1
|
Souillard R, Salines M, Martenot C, Le Maréchal C, Bonifait L, Scoizec A, Thomas R, Pierre I, Rouxel S, Venet G, Mourrieras C, Grasland B, Le Bouquin S. Burying poultry carcasses on farms as a disposal option in crisis situations: learnings and perspectives from a field study during an avian influenza epizootic in France. Poult Sci 2025; 104:104806. [PMID: 39823841 PMCID: PMC11786764 DOI: 10.1016/j.psj.2025.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Appropriate disposal of dead farming animals is required to guarantee effective disease control while protecting the environment. In crisis situations, alternatives to rendering can be used, including on-farm burial. The objectives of this study were to: (i) describe the burial and monitoring protocols used on poultry farms in France in response to major avian influenza outbreaks; (ii) assess the effectiveness of the burial protocol, in terms of both technical and biosecurity aspects, and microbiological, physical and chemical changes of the buried materials and the environment over time; (iii) provide recommendations for future burial and follow-up protocols. Five on-farm burial sites were monitored between March 2022 and March 2023, with at least four visits per farm. In addition to visual observations, soil, leachate, air and drilling water samples were collected, as well as boot swabs on/near the pit or on carcasses. For all five farms, microbiological analyses were performed to detect avian influenza virus (AIV), Clostridium botulinum and Salmonella spp. At one site, sampled drilling water was analysed to describe its physical and chemical properties. Visual anomalies were found at the sites over time, such as subsidence of the pits, presence of traces of wild and domestic animals, and rising to the surface of pieces of carcasses and feathers. AIV RNA was detected at all burial sites and in 4 % (8/201) of the collected samples. Viral genome was found up to nine months after burial on one farm. Clostridium botulinum was detected in 16 % (19/117) of the samples, whereas all samples tested negative for Salmonella spp. (0/109) at all sites and at all sampling points. All drilling water samples were compliant with drinking water standards. Our assessments demonstrated how the burial pits changed over time and the need to monitor them regularly so that corrective measures can be taken, if needed. In conclusion, our study can be used as a baseline for preparing better burial and follow-up protocols for future crisis situations. We recommend to standardise trench size and depth, to add mounding soil to the top of the pit and to set up a fence around. Proper pre-planning in peacetime will make it easier to meet the challenges associated with the management of repeated, high-frequency crises or crises of a new nature.
Collapse
Affiliation(s)
- R Souillard
- Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - M Salines
- Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - C Martenot
- Ploufragan-Plouzané-Niort Laboratory, Avian & Rabbit Virology, Immunology & Parasitology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - C Le Maréchal
- Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - L Bonifait
- Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - A Scoizec
- Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - R Thomas
- Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - I Pierre
- Ploufragan-Plouzané-Niort Laboratory, Avian & Rabbit Virology, Immunology & Parasitology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - S Rouxel
- Ploufragan-Plouzané-Niort Laboratory, Hygiene and Quality of Poultry and Pig Products Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - G Venet
- Veterinary Services of the Vendée Department, BP 90795 85020 La Roche-sur-Yon, France
| | - C Mourrieras
- Veterinary Services of the Vendée Department, BP 90795 85020 La Roche-sur-Yon, France
| | - B Grasland
- Ploufragan-Plouzané-Niort Laboratory, Avian & Rabbit Virology, Immunology & Parasitology Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France
| | - S Le Bouquin
- Ploufragan-Plouzané-Niort Laboratory, Epidemiology Health and Welfare Unit, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), BP53 22440 Ploufragan, France.
