1
|
Singh T, Saffeullah P, Umar S. Foliar application of zinc oxide (ZnO) nanoparticles ameliorates growth, yield traits, osmolytes, cell viability, and antioxidant system of Brassica juncea (L.) Czern. grown in lead (Pb) stress. CHEMOSPHERE 2024; 370:143950. [PMID: 39675583 DOI: 10.1016/j.chemosphere.2024.143950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Heavy metal stress is one of the exorbitant problems faced by plants. Lead (Pb) stress is one of the prevalent stressors in agricultural fields. Nanofertilizers are being currently employed for mitigating heavy metal stress in plants. This study assessed the suitability of zinc oxide nanoparticles (ZnONPs) in ameliorating Pb stress in Brassica juncea (L.) Czern. var. Pusa Jagannath. The tested plants were grown in pots using a randomized block design, placed in herbal garden of Jamia Hamdard and treated with different amounts of Pb and nanozinc viz. control (T0), 250 ppm ZnONPs (T1), 500 ppm ZnONPs (T2), 1000 ppm ZnONPs (T3), 250 μM Pb (T4), 500 μM Pb (T5), and their combinations i.e. 250 μM Pb and 500 ppm ZnONPs (T6), 500 μM Pb and 500 ppm ZnONPs (T7), 250 μM Pb and 1000 ppm ZnONPs (T8) and 500 μM Pb and 1000 ppm ZnONPs (T9). The plants were tested for variations in morpho-physiological parameters, yield traits, biochemical attributes, antioxidant enzyme activity, and cell viability using confocal microscopy. Maximum dose of Pb (500 μM) decreased morphological and yield traits such as leaf area (-51%), shoot length (-17%), root length (-34%), number of seeds per plant (-73%), weight of the seeds (-35%), pod number (-47%), shoot and root fresh weight by -63% and -56%, along with reduction in total chlorophyll (-12%), carotenoid (-38%) content, nitrate reductase (-64%) activity, total soluble protein (-40%), total soluble sugar (-31%) and antioxidant enzymes (SOD, CAT and APX by -14%, -4%, -15% respectively) in comparison to control. Stress markers like proline (195%) and MDA (266%) were elevated in Pb-treated plants.The increased level of total phenol content (89%) and total flavonoid content (478%) was also noted in Pb treated plants which acted as non-enzymatic antioxidant defense. The foliar application of ZnONPs (1000 ppm) was found to be effective in ameliorating Pb induced stress, as depicted by the increases in root length (43%), shoot length (38%), pod number (46%), seed weight (70%), number of seeds per plant (105%), chlorophyll content (41%), carotenoid content (28%), total soluble protein content (20%), and nitrate reductase activity (59%) in comparison to control. When ZnONPs (1000 ppm) was supplemented in Pb (250 μM) treated plants, antioxidant enzymes (SOD and CAT increased by 83%, and APX by 75%) and stress markers such as proline amplified by 387%, and total soluble sugar (61%), with respect to control. ZnONPs also improved the cell viability under Pb stress as revealed by confocal microscopy. In summary, foliar spray of ZnONPs proved effective in mitigating the Pb-induced stress in mustard which could be an effective strategy to alleviate the deleterious effects of Pb stress (500 μM) in mustard plants so as to realize its sustainable production under abiotic stress.
