remote areas up to the coasts of southern Europe, including the Balearic and Tyrrhenian Seas, the Italian peninsula, the Ionian and Adriatic Seas, and the Balkan peninsula. The analysis provides evidence of the formation of mixed-phase clouds, with high cloud-top heights (CTH higher than 10 km) and low cloud-top temperatures (CTT as low as 230 K), which spatiotemporally coincide with the high dust loadings that provide the necessary CCN and IN. Dust aerosols are transported either in the boundary layer (within the first 1–2 km) of areas close to the North African dust source areas or in the free troposphere over the Mediterranean Sea and the Italian and Balkan peninsulas (between 2 and 8 km). Distinct and extended layers of remarkable temperature inversions (up to 20 K/km) are created below the exported dust layers in the boundary layer of Mediterranean Sea areas, while weak/reduced lapse rates are formed over continental areas of MB undergoing the dust transport. Such modifications of temperature fields are important for the dynamics of the atmosphere of MB.
Collapse
|
16
|
Detecting the Causal Nexus between Particulate Matter (PM10) and Rainfall in the Caribbean Area. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigate the interactions between particulate matter that have an aerodynamic diameter less than 10 μm diameter (PM10) and rainfall (RR) in entropy framework. Our results showed there is a bidirectional causality between PM10 concentrations and RR values. This means that PM10 concentrations influence RR values while RR induces the wet scavenging process. Rainfall seasonality has a significant impact on the wet scavenging process while African dust seasonality strongly influence RR behavior. Indeed, the wet scavenging process is 5 times higher during the wet season while PM10 impact on RR is 2.5 times higher during the first part of the high dust season. These results revealed two types of causality: a direct causality (RR to PM10) and an indirect causality (PM10 to RR). All these elements showed that entropy is an efficient way to quantify the behavior of atmospheric processes using ground-based measurements.
Collapse
|
17
|
MalAmiri N, Rashki A, Hosseinzadeh SR, Kaskaoutis DG. Mineralogical, geochemical, and textural characteristics of soil and airborne samples during dust storms in Khuzestan, southwest Iran. CHEMOSPHERE 2022; 286:131879. [PMID: 34418661 DOI: 10.1016/j.chemosphere.2021.131879] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 05/10/2023]
Abstract
Dust storms are frequent phenomena in Khuzestan Province, southwest Iran, leading to environmental hazards and deleterious impacts on human health. This work analyzes mineralogic and geochemical characteristics of dust sediments at the source regions and in deposition areas in southwest Iran during three dust-storm events in winter and spring 2018. Twenty soil and airborne dust samples were collected and analyzed for compositions of dust at different distances from the source regions in Iraq and southwest Iran, aiming to assess the source characterization and possible mixing processes in the atmosphere. The grain size distributions were also analyzed at specific sites. The results show that about 50 % of the volume size distribution corresponds to particle sizes of above 20 μm, indicating local/regional dust storms of coarse to giant particles. XRD analysis indicates that calcite is the dominant mineral in all the samples, with a high quartz and dolomite fraction. The most abundant major compounds are SiO2 and CaO, while Cl, Ba, Sr, Pb, Ni, Zn, Cr, V are the main trace elements. The enrichment factor (EF) analysis showed that apart from Th, Nb, Ce, and V, all the other elements (Pb, Zn, Cr, etc.) have an anthropogenic origin or represent high amounts of pollutant contamination. High levels of elemental enrichment are attributable to intensive pollution in Khuzestan Province and at sampling sites due to fossil-fuel combustion, gas and petroleum drilling activities. Moreover, based on the geo-accumulation index (Igeo), all samples are found to be contaminated by heavy metals due to prior war-related materiel, oil and gas extraction, and emissions from polluting industries.
Collapse
Affiliation(s)
- Neamat MalAmiri
- Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Rashki
- Department of Desert and Arid Zones Management, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - D G Kaskaoutis
- Institute of Environmental Research and Sustainable Development, National Observatory of Athens, Greece; Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, 71003, Crete, Greece
| |
Collapse
|
18
|
Passive versus Active Transport of Saharan Dust Aerosols by African Easterly Waves. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which the dust is radiatively decoupled from the circulation. The theory is built around a dust conservation equation for dust-coupled AEWs in zonal-mean African easterly jets. The theory predicts that, for both the passive and active cases, the dust transports will be largest where the zonal-mean dust gradients are maximized on an AEW critical surface. Whether the dust transports are largest for the radiatively passive or radiatively active case depends on the growth rate of the AEWs, which is modulated by the dust heating. The theoretical predictions are confirmed via experiments carried out with the Weather Research and Forecasting model, which is coupled to a dust conservation equation. The experiments show that the meridional dust transports dominate in the passive case, while the vertical dust transports dominate in the active case.