| |
Collapse
|
2
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
3
|
Oh J, Kim HR, Yu S, Kim KH, Lee JH, Park S, Kim H, Yun ST. A supervised machine learning approach to discriminate the effect of carcass leachate on shallow groundwater quality around on-farm livestock mortality burial sites. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131712. [PMID: 37257376 DOI: 10.1016/j.jhazmat.2023.131712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
The evaluation of leachate leakage at livestock mortality burial sites is challenging, particularly when groundwater is previously contaminated by agro-livestock farming. Supervised machine learning was applied to discriminate the impacts of carcass leachate from pervasive groundwater contamination in the following order: data labeling, feature selection, synthetic data generation, and classification. Physicochemical data of 359 water samples were collected from burial pits (LC), monitoring wells near pits (MW), pre-existing shallow household wells (HW), and background wells with pervasive contamination (BG). A linear classification model was built using two representative groups (LC and BG) affected by different pollution sources as labeled data. A classifier was then applied to assess the impact of leachate leakage in MW and HW. As a result, leachate impacts were observed in 40% of MW samples, which indicates improper construction and management of some burial pits. Leachate impacts were also detected in six HW samples, up to 120 m downgradient, within one year. The quantitative decision-making tool to diagnose groundwater contamination with leachate leakage can contribute to ensuring timely responses to leakage. The proposed machine learning approach can also be used to improve the environmental impact assessment of water pollution by improper disposal of organic waste.
Collapse
Affiliation(s)
- Junseop Oh
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Ho-Rim Kim
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea.
| | - Soonyoung Yu
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea
| | - Kyoung-Ho Kim
- Korea Environment Institute, Sejong 30147, South Korea
| | - Jeong-Ho Lee
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, South Korea
| | - Sunhwa Park
- National Institute of Environmental Research, Incheon 22689, South Korea
| | - Hyunkoo Kim
- National Institute of Environmental Research, Incheon 22689, South Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
4
|
Vithanage M, Mayakaduwage SS, Gunarathne V, Rajapaksha AU, Ahmad M, Abduljabbar A, Usman A, Al-Wabel MI, Ippolito JA, Ok YS. Animal carcass burial management: implications for sustainable biochar use. APPLIED BIOLOGICAL CHEMISTRY 2021; 64:91. [PMID: 34957350 PMCID: PMC8693145 DOI: 10.1186/s13765-021-00652-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 06/02/2023]
Abstract
This review focuses on existing technologies for carcass and corpse disposal and potential alternative treatment strategies. Furthermore, key issues related to these treatments (e.g., carcass and corpse disposal events, available methods, performances, and limitations) are addressed in conjunction with associated environmental impacts. Simultaneously, various treatment technologies have been evaluated to provide insights into the adsorptive removal of specific pollutants derived from carcass disposal and management. In this regard, it has been proposed that a low-cost pollutant sorbent may be utilized, namely, biochar. Biochar has demonstrated the ability to remove (in)organic pollutants and excess nutrients from soils and waters; thus, we identify possible biochar uses for soil and water remediation at carcass and corpse disposal sites. To date, however, little emphasis has been placed on potential biochar use to manage such disposal sites. We highlight the need for strategic efforts to accurately assess biochar effectiveness when applied towards the remediation of complex pollutants produced and circulated within carcass and corpse burial systems.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - S. S. Mayakaduwage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, Australia
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250 Sri Lanka
| | - Mahtab Ahmad
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Adel Abduljabbar
- Industrial Psychology, College of Education, King Saud University, Riyadh, Saudi Arabia
| | - Adel Usman
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad I. Al-Wabel
- Soil Sciences Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - James A. Ippolito
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO USA
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841 South Korea
| |
Collapse
|
5
|
Chique C, Hynds P, Burke LP, Morris D, Ryan MP, O'Dwyer J. Contamination of domestic groundwater systems by verotoxigenic escherichia coli (VTEC), 2003-2019: A global scoping review. WATER RESEARCH 2021; 188:116496. [PMID: 33059158 DOI: 10.1016/j.watres.2020.116496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/10/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Verocytotoxin-producing E. coli (VTEC) are important agents of diarrhoeal disease in humans globally. As a noted waterborne disease, emphasis has been given to the study VTEC in surface waters, readily susceptible to microbial contamination. Conversely, the status of VTEC in potable groundwater sources, generally regarded as a "safe" drinking-water supply remains largely understudied. As such, this investigation presents the first scoping review seeking to determine the global prevalence of VTEC in groundwater supply sources intended for human consumption. Twenty-three peer-reviewed studies were identified and included for data extraction. Groundwater sample and supply detection rates (estimated 0.6 and 1.3%, respectively) indicate VTEC is infrequently present in domestic groundwater sources. However, where generic (fecal indicator) E. coli are present, the VTEC to E. coli ratio was found to be 9.9%, representing a latent health concern for groundwater consumers. Geographically, extracted data indicates higher VTEC detection rates