1
|
Riccò M, Zaniboni A, Satta E, Ranzieri S, Cerviere MP, Marchesi F, Peruzzi S. West Nile Virus Infection: A Cross-Sectional Study on Italian Medical Professionals during Summer Season 2022. Trop Med Infect Dis 2022; 7:tropicalmed7120404. [PMID: 36548659 PMCID: PMC9786547 DOI: 10.3390/tropicalmed7120404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
West Nile virus (WNV) has progressively endemized in large areas of continental Europe, and particularly in Northern Italy, in the Po River Valley. During summer season 2022, Italy experienced an unprecedented surge in incidence cases of WNV infections, including its main complications (West Nile fever (WNF) and West Nile neuroinvasive disease (WNND)). As knowledge, attitudes, and practices (KAP) of medical professionals may be instrumental in guaranteeing a prompt diagnosis and an accurate management of incident cases, we performed a cross-sectional study specifically on a sample of Italian medical professionals (1 August 2022-10 September 2022; around 8800 potential recipients). From a total of 332 questionnaires (response rate of 3.8%), 254 participating medical professionals were eventually included in the analyses. Knowledge status of participants was unsatisfying, as most of them exhibited knowledge gaps on the actual epidemiology of WNV, with similar uncertainties on the clinical features of WNF and WNND. Moreover, most of participants substantially overlooked WNV as a human pathogen when compared to SARS-CoV-2, TB, and even HIV. Interestingly, only 65.4% of respondents were either favorable or highly favorable towards a hypothetical WNV vaccine. Overall, acknowledging a higher risk perception on WNV was associated with individual factors such as reporting a seniority ≥ 10 years (adjusted odds ratio [aOR] 2.39, 95% Confidence interval [95%CI] 1.34 to 4.28), reporting a better knowledge score (aOR 2.92, 95%CI 1.60 to 5.30), having previously managed cases of WNV infections (aOR 3.65, 95%CI 1.14 to 14.20), being favorable towards a hypothetic vaccine (aOR 2.16, 95%CI 1.15 to 4.04), and perceiving WNV infections as potentially affecting daily activities (aOR 2.57, 95%CI 1.22 to 5.42). In summary, substantial knowledge gaps and the erratic risk perception collectively enlighten the importance and the urgency for appropriate information campaigns among medical professionals, and particularly among frontline personnel.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: or ; Tel.: +39-339-2994343 or +39-522-837587
| | | | - Elia Satta
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Ranzieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, 42016 Guastalla, Italy
| |
Collapse
|
2
|
Riccò M, Peruzzi S, Balzarini F. Public Perceptions on Non-Pharmaceutical Interventions for West Nile Virus Infections: A Survey from an Endemic Area in Northern Italy. Trop Med Infect Dis 2021; 6:116. [PMID: 34209481 PMCID: PMC8293337 DOI: 10.3390/tropicalmed6030116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
During the last decade, cases of West Nile Virus (WNV) have occurred in the Emilia Romagna Region (ERR). Even though the notification rates remain relatively low, ranging from 0.06 to 1.83 cases/100,000 inhabitants, the persistent pathogen's circulation in settings characterized by favorable environmental characteristics suggests that WNV is becoming endemic to the Po River Valley. This study assesses knowledge, attitudes, and preventive practices toward WNV prevention among residents from 10 high-risk municipalities from the provinces of Parma and Reggio Emilia (total population: 82,317 inhabitants, census 2020). A web-based survey, based on the health belief model, was performed during the month of January 2021, with a convenience sampling of 469 participants from a series of closed discussion groups on social media (i.e., 2.1% of the potential responders). A total of 243 participants knew the meaning of WNV: Of them, 61.3% were aware of previous WNV infections in ERR, 76.5% acknowledged WNV infection as a severe one, but only 31.3% expressed any worry about WNV. Our results irregularly report preventive practices, either collective (e.g., draining standing water from items and the environment, 50.7%; spraying pesticides around the home, 33.0%) or individual (e.g., use of skin repellants when going outdoors, 42.6%). In a multivariate analysis, performed through binary logistic regression, participants reporting any worry towards WNV were more likely to characterize WNV as a severe disease (adjusted odds ratio [aOR] = 20.288, 95% confidence interval [CI] = 5.083-80.972). On the contrary, respondents supporting community mosquito control programs were more likely among people working with animals/livestock (aOR = 13.948, 95%CI = 2.793-69.653), and supporting tax exemptions for mosquito control programs (aOR = 4.069, 95%CI 2.098-7.893). In conclusion, our results suggest that future interventions promoting WNV prevention among residents in ERR should focus on perceptions of vulnerability to WNV, emphasizing the benefits of personal protective behaviors.