Collapse
Affiliation(s)
- Tina Singh
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India
| | - Peer Saffeullah
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
2
|
Kulus D, Tymoszuk A, Kulpińska A, Wojnarowicz J, Szałaj U. Nanoparticle-mediated enhancement of plant cryopreservation: Cultivar-specific insights into morphogenesis and biochemical responses in Lamprocapnos spectabilis (L.) Fukuhara 'Gold Heart' and 'Valentine'. PLoS One 2024; 19:e0304586. [PMID: 38820507 PMCID: PMC11142695 DOI: 10.1371/journal.pone.0304586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
The integration of nanoparticles (NPs) holds promising potential to bring substantial advancements to plant cryopreservation, a crucial technique in biodiversity conservation. To date, little attention has been focused on using nanoparticles in cryobiology research. This study aimed to assess the effectiveness of NPs in enhancing the efficiency of plant cryopreservation. In-vitro-derived shoot tips of bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara) 'Gold Heart' and 'Valentine' were used as the plant material. The encapsulation-vitrification cryopreservation protocol included preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at various concentrations either into the preculture medium or the protective bead matrix during encapsulation. The explant survival and further morphogenic and biochemical events were studied. Results showed that the impact of NPs on cryopreservation outcomes was cultivar-specific. In the 'Valentine' cultivar, incorporating 5 ppm AgNPs within the alginate bead matrix significantly improved cryopreservation efficiency by up to 12%. On the other hand, the 'Gold Heart' cultivar benefited from alginate supplementation with 5 ppm AgNPs and 5-15 ppm ZnONPs, leading to an over 28% increase in the survival rate of shoot tips. Interestingly, adding NPs to the preculture medium was less effective and sometimes counterproductive, despite promoting greater shoot proliferation and elongation in 'Valentine' explants compared to the control. Moreover, nanoparticles often induced oxidative stress (and enhanced the activity of APX, GPOX, and SOD enzymes), which in turn affected the biosynthesis of plant primary and secondary metabolites. It was found that supplementation of preculture medium with higher concentration (15 ppm) of gold, silver and zinc oxide nanoparticles stimulated the production of plant pigments, but in a cultivar-dependent matter. Our study confirmed the beneficial action of nanoparticles during cryopreservation of plant tissues.
Collapse
Affiliation(s)
- Dariusz Kulus
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Kulpińska
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Warsaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
3
|
Kumari A, Gupta AK, Sharma S, Jadon VS, Sharma V, Chun SC, Sivanesan I. Nanoparticles as a Tool for Alleviating Plant Stress: Mechanisms, Implications, and Challenges. PLANTS (BASEL, SWITZERLAND) 2024; 13:1528. [PMID: 38891334 PMCID: PMC11174413 DOI: 10.3390/plants13111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Plants, being sessile, are continuously exposed to varietal environmental stressors, which consequently induce various bio-physiological changes in plants that hinder their growth and development. Oxidative stress is one of the undesirable consequences in plants triggered due to imbalance in their antioxidant defense system. Biochemical studies suggest that nanoparticles are known to affect the antioxidant system, photosynthesis, and DNA expression in plants. In addition, they are known to boost the capacity of antioxidant systems, thereby contributing to the tolerance of plants to oxidative stress. This review study attempts to present the overview of the role of nanoparticles in plant growth and development, especially emphasizing their role as antioxidants. Furthermore, the review delves into the intricate connections between nanoparticles and plant signaling pathways, highlighting their influence on gene expression and stress-responsive mechanisms. Finally, the implications of nanoparticle-assisted antioxidant strategies in sustainable agriculture, considering their potential to enhance crop yield, stress tolerance, and overall plant resilience, are discussed.
Collapse
Affiliation(s)
- Ankita Kumari
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Ashish Kumar Gupta
- ICAR—National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India;
| | - Shivika Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Vikash S. Jadon
- School of Biosciences, Swami Rama Himalayan University, JollyGrant, Dehradun 248016, Uttarakhand, India;
| | - Vikas Sharma
- Molecular Biology and Genetic Engineering Domain, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara-Jalandhar 144411, Punjab, India; (A.K.); (S.S.); (V.S.)