in urban (5.4%) and peri‑urban (4.9%) environments than in rural areas (0.9%); however, this finding is confounded by the predominance of research studies in lower income regions. Climate trends indicate local environments classified as 'temperate' (14/554; 2.5%) and 'cold' (8/392; 2%) accounted for a majority of supply sources with VTEC present, with similar detection rates encountered among supplies sampled during periods typically characterized by 'high' precipitation (15/649; 2.3%). Proposed prevalence figures may find application in preventive risk-based catchment and groundwater quality management including development of Quantitative Microbial Risk Assessments (QMRA). Notwithstanding, to an extent, a large geographical disparity in available investigations, lack of standardized reporting, and bias in source selection, restrict the transferability of research findings. Overall, the mechanisms responsible for VTEC transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between hydrogeological and public health research. Key recommendations and guidelines are provided for prospective studies directed at increasingly integrative and multi-disciplinary research.
Collapse
Affiliation(s)
- C Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESHI), Technological University Dublin.
| | - L P Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland; Centre for One Health, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - M P Ryan
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
van Andel M, Tildesley MJ, Gates MC. Challenges and opportunities for using national animal datasets to support foot-and-mouth disease control. Transbound Emerg Dis 2020; 68:1800-1813. [PMID: 32986919 DOI: 10.1111/tbed.13858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022]
Abstract
National level databases of animal numbers, locations and movements provide the essential foundations for disease preparedness, outbreak investigations and control activities. These activities are particularly important for managing and mitigating the risks of high-impact transboundary animal disease outbreaks such as foot-and-mouth disease (FMD), which can significantly affect international trade access and domestic food security. In countries where livestock production systems are heavily subsidized by the government, producers are often required to provide detailed animal movement and demographic data as a condition of business. In the remaining countries, it can be difficult to maintain these types of databases and impossible to estimate the extent of missing or inaccurate information due to the absence of gold standard datasets for comparison. Consequently, competent authorities are often required to make decisions about disease preparedness and control based on available data, which may result in suboptimal outcomes for their livestock industries. It is important to understand the limitations of poor data quality as well as the range of methods that have been developed to compensate in both disease-free and endemic situations. Using FMD as a case example, this review first discusses the different activities that competent authorities use farm-level animal population data for to support (1) preparedness activities in disease-free countries, (2) response activities during an acute outbreak in a disease-free country, and (3) eradication and control activities in an endemic country. We then discuss (4) data requirements needed to support epidemiological investigations, surveillance, and disease spread modelling both in disease-free and endemic countries.
Collapse
Affiliation(s)
- Mary van Andel
- Ministry for Primary Industries, Operations Branch, Diagnostic and Surveillance Services Directorate, Wallaceville, New Zealand
| | - Michael J Tildesley
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, UK
| | - M Carolyn Gates
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
7
|
Koh EH, Kaown D, Kim HJ, Lee KK, Kim H, Park S. Nationwide groundwater monitoring around infectious-disease-caused livestock mortality burials in Korea: Superimposed influence of animal leachate on pre-existing anthropogenic pollution. ENVIRONMENT INTERNATIONAL 2019; 129:376-388. [PMID: 31150979 DOI: 10.1016/j.envint.2019.04.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/28/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
A foot-and-mouth disease (FMD) outbreak during 2010 affected the entire country of South Korea and approximately 3.4 million swine and bovine mortalities were disposed of at approximately 4800 on-farm burial sites for a few months following the first outbreak. Furthermore, outbreaks of avian influenza (AI) have struck Korea consistently since 2014. Public concern regarding the deterioration of the surrounding environment has been raised aiming at the enormous infected animal carcass burials. On behalf of the Ministry of Environment (ME) of the Korean government, we conducted groundwater monitoring at approximately 3000 wells around the burial sites for 7 years from 2011 to 2017. The baseline groundwater already had enriched levels of nitrogen and chloride compounds masking the influence of leachate with the pre-existing anthropogenic contamination. Based on the trend analysis, most monitoring wells had no significant trends in NO3-N and Cl implying that an abrupt degradation in water quality was not expected across the country. Increasing proportions of total coliform detection in the groundwater of the majority of provinces will cause potential damage to human health around the carcass burial sites. Wells showing frequent upward and downward trends near the carcass burial pits were targeted for principal component analysis (PCA) and the results showed that NH4-N, TOC, Cl, and K could be indicators distinguishing the sole impacts of animal leachate on the groundwater. Analyses of the nationwide monitoring data indicated possibly delayed and prolonged impacts of the widespread burials of livestock mortalities on the groundwater environment. The finding provides realistic insight regarding how to manage the mass burial of livestock mortalities to protect groundwater resources.