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, RE, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, I-42016 Guastalla, RE, Italy;
| | - Federica Balzarini
- Dipartimento per la Programmazione, Accreditamento, Acquisto delle Prestazioni Sanitarie e Sociosanitarie (P.A.A.P.S.S.), Servizio Autorizzazione e Accreditamento, Agenzia di Tutela della Salute (ATS) di Bergamo, Via Galliccioli, 4, I-24121 Bergamo, BG, Italy;
| |
Collapse
|
3
|
Riccò M, Peruzzi S, Balzarini F. Epidemiology of West Nile Virus Infections in Humans, Italy, 2012-2020: A Summary of Available Evidences. Trop Med Infect Dis 2021; 6:61. [PMID: 33923347 PMCID: PMC8167603 DOI: 10.3390/tropicalmed6020061] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 11/25/2022] Open
Abstract
In Italy, human cases of West Nile virus (WNV) infection have been recorded since 2008, and seasonal outbreaks have occurred almost annually. In this study, we summarize available evidences on the epidemiology of WNV and West Nile neuro-invasive disease (WNND) in humans reported between 2012 and 2020. In total, 1145 WNV infection cases were diagnosed; of them 487 (42.5%) had WNND. A significant circulation of the pathogen was suggested by studies on blood donors, with annual incidence rates ranging from 1.353 (95% confidence intervals (95% CI) 0.279-3.953) to 19.069 cases per 100,000 specimens (95% CI 13.494-26.174). The annual incidence rates of WNND increased during the study period from 0.047 cases per 100,000 (95% CI 0.031-0.068) in 2012, to 0.074 cases per 100,000 (95% CI 0.054-0.099) in 2020, peaking to 0.377 cases per 100,000 (95% CI 0.330-0.429) in 2018. There were 60 deaths. Cases of WNND were clustered in Northern Italy, particularly in the Po River Valley, during the months of August (56.7%) and September (27.5%). Higher risk for WNND was reported in subjects of male sex (risk ratio (RR) 1.545, 95% CI 1.392-1.673 compared to females), and in older age groups (RR 24.46, 95% CI 15.61-38.32 for 65-74 y.o.; RR 43.7, 95% CI 28.33-67.41 for subjects older than 75 years), while main effectors were identified in average air temperatures (incidence rate ratio (IRR) 1.3219, 95% CI 1.0053-1.7383), population density (IRR 1.0004, 95% CI 1.0001-1.0008), and occurrence of cases in the nearby provinces (IRR 1.0442, 95% CI 1.0340-1.0545). In summary, an enhanced surveillance is vital for the early detection of human cases and the prompt implementation of response measures.
Collapse
Affiliation(s)
- Matteo Riccò
- Servizio di Prevenzione e Sicurezza Negli Ambienti di Lavoro (SPSAL), AUSL-IRCCS di Reggio Emilia, Via Amendola n.2, I-42122 Reggio Emilia, RE, Italy
| | - Simona Peruzzi
- Laboratorio Analisi Chimico Cliniche e Microbiologiche, Ospedale Civile di Guastalla, AUSL-IRCCS di Reggio Emilia, I-42016 Guastalla, RE, Italy;
| | - Federica Balzarini
- Dipartimento P.A.A.P.S.S., Servizio Autorizzazione e Accreditamento, Agenzia di Tutela della Salute (ATS) di Bergamo, Via Galliccioli, 4, I-24121 Bergamo, BG, Italy;
| |
Collapse
|
4
|
George J, Häsler B, Mremi I, Sindato C, Mboera L, Rweyemamu M, Mlangwa J. A systematic review on integration mechanisms in human and animal health surveillance systems with a view to addressing global health security threats. ONE HEALTH OUTLOOK 2020; 2:11. [PMID: 33829132 PMCID: PMC7993536 DOI: 10.1186/s42522-020-00017-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 05/05/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Health surveillance is an important element of disease prevention, control, and management. During the past two decades, there have been several initiatives to integrate health surveillance systems using various mechanisms ranging from the integration of data sources to changing organizational structures and responses. The need for integration is caused by an increasing demand for joint data collection, use and preparedness for emerging infectious diseases. OBJECTIVE To review the integration mechanisms in human and animal health surveillance