| | - Se Chul Chun
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
4
|
Samuditha PS, Adassooriya NM, Salim N. Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:115-125. [PMID: 38293272 PMCID: PMC10825799 DOI: 10.3762/bjnano.15.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
The escalating release of zinc oxide nanoparticles (ZnO NPs) into the environment poses a substantial threat, potentially leading to increased concentrations of zinc (Zn) in the soil and subsequent phytotoxic effects. This study aimed to assess the effects of ZnO NPs on Raphanus sativus (R. sativus) concerning its tolerance levels, toxicity, and accumulation. ZnO NPs were synthesized by the wet chemical method and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The effect of ZnO NPs (70 nm) on R. sativus grown in coir was evaluated. The application of 1,000 mg/L of ZnO NPs resulted in a significant increase (p < 0.05) in soluble protein content, carbohydrates, chlorophyll a (Chl-a), chlorophyll b (Chl-b), total chlorophylls, carotenoids, and antioxidants by 24.7%, 58.5%, 38.0%, 42.2%, 39.9%, 11.2%, and 7.7%, respectively. Interestingly, this dose had no impact on the indole acetic acid (IAA) content. Conversely, the use of 2,000 mg/L of ZnO NPs in the same medium led to a significant reduction (p < 0.05) in soluble protein content by 23.1%, accompanied by a notable increase in IAA by 31.1%, indicating potential toxicity. The use of atomic absorption spectroscopy confirmed the internalization of zinc in seedlings, with a statistically significant increase (p < 0.05). In control plants without ZnO NPs, Zn concentration was 0.36 mg/g, while at the highest ZnO NPs tested dose of 10,000 mg/L, it significantly rose to 1.76 mg/g, causing leaf chlorosis and stunted seedling growth. This suggests potential health risks related to Zn toxicity for consumers. Given the adverse effects on R. sativus at concentrations above 1000 mg/L, caution is advised in the application and release of ZnO NPs, highlighting the importance of responsible practices to mitigate harm to plant life and consumer health. The study demonstrated the tolerance of R. sativus to high Zn levels, classifying it as a Zn-tolerant species.
Collapse
Affiliation(s)
| | - Nadeesh Madusanka Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nazeera Salim
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
5
|
Singh Y, Kumar U, Panigrahi S, Balyan P, Mehla S, Sihag P, Sagwal V, Singh KP, White JC, Dhankher OP. Nanoparticles as novel elicitors in plant tissue culture applications: Current status and future outlook. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108004. [PMID: 37714027 DOI: 10.1016/j.plaphy.2023.108004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Plant tissue culture is the primary, fundamental, and applied aspect of plant biology. It is an indispensable and valuable technique for investigating morphogenesis, embryogenesis, clonal propagation, crop improvements, generation of pathogen-free plants, gene transfer and expression, and the production of secondary metabolites. The extensive use of various nanoparticles (NPs) in fields such as cosmetics, energy, medicine, pharmaceuticals, electronics, agriculture, and biotechnology have demonstrated positive impacts in microbial decontamination, callus differentiation, organogenesis, somatic variations, biotransformation, cryopreservation, and enhanced synthesis of bioactive compounds. This review summarizes the current state of knowledge with regard to the use of nanoparticles in plant tissue culture, with a particular focus on the beneficial outcomes. The positive (beneficial) and negative (toxic) effects of engineered NPs in tissue culture medium, delivery of transgenes, NPs toxicity concerns, safety issues, and potential hazards arising from utilization of nanomaterials in agriculture through plant tissue culture are discussed in detail, along with the future prospects for these applications. In addition, the potential use of novel nanomaterials such as graphene, graphite, dendrimers, quantum dots, and carbon nanotubes as well as unique metal or metalloid NPs are proposed. Further, the potential mechanisms underlying NPs elicitation of tissue culture response in different applications are critically evaluated. The potential of these approaches in plant nanobiotechnology is only now becoming understood and it is clear that the role of these strategies in sustainably increasing crop production to combat global food security and safety in a changing climate will be significant.
Collapse
Affiliation(s)
- Yogita Singh
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Upendra Kumar
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India; Department of Plant Science, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India.