Collapse
|
19
|
Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigates four types of synoptic dust events in the Middle East region, including cyclonic, pre-frontal, post-frontal and Shamal dust storms. For each of these types, three intense and pervasive dust events are analyzed from a synoptic meteorological and numerical simulation perspective. The performance of 9 operational dust models in forecasting these dust events in the Middle East is qualitatively and quantitatively evaluated against Terra-MODIS observations and AERONET measurements during the dust events. The comparison of model AOD outputs with Terra-MODIS retrievals reveals that despite the significant discrepancies, all models have a relatively acceptable performance in forecasting the AOD patterns in the Middle East. The models enable to represent the high AODs along the dust plumes, although they underestimate them, especially for cyclonic dust storms. In general, the outputs of the NASA-GEOS and DREAM8-MACC models present greater similarity with the satellite and AERONET observations in most of the cases, also exhibiting the highest correlation coefficient, although it is difficult to introduce a single model as the best for all cases. Model AOD predictions over the AERONET stations showed that DREAM8-MACC exhibited the highest R2 of 0.78, followed by NASA_GEOS model (R2 = 0.74), which both initially use MODIS data assimilation. Although the outputs of all models correspond to valid time more than 24 h after the initial time, the effect of data assimilation on increasing the accuracy is important. The different dust emission schemes, soil and vegetation mapping, initial and boundary meteorological conditions and spatial resolution between the models, are the main factors influencing the differences in forecasting the dust AODs in the Middle East.
Collapse
|
20
|
Salawu-Rotimi A, Lebre PH, Vos HC, Fister W, Kuhn N, Eckardt FD, Cowan DA. Gone with the Wind: Microbial Communities Associated with Dust from Emissive Farmlands. MICROBIAL ECOLOGY 2021; 82:859-869. [PMID: 33656686 DOI: 10.1007/s00248-021-01717-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Dust is a major vehicle for the dispersal of microorganisms across the globe. While much attention has been focused on microbial dispersal in dust plumes from major natural dust sources, very little is known about the fractionation processes that select for the "dust microbiome." The recent identification of highly emissive, agricultural land dust sources in South Africa has provided the opportunity to study the displacement of microbial communities through dust generation and transport. In this study, we aimed to document the microbial communities that are carried in the dust from one of South Africa's most emissive locations, and to investigate the selective factors that control the partitioning of microbial communities from soil to dust. For this purpose, dust samples were generated at different emission sources using a Portable In-Situ Wind Erosion Lab (PI-SWERL), and the taxonomic composition of the resulting microbiomes was compared with the source soils. Dust emission processes resulted in the clear fractionation of the soil bacterial community, where dust samples were significantly enriched in spore-forming taxa. Conversely, little fractionation was observed in the soil fungal communities, such that the dust fungal fingerprint could be used to identify the source soil. Dust microbiomes were also found to vary according to the emission source, suggesting that land use significantly affected the structure and fractionation of microbial communities transported in dust plumes. In addition, several potential biological allergens of fungal origin were detected in the dust microbiomes, highlighting the potential detrimental effects of dust plumes emitted in South Africa. This study represents the first description of the fractionation of microbial taxa occurring at the source of dust plumes and provides a direct link between land use and its impact on the dust microbiome.