systems and identify their contributions in strengthening surveillance systems attributes. METHOD The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) 2015 checklist. Peer-reviewed articles were searched from PubMed, HINARI, Web of Science, Science Direct and advanced Google search engines. The review included articles published in English from 1900 to 2018. The study selection considered all articles that used quantitative, qualitative or mixed research methods. Eligible articles were assessed independently for quality by two authors using the QualSyst Tool and relevant information including year of publication, field, continent, addressed attributes and integration mechanism were extracted. RESULTS A total of 102 publications were identified and categorized into four pre-set integration mechanisms: interoperability (35), convergent integration (27), semantic consistency (21) and interconnectivity (19). Most integration mechanisms focused on sensitivity (44.1%), timeliness (41.2%), data quality (23.5%) and acceptability (17.6%) of the surveillance systems. Generally, the majority of the surveillance system integrations were centered on addressing infectious diseases and all hazards. The sensitivity of the integrated systems reported in these studies ranged from 63.9 to 100% (median = 79.6%, n = 16) and the rate of data quality improvement ranged from 73 to 95.4% (median = 87%, n = 4). The integrated systems were also shown improve timeliness where the recorded changes were reported to be ranging from 10 to 91% (median = 67.3%, n = 8). CONCLUSION Interoperability and semantic consistency are the common integration mechanisms in human and animal health surveillance systems. Surveillance system integration is a relatively new concept but has already been shown to enhance surveillance performance. More studies are needed to gain information on further surveillance attributes.
Collapse
Affiliation(s)
- Janeth George
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
- SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania
| | - Barbara Häsler
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics, and Public Health Group, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA UK
| | - Irene Mremi
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
- SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania
| | - Calvin Sindato
- SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania
- National Institute for Medical Research, Tabora Research Centre, Tabora, Tanzania
| | - Leonard Mboera
- SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania
| | - Mark Rweyemamu
- SACIDS Foundation for One Health, Sokoine University of Agriculture, P.O. Box 3297, Morogoro, Tanzania
| | - James Mlangwa
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3021, Morogoro, Tanzania
| |
Collapse
|
5
|
Moirano G, Richiardi L, Calzolari M, Merletti F, Maule M. Recent rapid changes in the spatio-temporal distribution of West Nile Neuro-invasive Disease in Italy. Zoonoses Public Health 2019; 67:54-61. [PMID: 31612606 DOI: 10.1111/zph.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 07/12/2019] [Accepted: 09/13/2019] [Indexed: 12/01/2022]
Abstract
In Italy, the first human case of West Nile Virus (WNV) infection was reported in 2008 and, since then, the number of cases has been steadily increasing. In this study, we describe the temporal and spatial pattern of WNV infection risk among humans in Italy, focusing on the human cases of West Nile Neuro-invasive Disease (WNND) observed between 2008 and 2017. Incidence rates are estimated for each year and province under study. The incidence temporal trend is estimated using Poisson regression, and a spatio-temporal cluster detection analysis is performed to detect high-risk areas. In total, 231 WNND cases were notified in Italy between 2008 and 2017. The annual incidence rates increased during the study period (annual percentage change: 11.7%; 95%CI: -0.9%; 26.1%). A geographical spread of the disease was observed during the study period throughout Northern Italy, with an increasing number of affected provinces. Provinces close to the Po River (the main river in the north of Italy) and the Oristano province (in the Sardinia Island) experienced the highest incidence rates during the study period. Our study shows a gradual, but rapid spread of WNND across Northern Italy from east to west and suggests the hypothesis that provinces close to Po River might present ecological and climatic conditions favourable to the virus circulation.