| | - Sourav Panigrahi
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Priyanka Balyan
- Department of Botany, Deva Nagri P.G. College, CCS University, Meerut, 245206, India
| | - Sheetal Mehla
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Pooja Sihag
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Vijeta Sagwal
- Department of Molecular Biology & Biotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Krishna Pal Singh
- Biophysics Unit, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, 263145, India; Vice-Chancellor's Secretariat, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, 243001, India
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Tarroum M, Alfarraj NS, Al-Qurainy F, Al-Hashimi A, Khan S, Nadeem M, Salih AM, Shaikhaldein HO. Improving the Production of Secondary Metabolites via the Application of Biogenic Zinc Oxide Nanoparticles in the Calli of Delonix elata: A Potential Medicinal Plant. Metabolites 2023; 13:905. [PMID: 37623850 PMCID: PMC10456625 DOI: 10.3390/metabo13080905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The implementation of nanotechnology in the field of plant tissue culture has demonstrated an interesting impact on in vitro plant growth and development. Furthermore, the plant tissue culture accompanying nanoparticles has been showed to be a reliable alternative for the biosynthesis of secondary metabolites. Herein, the effectiveness of zinc oxide nanoparticles (ZnONPs) on the growth of Delonix elata calli, as well as their phytochemical profiles, were investigated. Delonix elata seeds were collected and germinated, and then the plant species was determined based on the PCR product sequence of ITS1 and ITS4 primers. Afterward, the calli derived from Delonix elata seedlings were subjected to 0, 10, 20, 30, 40, and 50 mg/L of ZnONPs. The ZnONPs were biologically synthesized using the Ricinus communis aqueous leaf extract, which acts as a capping and reducing agent, and zinc nitrate solution. The nanostructures of the biogenic ZnONPs were confirmed using different techniques like UV-visible spectroscopy (UV), zeta potential measurement, Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Adding 30 mg/L of ZnONPs to the MS media (containing 2.5 µM 2,4-D and 1 µM BAP) resulted in the highest callus fresh weight (5.65 g) compared to the control and other ZnONP treatments. Similarly, more phenolic accumulation (358.85 µg/g DW) and flavonoid (112.88 µg/g DW) contents were achieved at 30 mg/L. Furthermore, the high-performance liquid chromatography (HPLC) analysis showed significant increments in gallic acid, quercetin, hesperidin, and rutin in all treated ZnONP calli compared to the control. On the other hand, the gas chromatography and mass spectroscopy (GC-MS) analysis of the calli extracts revealed that nine phytochemical compounds were common among all extracts. Moreover, the most predominant compound found in calli treated with 20, 30, 40, and 50 mg/L of ZnONPs was bis(2-ethylhexyl) phthalate, with percentage areas of 27.33, 38.68, 22.66, and 17.98%, respectively. The predominant compounds in the control and in calli treated with 10 mg/L of ZnONPs were octadecanoic acid, 2-propenyl ester and heptanoic acid. In conclusion, in this study, green ZnONPs exerted beneficial effects on Delonix elata calli and improved their production of bioactive compounds, especially at a dose of 30 mg/L.
Collapse
Affiliation(s)
- Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Parashar R, Afzal S, Mishra M, Singh NK. Improving biofortification success rates and productivity through zinc nanocomposites in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44223-44233. [PMID: 36689105 DOI: 10.1007/s11356-023-25293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Rice (Oryza sativa L.) is a staple food crop; most of it is consumed in nations where malnutrition is a serious problem, and its enrichment through biofortification can be used to efficiently combat hidden hunger. Here, we studied the effect of two zinc forms, i.e., zinc oxide nanoparticles (ZnO NPs) and sulfate salt (ZnSO4), at four different concentrations during the grain development period (after anthesis and continued once a week for up to 5 weeks) of the rice plant. During the rice growing season 2021-2022, all the experiments were conducted in a greenhouse (temperature: day 30 °C; night 20 °C; relative humidity: 70%; light period: 16 h/8 h, day/night). The main aim was to identify the effects of ZnO NPs on physical growth, biochemical parameters, nutrient acquisition, and crop yield. We have also highlighted the effects of NPs on zinc biofortification, and the end results illustrated that both zinc forms are capable of increasing grain yield. However, we found that even at low concentrations, ZnO NPs showed a significant increase in growth yield, whereas bulk did not show eminent results even at higher concentrations. Spikelet number per panicle was more than 50% and 38% in the case of ZnO NPs and ZnSO4, respectively. Similarly, stimulation in plant height was 25% with NPs treatment and only 3% with bulk treatment. The increase in grain per spike was 19% with ZnO NPs as compared to the control. Total chlorophyll, soluble sugar, amylose, and soluble protein contents were enhanced under ZnO NP treatment, which plays an excellent role in the regulation of various transcriptional pathways related to biofortification. We identified that foliar application at the flowering stage is more effective in comparison to the basal and tillering stages of the rice life cycle. ZnO NPs increased zinc content in rice grain by 55% as compared to traditional fertilization (~ 35%), with no adverse effects on human health. This study highlights that ZnO NPs could be used to increase zinc efficiency and as a safe fertilizer in the rice harvesting ecosystem.