Collapse
Affiliation(s)
- Adeola Salawu-Rotimi
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - Heleen Cornelia Vos
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| | - Wolfgang Fister
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| | - Nikolaus Kuhn
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| | - Frank D Eckardt
- Department of Environmental and Geographical Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
21
|
Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dust storms represent a major environmental challenge in the Middle East. The southwest part of Iran is highly affected by dust events transported from neighboring desert regions, mostly from the Iraqi plains and Saudi Arabia, as well as from local dust storms. This study analyzes the spatio-temporal distribution of dust days at five meteorological stations located in southwestern Iran covering a period of 22 years (from 1997 to 2018). Dust codes (06, 07, 30 to 35) from meteorological observations are analyzed at each station, indicating that 84% of the dust events are not of local origin. The average number of dust days maximizes in June and July (188 and 193, respectively), while the dust activity weakens after August. The dust events exhibit large inter-annual variability, with statistically significant increasing trends in all of five stations. Spatial distributions of the aerosol optical depth (AOD), dust loading, and surface dust concentrations from a moderate resolution imaging spectroradiometer (MODIS) and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) retrievals reveal high dust accumulation over southwest Iran and surrounding regions. Furthermore, the spatial distribution of the (MODIS)-AOD trend (%) over southwest Iran indicates a large spatial heterogeneity during 2000–2018 with trends ranging mostly between −9% and 9% (not statistically significant). 2009 was the most active dust year, followed by 2011 and 2008, due to prolonged drought conditions in the fertile crescent and the enhanced dust emissions in the Iraqi plains during this period. In these years, the AOD was much higher than the 19-year average (2000 to 2018), while July 2009 was the dustiest month with about 25–30 dust days in each station. The years with highest dust activity were associated with less precipitation, negative anomalies of the vegetation health index (VHI) and normalized difference vegetation index (NDVI) over the Iraqi plains and southwest Iran, and favorable meteorological dynamics triggering stronger winds.
Collapse
|
22
|
Causes and Effects of Sand and Dust Storms: What Has Past Research Taught Us? A Survey. JOURNAL OF RISK AND FINANCIAL MANAGEMENT 2021. [DOI: 10.3390/jrfm14070326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Barren ground and sites with low coverage by vegetation (e.g., dunes, soil surfaces, dry lakes, and riverbeds) are the main source areas of sand and dust storms (SDS). The understanding of causes, processes (abrasion, deflation, transport, deposition), and influencing factors of sandy and dusty particles moving by wind both in the boundary layer and in the atmosphere are basic prerequisites to distinguish between SDS. Dust transport in the atmosphere modulates radiation, ocean surface temperature, climate, as well as snow and ice cover. The effects of airborne particles on land are varied and can cause advantages and disadvantages, both in source areas and in sink or deposition areas, with disturbances of natural environments and anthropogenic infrastructure. Particulate matter in general and SDS specifically can cause severe health problems in human respiratory and other organs, especially in children. Economic impacts can be equally devastating, but the costs related to SDS are not thoroughly studied. The available data show huge economic damages caused by SDS and by the mitigation of their effects. Management of SDS-related hazards utilizes remote sensing techniques, on-site observations, and protective measures. Integrated strategies are necessary during both the planning and monitoring of these measures. Such integrated strategies can be successful when they are developed and implemented in close cooperation with the local and regional population and stakeholders.
Collapse
|
23
|
Particle Size Analysis of African Dust Haze over the Last 20 Years: A Focus on the Extreme Event of June 2020. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the last decades, the impact of mineral dust from African deserts on human health and climate has been of great interest to the scientific community. In this paper, the climatological analysis of dusty events of the past 20 years in the Caribbean area has been performed using a particulate approach. The focus is made on June 2020 extreme event dubbed “Godzilla”. To carry out this study, different types of data were used (ground-based, satellites, model, and soundings) on several sites in the Caribbean islands. First, the magnitude of June 2020 event was clearly highlighted using satellite imagery. During the peak of this event, the value of particulate matter with an aerodynamic diameter of less than 10 μμm (PM10) reached a value 9 times greater than the threshold recommended by the World Health Organization in one day. Thereafter, the PM10, the aerosol optical depth, and the volume particle size distribution analyses exhibited their maximum values for June 2020. We also highlighted the exceptional characteristics of the Saharan air layer in terms of thickness and wind speed for this period. Finally, our results showed that the more the proportion of particulate matter with an aerodynamic diameter of less than 2.5 μμm (PM2.5) in PM10 increases, the more the influence of sea salt aerosols is significant.