Collapse
Affiliation(s)
- Giovenale Moirano
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Mattia Calzolari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna 'B. Ubertini' (IZSLER), Brescia, Italy
| | - Franco Merletti
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| | - Milena Maule
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and CPO-Piemonte, Torino, Italy
| |
Collapse
|
6
|
West-Nil-Virus – Ergänzung 2018. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2019; 62:516-518. [DOI: 10.1007/s00103-019-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Integrated analysis of human-animal-vector surveillance: West Nile virus infections in Austria, 2015-2016. Emerg Microbes Infect 2018. [PMID: 29535293 PMCID: PMC5849732 DOI: 10.1038/s41426-018-0021-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The results of integrated human and veterinary surveillance for West Nile virus (WNV) infections in Austria during the transmission seasons 2015 and 2016 are shown. Altogether WNV nucleic acid was detected in 21 humans, horses, wild birds and mosquito pools. In detail: in four human clinical cases [two cases of West Nile fever (WNF) and two cases of West Nile neuroinvasive disease (WNND)]; eight blood donors [among 145,541 tested donations], of which three remained asymptomatic and five subsequently developed mild WNF; two horses with WNND, of which one recovered and one had to be euthanized; two wild birds [one goshawk and one falcon, both succumbed to WNND]; and five Culex pipiens mosquito pools. Compared to previous years the number of infections increased remarkably. All infections were recorded in the city of Vienna and neighboring regions of Lower Austria. Sixteen coding-complete WNV sequences were established which were closely related to each other and to other Austrian, Czech and Italian viruses, all belonging to the Central/Southern European cluster of WNV sublineage 2d. However, several genetically slightly different WNV strains seem to co-circulate in the same area, as demonstrated by phylogenetic analysis. Based on detailed sequence analysis, all newly discovered Austrian WNV strains had the potential to cause neurological disease, but no correlation was found between severity of disease and the analyzed genetic virulence/neuroinvasiveness markers. Results of integrated human-animal-vector surveillance presented in this paper provide a comprehensive description of WNV activity in the region and will facilitate proactive public health measures to prevent or mitigate potential outbreaks.
Collapse
|
9
|
Dente MG, Riccardo F, Nacca G, Ranghiasci A, Escadafal C, Gaayeb L, Jiménez-Clavero MA, Manuguerra JC, Picard M, Fernández-Pinero J, Pérez-Ramírez E, Robert V, Victoir K, Declich S. Strengthening Preparedness for Arbovirus Infections in Mediterranean and Black Sea Countries: A Conceptual Framework to Assess Integrated Surveillance in the Context of the One Health Strategy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018. [PMID: 29534445 PMCID: PMC5877034 DOI: 10.3390/ijerph15030489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the context of One Health, there is presently an effort to integrate surveillance of human, animal, entomological, and environmental sectors. This aims to strengthen the prevention of, and preparedness against, arbovirus infections, also in the light of environmental and climate changes that could increase the risk of transmission. However, criteria to define integrated surveillance, and to compare different systems, still need to be identified and tested. We conducted a scoping review to identify and examine surveillance systems for West Nile virus (WNV), chikungunya virus (CHKV), dengue virus (DENV), and Rift Valley fever virus (RVFV), which involve human, animal, entomological, and environmental sectors. We analyzed findings using a conceptual framework we developed for this purpose. The review highlights that the criteria proposed in the conceptual framework to describe integrated surveillance are consistently reported in the context of studies and programs related to integrated surveillance of the selected arboviral diseases. These criteria can facilitate the identification and description of operationalized One Health surveillance.
Collapse
Affiliation(s)
- Maria Grazia Dente
- Istituto Superiore di Sanità, 00161 Rome, Italy; (F.R.); (G.N.); (A.R.); (S.D.)
- Correspondence: ; Tel.: +39-064-990-4265
| | - Flavia Riccardo
- Istituto Superiore di Sanità, 00161 Rome, Italy; (F.R.); (G.N.); (A.R.); (S.D.)
| | - Gloria Nacca
- Istituto Superiore di Sanità, 00161 Rome, Italy; (F.R.); (G.N.); (A.R.); (S.D.)
| | - Alessia Ranghiasci
- Istituto Superiore di Sanità, 00161 Rome, Italy; (F.R.); (G.N.); (A.R.); (S.D.)
| | - Camille Escadafal
- Institut Pasteur, 75015 Paris, France; (C.E.); (L.G.); (J.-C.M.); (K.V.)
- FIND (Foundation for Innovative New Diagnostics), 1202 Geneva, Switzerland
| | - Lobna Gaayeb
- Institut Pasteur, 75015 Paris, France; (C.E.); (L.G.); (J.-C.M.); (K.V.)
| | - Miguel Angel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28040 Madrid, Spain; (M.A.J.-C.); (J.F.-P.); (E.P.-R.)