Collapse
Affiliation(s)
- Eun-Hee Koh
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dugin Kaown
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kang-Kun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyunkoo Kim
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Sunhwa Park
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| |
Collapse
|
8
|
Predicting farm-level animal populations using environmental and socioeconomic variables. Prev Vet Med 2017; 145:121-132. [DOI: 10.1016/j.prevetmed.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
|
9
|
Kwon MJ, Yun ST, Ham B, Lee JH, Oh JS, Jheong WW. Impacts of leachates from livestock carcass burial and manure heap sites on groundwater geochemistry and microbial community structure. PLoS One 2017; 12:e0182579. [PMID: 28771598 PMCID: PMC5542392 DOI: 10.1371/journal.pone.0182579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/20/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the impacts of leachates from a swine carcass burial site and a cow manure heap on the geochemical and microbiological properties of agricultural water samples, including leachate, groundwater from monitoring wells and background wells, and stream water. The leachate from the livestock burial site showed extremely high electrical conductivity, turbidity, and major ion concentrations, but low redox potential and dissolved oxygen levels. The groundwater in the monitoring wells adjacent to both sites showed severe contamination from the leachate, as indicated by the increases in EC, turbidity, Cl-, and SO42-. Bacteria from the phylum Firmicutes and Bacteriodetes and Archaea from the phylum Euryarchaeota were the major phyla in both the leachates and manure heap. However, the class- or genus-level components of these phyla differed markedly between the leachate and manure heap samples. The relative abundance of Firmicutes decreased from 35% to 0.3~13.9% in the monitoring wells and background wells at both sites. The Firmicutes in these wells was unlikely to have originated from the transportation of leachate to the surrounding environment because Firmicutes genera differed drastically between the leachate and monitoring wells. Meanwhile, sulfate-reducing bacteria (SRB) from the livestock carcass burial site were detected in the monitoring wells close to the leachate. This was likely because the release of carcass decomposition products, such as organic acids, to adjacent areas improved the suitability of the local environments for SRB, which were not abundant in the leachate. This study highlights the need to better understand microbial community dynamics along groundwater flow paths to evaluate bacterial transport in subsurface environments and provides new insights into the effective management of groundwater quality at both farm and regional scales.
