1
|
Jain H, Marsool Marsool MD, Verma A, Irfan H, Nadeem A, Jain J, Goyal A, Passey S, Gole S, Khatib MN, Zahiruddin QS, Gaidhane AM, Rustagi S, Satapathy P. A Comprehensive Review on the Electrocardiographic Manifestations of Cardiac Sarcoidosis: Patterns and Prognosis. Curr Cardiol Rep 2024; 26:873-884. [PMID: 38954351 DOI: 10.1007/s11886-024-02088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Cardiac sarcoidosis (CS) refers to cardiac involvement in sarcoidosis and is usually associated with worse outcomes. This comprehensive review aims to elucidate the electrocardiographic (ECG) signs and features associated with CS, as well as examine modern techniques and their importance in CS evaluation. RECENT FINDINGS The exact pathogenesis of CS is still unclear, but it stems from an abnormal immunological response triggered by environmental factors in individuals with genetic predisposition. CS presents with non-cardiac symptoms; however, conduction system abnormalities are common in patients with CS. The most common electrocardiographic (ECG) signs include atrioventricular blocks and ventricular tachyarrhythmia. Distinct patterns, such as fragmented QRS complexes, T-wave alternans, and bundle branch blocks, are critical indicators of myocardial involvement. The application of advanced ECG techniques such as signal-averaged ECG, Holter monitoring, wavelet-transformed ECG, microvolt T-wave alternans, and artificial intelligence-supported analysis holds promising outcomes for opportune detection and monitoring of CS. Timely utilisation of inexpensive and readily available ECG possesses the potential to allow early detection and intervention for CS. The integration of artificial intelligence models into ECG analysis is a promising approach for improving the ECG diagnostic accuracy and further risk stratification of patients with CS.
Collapse
Affiliation(s)
- Hritvik Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | - Amogh Verma
- Department of Internal Medicine, Rama Medical College Hospital and Research Center, Hapur, India.
| | - Hamza Irfan
- Department of Internal Medicine, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - Abdullah Nadeem
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Jyoti Jain
- Department of Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Aman Goyal
- Department of Internal Medicine, Seth GS Medical College, KEM Hospital, Mumbai, India
| | - Siddhant Passey
- Department of Internal Medicine, University of Connecticut Health Center, Connecticut, USA
| | - Shrey Gole
- Department of Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | - Mahalaqua Nazli Khatib
- Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Quazi Syed Zahiruddin
- South Asia Infant Feeding Research Network (SAIFRN), Division of Evidence Synthesis, Global Consortium of Public Health and Research, Datta Meghe Institute of Higher Education, Wardha, India
| | - Abhay M Gaidhane
- Global Health Academy, School of Epidemiology and Public Health, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education, Wardha, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Sarvesh Rustagi, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Prakasini Satapathy
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospital, Saveetha University, Chennai, 602117, India
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, 51001, Iraq
| |
Collapse
|
2
|
Kacprzak A, Tomkowski W, Szturmowicz M. Phenotypes of Sarcoidosis-Associated Pulmonary Hypertension-A Challenging Mystery. Diagnostics (Basel) 2023; 13:3132. [PMID: 37835874 PMCID: PMC10572558 DOI: 10.3390/diagnostics13193132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Sarcoidosis has been a well-recognised risk factor for pulmonary hypertension (PH) for a long time, but still, the knowledge about this concatenation is incomplete. Sarcoidosis-associated PH (SAPH) is an uncommon but serious complication associated with increased morbidity and mortality among sarcoidosis patients. The real epidemiology of SAPH remains unknown, and its pathomechanisms are not fully explained. Sarcoidosis is a heterogeneous and dynamic condition, and SAPH pathogenesis is believed to be multifactorial. The main roles in SAPH development play: parenchymal lung disease with the destruction of pulmonary vessels, the extrinsic compression of pulmonary vessels by conglomerate masses, lymphadenopathy or fibrosing mediastinitis, pulmonary vasculopathy, LV dysfunction, and portal hypertension. Recently, it has been recommended to individually tailor SAPH management according to the predominant pathomechanism, i.e., SAPH phenotype. Unfortunately, SAPH phenotyping is not a straightforward process. First, there are gaps in our understanding of undergoing processes. Second, the assessment of such a pivotal element as pulmonary vasculature on a microscopic level is non-feasible in SAPH patients antemortem. Finally, SAPH is a dynamic condition, multiple phenotypes usually coexist, and patients can switch between phenotypes during the course of sarcoidosis. In this article, we summarise the basic knowledge of SAPH, describe SAPH phenotypes, and highlight some practical problems related to SAPH phenotyping.