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | | | - Marie Picard
- Institut de Recherche pour le Développement (IRD), UMR Mivegec IRD-CNRS-Univ. Montpellier, 34394 Montpellier CEDEX 5, France; (M.P.); (V.R.)
| | - Jovita Fernández-Pinero
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28040 Madrid, Spain; (M.A.J.-C.); (J.F.-P.); (E.P.-R.)
| | - Elisa Pérez-Ramírez
- Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28040 Madrid, Spain; (M.A.J.-C.); (J.F.-P.); (E.P.-R.)
| | - Vincent Robert
- Institut de Recherche pour le Développement (IRD), UMR Mivegec IRD-CNRS-Univ. Montpellier, 34394 Montpellier CEDEX 5, France; (M.P.); (V.R.)
| | - Kathleen Victoir
- Institut Pasteur, 75015 Paris, France; (C.E.); (L.G.); (J.-C.M.); (K.V.)
| | - Silvia Declich
- Istituto Superiore di Sanità, 00161 Rome, Italy; (F.R.); (G.N.); (A.R.); (S.D.)
| |
Collapse
|
10
|
David S, Abraham AM. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen. Infect Dis (Lond) 2016; 48:571-86. [PMID: 27207312 DOI: 10.3109/23744235.2016.1164890] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Since the isolation of West Nile virus (WNV) in 1937, in Uganda, it has spread globally, causing significant morbidity and mortality. While birds serve as amplifier hosts, mosquitoes of the Culex genus function as vectors. Humans and horses are dead end hosts. The clinical manifestations of West Nile infection in humans range from asymptomatic illness to West Nile encephalitis. METHODS The laboratory offers an array of tests, the preferred method being detection of RNA and serum IgM for WNV, which, if detected, confirms the clinical diagnosis. Although no definitive antiviral therapy and vaccine are available for humans, many approaches are being studied. STUDY This article will review the current literature of the natural cycle, geographical distribution, virology, replication cycle, molecular epidemiology, pathogenesis, laboratory diagnosis, clinical manifestations, blood donor screening for WNV, treatment, prevention and vaccines.
Collapse
Affiliation(s)
- Shoba David
- a Department of Clinical Virology , Christian Medical College , Vellore , Tamil Nadu , India
| | - Asha Mary Abraham
- a Department of Clinical Virology , Christian Medical College , Vellore , Tamil Nadu , India
| |
Collapse
|
11
|
Kolodziejek J, Seidel B, Jungbauer C, Dimmel K, Kolodziejek M, Rudolf I, Hubálek Z, Allerberger F, Nowotny N. West Nile virus positive blood donation and subsequent entomological investigation, Austria, 2014. PLoS One 2015; 10:e0126381. [PMID: 25961567 PMCID: PMC4427133 DOI: 10.1371/journal.pone.0126381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/01/2015] [Indexed: 01/03/2023] Open
Abstract
The detection of West Nile virus (WNV) nucleic acid in a blood donation from Vienna, Austria, as well as in Culex pipiens pupae and egg rafts, sampled close to the donor’s residence, is reported. Complete genomic sequences of the human- and mosquito-derived viruses were established, genetically compared and phylogenetically analyzed. The viruses were not identical, but closely related to each other and to recent Czech and Italian isolates, indicating co-circulation of related WNV strains within a confined geographic area. The detection of WNV in a blood donation originating from an area with low WNV prevalence in humans (only three serologically diagnosed cases between 2008 and 2014) is surprising and emphasizes the importance of WNV nucleic acid testing of blood donations even in such areas, along with active mosquito surveillance programs.
Collapse
Affiliation(s)
- Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Bernhard Seidel
- Technical Office of Ecology and Landscape Assessment, Persenbeug, Austria
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Vienna, Austria
| | - Katharina Dimmel
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivo Rudolf
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Zdenek Hubálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Brno, Czech Republic
| | - Franz Allerberger
- Department of Public Health, Austrian Agency for Health and Food Safety (AGES), Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- * E-mail:
| |
Collapse
|
12
|
Vector borne infections in Italy: results of the integrated surveillance system for West Nile disease in 2013. BIOMED RESEARCH INTERNATIONAL 2015; 2015:643439. [PMID: 25874224 PMCID: PMC4385594 DOI: 10.1155/2015/643439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/10/2014] [Indexed: 11/17/2022]
Abstract
The epidemiology of West Nile disease (WND) is influenced by multiple ecological factors and, therefore, integrated surveillance systems are needed for early detecting the infection and activating consequent control actions. As different animal species have different importance in the maintenance and in the spread of the infection, a multispecies surveillance approach is required. An integrated and comprehensive surveillance system is in place in Italy aiming at early detecting the virus introduction, monitoring the possible infection spread, and implementing preventive measures for human health. This paper describes the integrated surveillance system for WND in Italy, which incorporates data from veterinary and human side in order to evaluate the burden of infection in animals and humans and provide the public health authorities at regional and national levels with the information needed for a fine tune response.