Collapse
|
24
|
How Relevant Is It to Use Mineral Proxies to Mimic the Atmospheric Reactivity of Natural Dust Samples? A Reactivity Study Using SO2 as Probe Molecule. MINERALS 2021. [DOI: 10.3390/min11030282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The experimental investigation of heterogeneous atmospheric processes involving mineral aerosols is extensively performed in the literature using proxy materials. In this work we questioned the validity of using proxies such as Fe2O3, FeOOH, Al2O3, MgO, CaO, TiO2, MnO2, SiO2, and CaCO3 to represent the behavior of complex mixtures of minerals, such as natural desert and volcanic dusts. Five volcanic dusts and three desert dusts were compared to a number of metal oxides, commonly used in the literature to mimic the behavior of desert dusts in the ability to form sulfites and sulfates on the surface exposed to SO2 gas. First, all samples were aged at room temperature, atmospheric pressure, under controlled experimental conditions of 175 ppm SO2 for 1 h under 30% of relative humidity. Second, they were extracted with 1% formalin and analyzed by High-Performance Liquid Chromatography (HPLC) to quantify and compare the amount of sulfites and sulfates formed on their surfaces. It was evidenced that under the experimental conditions of this study neither one selected pure oxide nor a mixture of oxides can adequately typify the behavior of complex mixtures of natural minerals. Therefore, to evaluate the real-life impact of natural dust on atmospheric processes it is of vital importance to work directly with the natural samples, both to observe the real effects of desert and volcanic dusts and to evaluate the relevancy of proposed proxies.
Collapse
|
25
|
A Global Climatology of Dust Aerosols Based on Satellite Data: Spatial, Seasonal and Inter-Annual Patterns over the Period 2005–2019. REMOTE SENSING 2021. [DOI: 10.3390/rs13030359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A satellite-based algorithm is developed and used to determine the presence of dust aerosols on a global scale. The algorithm uses as input aerosol optical properties from the MOderate Resolution Imaging Spectroradiometer (MODIS)-Aqua Collection 6.1 and Ozone Monitoring Instrument (OMI)-Aura version v003 (OMAER-UV) datasets and identifies the existence of dust aerosols in the atmosphere by applying specific thresholds, which ensure the coarse size and the absorptivity of dust aerosols, on the input optical properties. The utilized aerosol optical properties are the multiwavelength aerosol optical depth (AOD), the Aerosol Absorption Index (AI) and the Ångström Exponent (a). The algorithm operates on a daily basis and at 1° × 1° latitude-longitude spatial resolution for the period 2005–2019 and computes the absolute and relative frequency of the occurrence of dust. The monthly and annual mean frequencies are calculated on a pixel level for each year of the study period, enabling the study of the seasonal as well as the inter-annual variation of dust aerosols’ occurrence all over the globe. Temporal averaging is also applied to the annual values in order to estimate the 15-year climatological mean values. Apart from temporal, a spatial averaging is also applied for the entire globe as well as for specific regions of interest, namely great global deserts and areas of desert dust export. According to the algorithm results, the highest frequencies of dust occurrence (up to 160 days/year) are primarily observed over the western part of North Africa (Sahara), and over the broader area of Bodélé, and secondarily over the Asian Taklamakan desert (140 days/year). For most of the study regions, the maximum frequencies appear in boreal spring and/or summer and the minimum ones in winter or autumn. A clear seasonality of global dust is revealed, with the lowest frequencies in November–December and the highest ones in June. Finally, an increasing trend of global dust frequency of occurrence from 2005 to 2019, equal to 56.2%, is also found. Such an increasing trend is observed over all study regions except for North Middle East, where a slight decreasing trend (−2.4%) is found.
Collapse
|
26
|
Atmospheric Dynamics and Numerical Simulations of Six Frontal Dust Storms in the Middle East Region. ATMOSPHERE 2021. [DOI: 10.3390/atmos12010125] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study analyzes six frontal dust storms in the Middle East during the cold period (October–March), aiming to examine the atmospheric circulation patterns and force dynamics that triggered the fronts and the associated (pre- or post-frontal) dust storms. Cold troughs mostly located over Turkey, Syria and north Iraq played a major role in the front propagation at the surface, while cyclonic conditions and strong winds facilitated the dust storms. The presence of an upper-atmosphere (300 hPa) sub-tropical jet stream traversing from Egypt to Iran constitutes also a dynamic force accompanying the frontal dust storms. Moderate-Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations are used to monitor the spatial and vertical extent of the dust storms, while model (Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), Copernicus Atmospheric Monitoring Service (CAMS), Regional Climate Model-4 (RegCM4)) simulations are also analyzed. The WRF-Chem outputs were in better agreement with the MODIS observations compared to those of CAMS and RegCM4. The fronts were identified by WRF-Chem simulations via gradients in the potential temperature and sudden changes of wind direction in vertical cross-sections. Overall, the uncertainties in the simulations and the remarkable differences between the model outputs indicate that modelling of dust storms in the Middle East is really challenging due to the complex terrain, incorrect representation of the dust sources and soil/surface characteristics, and uncertainties in simulating the wind speed/direction and meteorological dynamics. Given the potential threat by dust storms, more attention should be directed to the dust model development in this region.