Collapse
Affiliation(s)
- Aneta Kacprzak
- 1st Department of Lung Diseases, National Tuberculosis and Lung Diseases Institute, Plocka 26, 01-138 Warsaw, Poland
| | | | | |
Collapse
|
3
|
Shrivastav R, Hajra A, Krishnan S, Bandyopadhyay D, Ranjan P, Fuisz A. Evaluation and Management of Cardiac Sarcoidosis with Advanced Imaging. Heart Fail Clin 2023; 19:475-489. [PMID: 37714588 DOI: 10.1016/j.hfc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
A high clinical suspicion in the setting of appropriate history, physical exam, laboratory, and imaging parameters is often required to set the groundwork for diagnosis and management. Echocardiography may show septal thinning, evidence of systolic and diastolic dysfunction, along with impaired global longitudinal strain. Cardiac MRI reveals late gadolinium enhancement along with evidence of myocardial edema and inflammation on T2 weighted imaging and parametric mapping. 18F-FDG PET detects the presence of active inflammation and the presence of scar. Involvement of the right ventricle on MRI or PET confers a high risk for adverse cardiac events and mortality.
Collapse
Affiliation(s)
- Rishi Shrivastav
- Department of Cardiology, Icahn School of Medicine at Mount Sinai/Mount Sinai Morningside Hospital, Cardiovascular Institute, 1111 Amsterdam Avenue, Clark Building, 2nd Floor, New York, NY 10023, USA
| | - Adrija Hajra
- Department of Internal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, 1825 Eastchester Road, Bronx, NY 10461, USA
| | - Suraj Krishnan
- Department of Internal Medicine, Jacobi Hospital/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dhrubajyoti Bandyopadhyay
- Department of Cardiology, New York Medical College, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA
| | - Pragya Ranjan
- Department of Cardiology, New York Medical College, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA.
| | - Anthon Fuisz
- Department of Cardiology, New York Medical College, Westchester Medical Center, 100 Woods Road, Valhalla, NY 10595, USA
| |
Collapse
|
5
|
Kim MY, Cho SJ, Kim HJ, Kim SM, Lee SC, Paek M, Choe YH. T1 values and extracellular volume fraction in asymptomatic subjects: variations in left ventricular segments and correlation with cardiovascular risk factors. Sci Rep 2022; 12:12544. [PMID: 35869106 PMCID: PMC9307856 DOI: 10.1038/s41598-022-16696-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate variations in pre-contrast (preT1) and post-contrast (postT1) myocardial T1 values and extracellular volume fraction (ECV) according to left ventricular (LV) segments and to find correlations between them and cardiovascular risk factors. The 233 asymptomatic subjects (210 men, 23 women; aged 54.1 ± 6.0 years) underwent cardiac magnetic resonance imaging with preT1 and postT1 mapping on a 1.5-T scanner. T1 values and ECVs were evaluated according to LV segments, age, sex, and estimated glomerular filtration rate (eGFR). Based on the presence of hypertension (HTN) and diabetes mellitus (DM), subjects were subdivided into the control, HTN, DM, and HTN and DM (HTN-DM) groups. T1 values and ECV showed significant differences between septal and lateral segments at the mid-ventricular and basal levels (p ≤ 0.003). In subgroup analysis, the HTN-DM group showed a significantly higher ECV (0.260 ± 0.023) than the control (0.240 ± 0.021, p = 0.011) and HTN (0.241 ± 0.024, p = 0.041) groups. Overall postT1 and ECV of the LV had significant correlation with eGFR (r = 0.19, p = 0.038 for postT1; r = − 0.23, p = 0.011 for ECV). Septal segments show higher preT1 and ECV but lower postT1 than lateral segments at the mid-ventricular and basal levels. ECV is significantly affected by HTN, DM, and eGFR, even in asymptomatic subjects.
Collapse
|