Collapse
Affiliation(s)
- Man Jae Kwon
- Korea Institute of Science and Technology, Gangneung, Republic of Korea
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
- * E-mail: (MJK); (SY)
| | - Seong-Taek Yun
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
- * E-mail: (MJK); (SY)
| | - Baknoon Ham
- Korea Institute of Science and Technology, Gangneung, Republic of Korea
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
| | - Jeong-Ho Lee
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Jun-Seop Oh
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Weon-Wha Jheong
- National Institute of Environmental Research, Incheon, Republic of Korea
| |
Collapse
|
10
|
De Sotto RB, Medriano CAD, Salcedo DE, Lee H, Cho Y, Kim S. Effects of solids retention time on the fate of tetracycline resistance in SBRs for the treatment of carcass leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:298-303. [PMID: 27372252 DOI: 10.1016/j.jenvman.2016.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 05/21/2023]
Abstract
In the event of a foot and mouth disease outbreak, further spread of the virus is generally prevented by culling of infected animals in burial pits. This practice may eventually lead to groundwater contamination through leaching of wastewater from the animal carcasses. Wastewater from carcass leachate often contains antibiotic resistant bacteria and genes as well as traces of pharmaceuticals, and a high nutrient content. The role of operational parameters used in activated sludge treatment of this wastewater in the spread of antibiotic resistance has not been fully understood. This study investigated the fate of tetracycline-resistant bacteria and genes in sequencing batch reactors with synthetic carcass leachate at different solid retention times. Escherichia coli DH5α was used as the representative tetracycline-resistant bacteria with multiple antibiotic-resistant genes encoded in plasmid pB10. Solids retention time contributed to an increase in antibiotic resistance in SBRC (SRT = 25 days) with TRB values up to 1.25 × 10(7) CFU/mL which is one log higher than the influent. Microbial community analysis of the DNA samples from effluent of SBRC showed four major phyla: Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria under which are ecologically-important microbial species. It was shown that antibiotic resistance genes cannot be eliminated during treatment of synthetic carcass leachate in a lab-scale sequencing batch reactor.
Collapse
Affiliation(s)
- R B De Sotto
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - C A D Medriano
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - D E Salcedo
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - H Lee
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea
| | - Y Cho
- Department of Environmental Engineering, Daejeon University, 62 Daehak-ro, Dong-gu, Daejeon 300-716, South Korea.
| | - S Kim
- Bio Monitoring Laboratory, Program for Environmental Technology and Policy, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, Chungnam 339-700, South Korea.
| |
Collapse
|
11
|
Kim MS, Koo ES, Choi YS, Kim JY, Yoo CH, Yoon HJ, Kim TO, Choi HB, Kim JH, Choi JD, Park KS, Shin Y, Kim YM, Ko G, Jeong YS. Distribution of Human Norovirus in the Coastal Waters of South Korea. PLoS One 2016; 11:e0163800. [PMID: 27681683 PMCID: PMC5040428 DOI: 10.1371/journal.pone.0163800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023] Open
Abstract
The presence of human norovirus in the aquatic environment can cause outbreaks related to recreational activities and the consumption of norovirus-contaminated clams. In this study, we investigated the prevalence of norovirus genogroups I (GI) and II (GII) in the coastal aquatic environment in South Korea (March 2014 to February 2015). A total of 504 water samples were collected periodically from four coastal areas (total sites = 63), of which 44 sites were in estuaries (clam fisheries) and 19 were in inflow streams. RT-PCR analysis targeting ORF2 region C revealed that 20.6% of the water samples were contaminated by GI (13.3%) or GII (16.6%). The prevalence of human norovirus was higher in winter/spring than in summer/fall, and higher in inflow streams (50.0%) than in estuaries (7.9%). A total of 229 human norovirus sequences were identified from the water samples, and phylogenetic analysis showed that the sequences clustered into eight GI genotypes (GI.1, 2, 3, 4, 5, 6, 7, and 9) and nine GII genotypes (GII.2, 3, 4, 5, 6, 11, 13, 17, and 21). This study highlighted three issues: 1) a strong correlation between norovirus contamination via inflow streams and coastal areas used in clam fisheries; 2) increased prevalence of certain non-GII.4 genotypes, exceeding that of the GII.4 pandemic variants; 3) seasonal shifts in the dominant genotypes of both GI and GII.