Collapse
Affiliation(s)
- Richa Parashar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shadma Afzal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Monalisha Mishra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
8
|
Abu Zeid IM, Mohamed FH, Metwali EM. Responses of two strawberry cultivars to NaCl-induced salt stress under the influence of ZnO nanoparticles. Saudi J Biol Sci 2023; 30:103623. [PMID: 36970252 PMCID: PMC10036939 DOI: 10.1016/j.sjbs.2023.103623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Salinity stress is one of the most serious impacts of climate changes on agriculture production, especially in salt sensitive crop plants, like strawberry. Currently, the utilization of nanomolecules in agriculture is thought to be a useful strategy to compact abiotic and biotic stresses. This study aimed to investigate the effect of zinc oxide nanoparticles (ZnO-NPs) on the in vitro growth, ions uptake, biochemical and anatomical responses of two strawberry cvs (Camarosa and Sweet Charlie) under NaCl-induced salt stress. A 2x3x3 factorial experiment was conducted, with three levels of ZnO-NPs (0, 15 and 30 mg 1-l) and three levels of NaCl-induced salt stress (0, 35 and 70 mM). The results showed that increased levels of NaCl in the medium had led to decrease in shoot fresh weight and proliferative potential. The cv Camarosa was found to be relatively more tolerant to salt stress. Additionally, salt stress leads to an accumulation of toxic ions (Na + and Cl-), as well as a decrease in K + uptake. However, application of ZnO-NPs at a concentration of 15 mg 1-l was found to alleviate these effects by increasing or stabilizing growth traits, decreasing the accumulation of toxic ions and the Na+/K + ratio, and increasing K + uptake. Additionally, this treatment led to elevated levels of catalase (CAT), peroxidase (POD) and proline content. The positive impacts of ZnO-NPs application were reflected on the leaf anatomical features, being better adapted to salt stress. The study highlighted the efficiency of utilizing tissue culture technique in screening of strawberry cultivars for salinity tolerance under the influence of NPs.
Collapse
|
9
|
Regni L, Facchin SL, da Silva DF, De Cesaris M, Famiani F, Proietti P, Micheli M. Neem Oil to Reduce Zeatin Use and Optimize the Rooting Phase in Olea europaea L. Micropropagation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030576. [PMID: 36771660 PMCID: PMC9921874 DOI: 10.3390/plants12030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
Micropropagation is an in vitro propagation technique, established in the nursery field sector for numerous species, which offers several advantages compared to traditional agamic propagation techniques. In the case of the olive tree, however, despite the advances made through research, it is still little used, due to the recalcitrance to in vitro proliferation and/or rooting of many olive cultivars and the high cost of zeatin, the only cytokinin that makes it possible to achieve a satisfactory proliferation rate in this species. In this context, numerous attempts have been made to identify alternative cytokinin compounds able to improve the proliferation rate of olive tree explants and thus reduce the unitary production cost. In particular, there is a growing interest in the use of natural substances (called in some cases "complex mixtures"), which, when added to the in vitro cultivation substrates, seem to be able to improve proliferation rates. In the present study, neem oil was added to the propagation substrates (partially/totally replacing zeatin) and in the rooting phase for the olive cultivar Moraiolo. In particular, in the proliferation phase, the effect of neem oil (0.1 mL L-1) in substrates containing different zeatin concentrations (0, 1, 2, and 4 mg L-1) was evaluated. For the rooting phase, agarized substrate and soil were used with shoots derived from a standard proliferation substrate (4 mg L-1 zeatin) and from the substrate that gave the best results in the proliferation phase (2 mg L-1 zeatin and 0.1 mL L-1 neem oil). In the proliferation phase, the addition of neem oil in the substrates with low zeatin concentration (1 and 2 mg L-1) induced an increase in the number of adventitious shoots and shoots length. On the contrary, the addition of neem oil in the rooting substrates did not positively influence the rooting phase, but positive results especially in terms of root number and length were observed in explants derived from a neem oil-enriched proliferation substrate compared to the control substrate. Therefore, the present study demonstrated for the first time the positive role of neem oil in the proliferation of olive in vitro with low zeatin concentrations.