Collapse
|
27
|
Dahmardeh Behrooz R, Kaskaoutis DG, Grivas G, Mihalopoulos N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. CHEMOSPHERE 2021; 262:127835. [PMID: 32763581 DOI: 10.1016/j.chemosphere.2020.127835] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/26/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the bioaccessibility and health risks related to heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb, Zn and metalloid As) in airborne dust samples (TSP and PM2.5) in Zabol, Iran during the summer dust period, when peak concentration levels of PM are typically observed. High bioaccessibilities of carcinogenic metals in PM2.5 (i.e. 53.3%, 48.6% and 47.6% for Ni, Cr and As, respectively) were calculated. The carcinogenic and non-carcinogenic health risks were assessed for three exposure pathways (inhalation, ingestion and dermal contact), separately for children and adults. Non-carcinogenic inhalation risks were very high (Hazard Index: HI > 1) both for children and adults, while the carcinogenic risks were above the upper acceptable threshold of 10-4 for adults and marginally close (5.0-8.4 × 10-5) for children. High carcinogenic risks (>10-4) were found for the ingestion pathway both for children and adults, while HI values > 1 (8.2) were estimated for children. Carcinogenic and non-carcinogenic risk estimates for dermal contact were also above the limits considered acceptable, except for the carcinogenic risk for children (7.6 × 10-5). Higher non-carcinogenic and carcinogenic risks (integrated for all elements) were associated with the inhalation pathway in adults and children with the exception of carcinogenic risk for children, where the ingestion route remains the most important, while As was linked with the highest risks for nearly all exposure pathways. A comparative evaluation shows that health risks related with toxic elements in airborne particles in Sistan are among the highest reported in the world.
Collapse
Affiliation(s)
- Reza Dahmardeh Behrooz
- Department of Environmental Science, Faculty of Natural Resources, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| |
Collapse
|
28
|
Zhang Y, Gao T, Kang S, Sprenger M, Tao S, Du W, Yang J, Wang F, Meng W. Effects of black carbon and mineral dust on glacial melting on the Muz Taw glacier, Central Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140056. [PMID: 32927540 DOI: 10.1016/j.scitotenv.2020.140056] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 05/17/2023]
Abstract
Light-absorbing impurities (LAIs), including black carbon (BC) and mineral dust, in snow can trigger a positive feedback. In this study, we estimate the contribution of BC and dust to glacial melting in Central Asia. Average BC and dust concentrations in the surface snow of the Muz Taw glacier are 1788 ± 1754 ng g-1 and 172 ± 178 μg g-1, respectively. Simulation using the Snow Ice and Aerosol Radiation (SNICAR) model indicates that the combined effect of BC and dust reduces the snow albedo by approximately 6.24% to 50.4% relative to clean snow. Radiative forcing (RF) induced by BC and dust deposited in snow ranges from 1.61 to 32.69 W m-2, with an average of 16.74 W m-2 for the central scenario. Thus, glacier melting can be enhanced by 36.37 cm w.e. by BC and dust in snow, accounting for about 16.3% of the total glacier melt. LAIs deposited on the Muz Taw glacier mostly originate from Central Asia, West Siberia and local emissions during the study period. More than 80% of BC deposited is attributed to anthropogenic emissions. These results strengthen the important role of BC and dust in glacier melting in Central Asia, and further highlights the potential benefits of mitigation of BC emissions.