Collapse
|
13
|
The global ecology and epidemiology of West Nile virus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:376230. [PMID: 25866777 PMCID: PMC4383390 DOI: 10.1155/2015/376230] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/10/2014] [Indexed: 12/30/2022]
Abstract
Since its initial isolation in Uganda in 1937 through the present, West Nile virus (WNV) has become an important cause of human and animal disease worldwide. WNV, an enveloped virus of the genus Flavivirus, is naturally maintained in an enzootic cycle between birds and mosquitoes, with occasional epizootic spillover causing disease in humans and horses. The mosquito vectors for WNV are widely distributed worldwide, and the known geographic range of WNV transmission and disease has continued to increase over the past 77 years. While most human infections with WNV are asymptomatic, severe neurological disease may develop resulting in long-term sequelae or death. Surveillance and preventive measures are an ongoing need to reduce the public health impact of WNV in areas with the potential for transmission.
Collapse
|
14
|
Calistri P, Savini L, Candeloro L, Di Sabatino D, Cito F, Bruno R, Danzetta ML. A Transitional Model for the Evaluation of West Nile Virus Transmission in Italy. Transbound Emerg Dis 2014; 63:485-96. [PMID: 25382294 DOI: 10.1111/tbed.12290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 11/27/2022]
Abstract
In August 2008, after 10 years of apparent silence, West Nile virus (WNV) infection re-emerged in northern Italy, spreading through the territories of three regions. In the following years, new cases occurred in the same area and additional foci of infection were observed in central and southern Italy, involving also Sicily and Sardinia islands. The Italian Ministry of Health ordered to test by RT-PCR all blood and organ donors from 15th June to 15th November of each year in the infected areas. The period at risk of WNV transmission was defined on the basis of literature data, but a more scientific estimation of the transmission season, under Italian circumstances, needs to be performed. A transitional model previously developed by other Authors was applied and adapted to Italian circumstances, to describe and quantify the WNV transmission cycle between birds and mosquitoes. Culex spp. was considered the main vector, and mosquito parameters were adapted to this genus. Magpies (Pica pica) were considered the main bird host. The model was partially validated through the results of the entomological surveys carried out in central Italy and in Po Valley. The results of the transitional model permitted to calculate the basic reproduction number (R0 ) during 2010 for the whole Italian territory at 1 km of spatial resolution, estimating the risk of WNV transmission during the year and creating detailed risk maps for Italy. The mean values of R0 for the whole Italy varied between 0.4 and 4.8, with values >1 from the end of May to the middle of September. The coastal and flat zones of Italy showed the highest R0 values. Although partially validated, the model showed a substantial acceptable capacity of defining the period at major risk of WNV transmission in Italy, helping Public health authorities in the application of appropriate and timely control and preventive measures.
Collapse
Affiliation(s)
- P Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - L Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - L Candeloro
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - D Di Sabatino
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - F Cito
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - R Bruno
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - M L Danzetta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| |
Collapse
|
15
|
Abstract
Tularemia is a contagious infectious disease due to Francisiella tularensis that can cause serious clinical manifestations and significant mortality if untreated. Although the frequency and significance of the disease has diminished over the last decades in Central Europe, over the past few years, there is new evidence suggesting that tularemia has re-emerged worldwide. To know the real epidemiology of the disease is at the root of correct control measures. In order to evaluate whether tularemia is re-emerging in Italy, data on mortality and morbidity (obtained by the National Institute of Statistics; ISTAT), Italian cases described in the scientific literature and data concerning hospitalizations for tularemia (obtained by the National Hospital Discharge Database) were analysed. From 1979 to 2010, ISTAT reported 474 cases and no deaths. The overall number of cases obtained from the literature review was at least 31% higher than that reported by ISTAT. Moreover, the number of cases reported by ISTAT was 3·5 times smaller than hospitalized cases. In Italy tularemia is sporadic, rarely endemic and self-limiting; but, although the trend of reported tularemia does not support the hypothesis of a re-emerging disease, the study demonstrates a wide underreporting of the disease. The real frequency of the disease should be carefully investigated and taken into account in order to implement specific prevention measures.
Collapse
|