Collapse
Affiliation(s)
- Luca Regni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
- Correspondence:
| | - Simona Lucia Facchin
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Daniel Fernandes da Silva
- Campus Marechal Cândido Rondon, Universidade Estadual do Oeste do Paraná, Rua Pernambuco 1777, Cascavel 85819-110, Brazil
| | - Michele De Cesaris
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Franco Famiani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Primo Proietti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| | - Maurizio Micheli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 06121 Perugia, Italy
| |
Collapse
|
10
|
Geremew A, Carson L, Woldesenbet S, Wang H, Reeves S, Brooks N, Saganti P, Weerasooriya A, Peace E. Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard ( Brassica juncea). FRONTIERS IN PLANT SCIENCE 2023; 14:1108186. [PMID: 36755696 PMCID: PMC9900026 DOI: 10.3389/fpls.2023.1108186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The sustainability of crop production is impacted by climate change and land degradation, and the advanced application of nanotechnology is of paramount importance to overcome this challenge. The development of nanomaterials based on essential nutrients like zinc could serve as a basis for nanofertilizers and nanocomposite synthesis for broader agricultural applications and quality human nutrition. Therefore, this study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using pecan (Carya illinoinensis) leaf extract and investigate their effect on the growth, physiology, nutrient content, and antioxidant properties of mustard (Brassica juncea). METHODS The ZnO NPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), X-ray diffractometer (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). Mustard plants were subjected to different concentrations of ZnONPs (0, 20, 40, 60, 80, 100 and 200 mg L-1) during the vegetative growth stage. RESULTS The UV-Vis spectra of ZnO NPs revealed the absorption maxima at 362 nm and FTIR identified numerous functional groups that are responsible for capping and stabilizing ZnO NPs. DLS analysis presented monodispersed ZnO NPs of 84.5 nm size and highly negative zeta potential (-22.4 mV). Overall, the application of ZnO NPs enhanced the growth, chlorophyll content (by 53 %), relative water content (by 46 %), shoot biomass, membrane stability (by 54 %) and net photosynthesis significantly in a dose-dependent manner. In addition, the supplement of the ZnO NPs augmented K, Fe, Zn and flavonoid contents as well as overcome the effect of reactive oxygen species by increasing antioxidant capacity in mustard leaves up to 97 %. CONCLUSIONS In conclusion, ZnO NPs can be potentially used as a plant growth stimulant and as a novel soil amendment for enhancing crop yields. Besides, the biofortification of B. juncea plants with ZnO NPs helps to improve the nutritional quality of the crop and perhaps potentiates its pharmaceutical effects.
Collapse
Affiliation(s)
- Addisie Geremew
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Selamawit Woldesenbet
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Huichen Wang
- Department of Chemistry and Physics, College of Arts and Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Sheena Reeves
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Nigel Brooks
- Department of Chemical Engineering, College of Engineering, Prairie View A&M University, Prairie View, TX, United States
| | - Premkumar Saganti
- Department of Chemistry and Physics, College of Arts and Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Aruna Weerasooriya
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| | - Elisha Peace
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX, United States
| |
Collapse
|
11
|
Tymoszuk A, Sławkowska N, Szałaj U, Kulus D, Antkowiak M, Wojnarowicz J. Synthesis, Characteristics, and Effect of Zinc Oxide and Silver Nanoparticles on the In Vitro Regeneration and Biochemical Profile of Chrysanthemum Adventitious Shoots. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8192. [PMID: 36431675 PMCID: PMC9696543 DOI: 10.3390/ma15228192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Studies on nanoparticles' effects on plants are relevant for horticulture. This study aimed to test the influence of zinc oxide submicron particles (ZnO SMPs), zinc oxide nanoparticles (ZnO NPs), and zinc oxide nanoparticles combined with silver nanoparticles (ZnO+1%Ag NPs) applied at 100 and 500 mg·L-1 on the regeneration and biochemical activity of adventitious shoots in Chrysanthemum × morifolium (Ramat.) Hemsl. 'UTP Burgundy Gold' and 'UTP Pinky Gold'. The original microwave solvothermal synthesis and characteristics of the ZnO samples were described. Internodes were cultured on the MS medium with 0.6 mg∙L-1 6-benzylaminopurine (BAP) and 2 mg∙L-1 indole-3-acetic acid (IAA). In 'UTP Burgundy Gold', the highest shoot regeneration efficiency was obtained for 100 mg·L-1 ZnO SMPs and 500 mg·L-1 ZnO NPs treatments (6.50 and 10.33 shoots per explant, respectively). These shoots had high or moderate chlorophyll and carotenoid contents. In 'UTP Pinky Gold', the highest shoot number was produced in the control (12.92), for 500 mg·L-1 ZnO SMPs (12.08) and 500 mg·L-1 ZnO NPs (10.42). These shoots had increased chlorophyll (a+b)-to-carotenoid ratios. In 'UTP Pinky Gold', the ZnO SMPs and ZnO NPs affected the anthocyanins biosynthesis, whereas ZnO + 1%Ag NPs decreased the phenolics accumulation. These results are important for the improvement of chrysanthemum micropropagation.