Collapse
Affiliation(s)
- Yulan Zhang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tanguang Gao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Michael Sprenger
- Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Shu Tao
- Department of Environmental Science, Laboratory for Earth Surface Processes, Peking University, Beijing, China
| | - Wentao Du
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junhua Yang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feiteng Wang
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenjun Meng
- Department of Environmental Science, Laboratory for Earth Surface Processes, Peking University, Beijing, China
| |
Collapse
|
29
|
Atmospheric Dynamics from Synoptic to Local Scale During an Intense Frontal Dust Storm over the Sistan Basin in Winter 2019. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9100453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Sistan Basin has been recognized as one of the most active dust sources and windiest desert environments in the world. Although the dust activity in Sistan maximizes during the summer, rare but intense dust storms may also occur in the winter. This study aims to elucidate the atmospheric dynamics related to dust emission and transport, dust-plume characteristics, and impacts on aerosol properties and air quality during an intense dust storm over Sistan in February 2019. The dust storm was initiated by strong northerly winds (~20 ms−1) associated with the intrusion of a cold front from high latitudes. The upper-level potential vorticity (PV)-trough evolved into a cut-off low in the mid and upper troposphere and initiated unstable weather over Afghanistan and northern Pakistan. At the surface, density currents emanating from deep convective clouds and further strengthened by downslope winds from the mountains, caused massive soil erosion. The passage of the cold front reduced the temperature by ~10 °C and increased the atmospheric pressure by ~10 hPa, while the visibility was limited to less than 200 m. The rough topography played a major role in modulating the atmospheric dynamics, wind field, dust emissions, and transport pathways. Meso-NH model simulates large amounts of columnar mass dust loading (> 20 g m−2) over Sistan, while the intense dust plume was mainly traveling below 2 km and increased the particulate matter (PM10) concentrations up to 1800 µg m−3 at Zabol. The dust storm was initially moving in an arc-shaped pathway over the Sistan Basin and then it spread away. Plumes of dust covered a large area in southwest Asia, reaching the northern Arabian Sea, and the Thar desert one to two days later, while they strongly affected the aerosol properties at Karachi, Pakistan, by increasing the aerosol optical depth (AOD > 1.2) and the coarse-mode fraction at ~0.7.
Collapse
|
30
|
Saharan Dust Transport during the Incipient Growth Phase of African Easterly Waves. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An analytical analysis is combined with numerical modeling simulations in order to expose the physical and dynamical processes that control the zonal-mean transport of Saharan mineral dust aerosols during the incipient growth phase of African easterly waves. The analytical analysis provides the theoretical basis for understanding and predicting how the waves and background flow combine to affect the zonal-mean eddy transports of dust. The analytically derived transport equations―which are valid for any wave field, irrespective of its spatial or temporal scale―predict that the eddy transports of dust are largest where the maximum in the background dust gradients coincide with a critical surface, i.e., where the Doppler-shifted frequency of the wave field vanishes. Linear simulations of the eddy dust transports are conducted using a mechanistic version of the Weather Research and Forecasting (WRF) model coupled to an interactive dust model. The simulations show that the eddy dust transports are directed down the background dust gradients and that the meridional transports of dust dominate over the vertical transports. The numerical simulations confirm the theoretical predictions. The predictions are used to explain recent statistical analyses of reanalysis data for dust-coupled African easterly waves.
Collapse
|
31
|
Cyclogenesis and Density Currents in the Middle East and the Associated Dust Activity in September 2015. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9090376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The first 10 days of September 2015 were marked by intense dust activity over the Middle East and the Arabian Peninsula. This study examines the atmospheric conditions at the origin of the large dust storms during this period. We particularly investigate the atmospheric dynamics leading to the development of a large dry cyclone over Iraq on 31 August 2015 which in turn generated an intense dust storm that affected most of the countries around the Arabian Gulf and lasted for 5 days. We found that the cyclone developed over Northwest Iraq as a transfer to low levels of a cut-off low which had formed two days earlier at upper levels over Turkey. Large dust loads exceeding 250 tons were emitted and moved southeast in a cyclonic shape toward the Arabian sea. The second large dust storm on 6-8 September 2015 occurred over Syria and affected all the coastal countries on the eastern side of the Mediterranean Sea. It was associated with the occurrence of a series of density currents over northeast Syria emanating from deep convection over the mountainous border between Syria and Turkey. The unusual development of deep convection over this area was associated with a blocking high and interaction with orography. Both the cut-off high and the cut-off low occurred during a period characterized by a meandering polar jet and an enhanced subtropical jet causing unstable weather over mid-latitudes which in turn led to highly polluted atmosphere by natural dust in the affected countries.