Collapse
Affiliation(s)
- Man Su Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Eung Seo Koo
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Yong Seon Choi
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Ji Young Kim
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Chang Hoon Yoo
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| | - Hyun Jin Yoon
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Tae-Ok Kim
- Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan, South Korea
| | - Hyun Bae Choi
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Ji Hoon Kim
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Jong Deok Choi
- Department of Seafood Science and Technology, Institute of Marine Industry, Gyeongsang National University, Tongyeong, Gyeongnam, South Korea
| | - Kwon-Sam Park
- Department of Food Science and Biotechnology, College of Ocean Science and Technology, Kunsan National University, Kunsan, South Korea
| | - Yongsik Shin
- Department of Environmental Engineering & Biotechnology, Mokpo National Maritime University, Mokpo, South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Yong Seok Jeong
- Department of Biology and Research Institute of Basic Sciences, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
12
|
Robinson L, Knight-Jones TJD, Charleston B, Rodriguez LL, Gay CG, Sumption KJ, Vosloo W. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 5 - Biotherapeutics and Disinfectants. Transbound Emerg Dis 2016; 63 Suppl 1:49-55. [DOI: 10.1111/tbed.12519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - L. L. Rodriguez
- Plum Island Animal Disease Center; ARS; USDA; Greenport NY USA
| | - C. G. Gay
- National Program 103-Animal Health; Agricultural Research Service; USDA; Beltsville MD USA
| | - K. J. Sumption
- European Commission for the Control of FMD (EuFMD); FAO; Rome Italy
| | - W. Vosloo
- Australian Animal Health Laboratory; CSIRO-Biosecurity Flagship; Geelong Vic. Australia
| |
Collapse
|
13
|
Abstract
Norovirus is a major cause of viral gastroenteritis and a common cause of foodborne and waterborne outbreaks. Norovirus outbreaks are responsible for economic losses, most notably to the public health and food industry field. Norovirus has characteristics such as low infectious dose, prolonged shedding period, strong stability, great diversity, and frequent genome mutations. Besides these characteristics, they are known for rapid and extensive spread in closed settings such as hospitals, hotels, and schools. Norovirus is well known as a major agent of food-poisoning in diverse settings in South Korea. For these reasons, nationwide surveillance for norovirus is active in both clinical and environmental settings in South Korea. Recent studies have reported the emergence of variants and novel recombinants of norovirus. In this review, we summarized studies on the molecular epidemiology and nationwide surveillance of norovirus in South Korea. This review will provide information for vaccine development and prediction of new emerging variants of norovirus in South Korea.
Collapse
Affiliation(s)
- Sung-Geun Lee
- Korea Zoonosis Research Institute, Chonbuk National University, Iksan 570-390, Korea
| | - Han-Gil Cho
- Division of Public Health Research, Gyeonggi Province Institute of Health and Environment, Suwon 440-290, Korea
| | - Soon-Young Paik
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| |
Collapse
|
14
|
Development of enhanced primer sets for detection of norovirus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:103052. [PMID: 25695041 PMCID: PMC4324898 DOI: 10.1155/2015/103052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/05/2014] [Accepted: 11/27/2014] [Indexed: 01/21/2023]
Abstract
Norovirus (NV) is a major viral pathogen that causes nonbacterial acute gastroenteritis and outbreaks of food-borne disease. The genotype of NV most frequently responsible for NV outbreaks is GII.4, which accounts for 60–80% of cases. Moreover, original and new NV variant types have been continuously emerging, and their emergence is related to the recent global increase in NV infection. In this study, we developed advanced primer sets (NKI-F/R/F2, NKII-F/R/R2) for the detection of NV, including the variant types. The new primer sets were compared with conventional primer sets (GI-F1/R1/F2, SRI-1/2/3, GII-F1/R1/F2, and SRII-1/2/3) to evaluate their efficiency when using clinical and environmental samples. Using reverse transcription polymerase chain reaction (RT-PCR) and seminested PCR, NV GI and GII were detected in 91.7% (NKI-F/R/F2), 89.3% (NKII-F/R/R2), 54.2% (GI-F1/R1/F2), 52.5% (GII-F1/R1/F2), 25.0% (SRI-1/2/3), and 32.2% (SRII-1/2/3) of clinical and environmental specimens. Therefore, our primer sets perform better than conventional primer sets in the detection of emerged types of NV and could be used in the future for epidemiological diagnosis of infection with the virus.
Collapse
|