Collapse
Affiliation(s)
- Alicja Tymoszuk
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
| | - Natalia Sławkowska
- ExPlant Student Association, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Dariusz Kulus
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
| | - Małgorzata Antkowiak
- Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection–National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Sokolowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
12
|
Foliar Application of Nano-Silicon Improves the Physiological and Biochemical Characteristics of ‘Kalamata’ Olive Subjected to Deficit Irrigation in a Semi-Arid Climate. PLANTS 2022; 11:plants11121561. [PMID: 35736712 PMCID: PMC9229156 DOI: 10.3390/plants11121561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023]
Abstract
In Egypt’s arid and semi-arid lands where the main olive production zone is located, evapotranspiration is higher than rainfall during winter. Limited research has used nanomaterials, especially nano-silicon (nSi) to improve the growth, development, and productivity of drought-stressed fruit trees, amid the global water scarcity problem. To assess the role of nSi on drought-sensitive ‘Kalamata’ olive tree growth, and biochemical and physiological changes under drought conditions, a split-plot experiment was conducted in a randomized complete block design. The trees were foliar sprayed with nSi in the field using nine treatments (three replicates each) of 0, 150, and 200 mg·L−1 under different irrigation regimes (100, 90, and 80% irrigation water requirements ‘IWR’) during the 2020 and 2021 seasons. Drought negatively affected the trees, but both concentrations of nSi alleviated drought effects at reduced irrigation levels, compared to the non-stressed trees. Foliar spray of both concentrations of nSi at a moderate level (90% IWR) of drought resulted in improved yield and fruit weight and reduced fruit drop percentage, compared to 80% IWR. In addition, there were reduced levels of osmoprotectants such as proline, soluble sugars, and abscisic acid (ABA) with less membrane damage expressed as reduced levels of malondialdehyde (MDA), H2O2 and electrolyte leakage at 90% compared to 80% IWR. These results suggest that ‘Kalamata’ olive trees were severely stressed at 80% compared to 90% IWR, which was not surprising as it is classified as drought sensitive. Overall, the application of 200 mg·L−1 nSi was beneficial for the improvement of the mechanical resistance, growth, and productivity of moderately-stressed (90% IWR) ‘Kalamata’ olive trees under the Egyptian semi-arid conditions.