Collapse
|
32
|
Frie AL, Garrison AC, Schaefer MV, Bates SM, Botthoff J, Maltz M, Ying SC, Lyons T, Allen MF, Aronson E, Bahreini R. Dust Sources in the Salton Sea Basin: A Clear Case of an Anthropogenically Impacted Dust Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9378-9388. [PMID: 31339712 DOI: 10.1021/acs.est.9b02137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Salton Sea Basin in California suffers from poor air quality, and an expanding dry lakebed (playa) presents a new potential dust source. In 2017-18, depositing dust was collected approximately monthly at five sites in the Salton Sea Basin and analyzed for total elemental and soluble anion content. These data were analyzed with Positive Matrix Factorization (PMF). The PMF method resolved seven dust sources with distinct compositional markers: Playa (Mg, SO42-, Na, Ca, Sr), Colorado Alluvium (U, Ca), Local Alluvium (Al, Fe, Ti), Agricultural Burning (K, PO43-), Sea Spray (Na, Cl-, Se), Anthropogenic Trace Metals (Sb, As, Zn, Cd, Pb, Na), and Anthropogenic Copper (Cu). All sources except Local Alluvium are influenced or caused by current or historic anthropogenic activities. PMF attributed 55 to 80% of the measured dust flux to these six sources. The dust fluxes at the site where the playa source was dominant (89 g m-2 yr-1) were less than, but approaching the scale of, those observed at Owens Lake playas in the late 20th century. Playa emissions in the Salton Sea region were most intense during the late spring to early summer and contain high concentrations of evaporite mineral tracers, particularly Mg, Ca, and SO42-.
Collapse
Affiliation(s)
- Alexander L Frie
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Alexis C Garrison
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Michael V Schaefer
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Steve M Bates
- Department of Earth Sciences , University of California , Riverside , California 92521 , United States
| | - Jon Botthoff
- Center for Conservation Biology , University of California , Riverside , California 92521 , United States
| | - Mia Maltz
- Center for Conservation Biology , University of California , Riverside , California 92521 , United States
| | - Samantha C Ying
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| | - Timothy Lyons
- Department of Earth Sciences , University of California , Riverside , California 92521 , United States
| | - Michael F Allen
- Center for Conservation Biology , University of California , Riverside , California 92521 , United States
- Department of Microbiology and Plant Pathology , University of California , Riverside , California 92521 , United States
| | - Emma Aronson
- Center for Conservation Biology , University of California , Riverside , California 92521 , United States
- Department of Microbiology and Plant Pathology , University of California , Riverside , California 92521 , United States
| | - Roya Bahreini
- Department of Environmental Sciences , University of California , Riverside , California 92521 , United States
| |
Collapse
|
33
|
Variability and Trends in Dust Storm Frequency on Decadal Timescales: Climatic Drivers and Human Impacts. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9060261] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Dust storms present numerous hazards to human society and are particularly significant to people living in the Dust Belt which stretches from the Sahara across the Middle East to northeast Asia. This paper presents a review of dust storm variability and trends in frequency on decadal timescales from three Dust Belt settlements with long-term (>50 years) meteorological records: Nouakchott, Mauritania; Zabol, Iran, and Minqin, China. The inhabitants of each of these settlements have experienced a decline in dust storms in recent decades, since the late 1980s at Nouakchott, since 2004 at Zabol, and since the late 1970s at Minqin. The roles of climatic variables and human activities are assessed in each case, as drivers of periods of high dust storm frequency and subsequent declines in dust emissions. Both climatic and human variables have been important but overall the balance of research conclusions indicates natural processes (precipitation totals, wind strength) have had greater impact than human action, in the latter case both in the form of mismanagement (abandoned farmland, water management schemes) and attempts to reduce wind erosion (afforestation projects). Understanding the drivers of change in dust storm dynamics at the local scale is increasingly important for efforts to mitigate dust storm hazards as climate change projections suggest that the global dryland area is likely to expand in the twenty-first century, along with an associated increase in the risk of drought and dust emissions.
Collapse
|
34
|
Duniway MC, Pfennigwerth AA, Fick SE, Nauman TW, Belnap J, Barger NN. Wind erosion and dust from
US
drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 2019. [DOI: 10.1002/ecs2.2650] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Michael C. Duniway
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
| | - Alix A. Pfennigwerth
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
- Department of Ecology and Evolutionary Biology University of Colorado at Boulder Boulder Colorado 80309 USA
| | - Stephen E. Fick
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
- Department of Ecology and Evolutionary Biology University of Colorado at Boulder Boulder Colorado 80309 USA
| | - Travis W. Nauman
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
| | - Jayne Belnap
- U.S. Geological Survey Southwest Biological Science Center Moab Utah 84532 USA
| | - Nichole N. Barger
- Department of Ecology and Evolutionary Biology University of Colorado at Boulder Boulder Colorado 80309 USA
| |
Collapse
|