Collapse
|
13
|
Asmat-Campos D, López-Medina E, Montes de Oca-Vásquez G, Gil-Rivero E, Delfín-Narciso D, Juárez-Cortijo L, Villena-Zapata L, Gurreonero-Fernández J, Rafael-Amaya R. ZnO Nanoparticles Obtained by Green Synthesis as an Alternative to Improve the Germination Characteristics of L. esculentum. Molecules 2022; 27:2343. [PMID: 35408742 PMCID: PMC9000447 DOI: 10.3390/molecules27072343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato is an important crop due to its nutritional contributions and organoleptic properties, which make it an appetizing vegetable around the world. In its sowing, the use of seed is the most accessible propagation mechanism for farmers. However, the induction to germination and emergence is often limited in the absence of stimulants that promote the development and growth of the seedling, added to the interference of infectious agents that notoriously reduce the vitality and viability of the seed. Given this, it was proposed as a research objective to determine the effect of zinc oxide nanoparticles (ZnO NPs) mediated by a green route on the germinative characteristics of Lycopersicon esculentum Mill. 1768 "tomato". The experimental phase consisted of the synthesis of ZnO NPs and its subsequent characterization. After its synthesis, its inoculation was conducted during the germination of seeds of L. esculentum, considering six sample groups for the treatment with zinc nanoparticles (T1: Control; T2: 21.31 ppm; T3: 33.58 ppm; T4: 49.15 ppm; T5: 63.59 and T6: 99.076 ppm). The results indicate that concentrations close to 100 ppm of ZnO NPs are ideal in the treatment of L. esculentum seeds, due to the promotion of enzymatic and metabolic activity to achieve cell elongation; likewise, the biosynthesized nanoparticles showed no phytotoxicity, due to the fact that, in all the treatments, there were processes of germination and emergence. This was linked to the generation of a Zn0-phenolate complex through a chelating effect, which generates compatibility with the seed and, compared to classic inorganic synthesis, usually shows phytotoxicity. In this sense, green synthesis is presented as a great alternative in this type of application.
Collapse
Affiliation(s)
- David Asmat-Campos
- Dirección de Investigación, Innovación & Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo 13011, Peru
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo 13011, Peru; (D.D.-N.); (L.J.-C.)
| | - Eloy López-Medina
- Laboratorio de Biotecnología del Instituto de la Papa y Cultivos Andinos, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n., Ciudad Universitaria, Trujillo 13011, Peru; (E.L.-M.); (E.G.-R.); (R.R.-A.)
| | | | - Efraín Gil-Rivero
- Laboratorio de Biotecnología del Instituto de la Papa y Cultivos Andinos, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n., Ciudad Universitaria, Trujillo 13011, Peru; (E.L.-M.); (E.G.-R.); (R.R.-A.)
| | - Daniel Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo 13011, Peru; (D.D.-N.); (L.J.-C.)
| | - Luisa Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo 13011, Peru; (D.D.-N.); (L.J.-C.)
| | | | - Julio Gurreonero-Fernández
- Facultad de Ingeniería, Universidad Privada del Norte (UPN), Av. Del Ejército 920, Trujillo 13006, Peru;
| | - Roly Rafael-Amaya
- Laboratorio de Biotecnología del Instituto de la Papa y Cultivos Andinos, Facultad de Ciencias Biológicas, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n., Ciudad Universitaria, Trujillo 13011, Peru; (E.L.-M.); (E.G.-R.); (R.R.-A.)
| |
Collapse
|
14
|
Micropropagation of Plum (Prunus domestica L.) in Bioreactors Using Photomixotrophic and Photoautotrophic Conditions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040286] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this study, we propagated two old Galician plum varieties in liquid medium using a temporary immersion system with RITA© bioreactors. Environmental variables including culture system, light intensity, CO2 enrichment, immersion frequency and sucrose supplementation were evaluated in relation to in vitro proliferation, physiological status and ex vitro performance. Bioreactors were superior to jars for culturing shoots in photomixotrophic conditions, producing up to 2 times more shoot numbers and up to 1.7 times more shoot length (depending on the genotype) using shoot clusters. The number and quality of shoots were positively influenced by the sucrose concentration in the medium, plus by the light and gaseous environment. For individual apical sections the best response occurred with 3% sucrose, 150 µmol m−2 s−1 photosynthetic photon flux density and 2000 ppm CO2, averaging 2.5 shoots per explant, 26 mm shoot length and 240 mm2 leaf area, while with 50 µmol m−2 s−1 light and ambient CO2 (400 ppm) values decreased to 1.2 shoots per explant, 14 mm of shoot length and 160 mm2 of leaf area. Shoots cultured photoautotrophically (without sucrose) were successfully rooted and acclimated despite of showing limited growth, low photosynthetic pigments, carbohydrate, phenolic and antioxidant contents during the multiplication phase.
Collapse
|