1
|
Yang S, Yin Y, Zhang W, Li H, Wang X, Chen R. Advances in understanding bioaerosol release characteristics and potential hazards during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171796. [PMID: 38513848 DOI: 10.1016/j.scitotenv.2024.171796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.
Collapse
Affiliation(s)
- Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
2
|
Bose S, Pal D, Ariya PA. On the Role of Starchy Grains in Ice Nucleation Processes. ACS FOOD SCIENCE & TECHNOLOGY 2024; 4:1039-1051. [PMID: 38779384 PMCID: PMC11106773 DOI: 10.1021/acsfoodscitech.3c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 05/25/2024]
Abstract
Little is known about the role of starchy food on climate change processes like ice nucleation. Here, we investigate the ice nucleation efficiency (INE) of eight different starchy food materials, namely, corn (CO), potato (PO), barley (BA), brown rice (BR), white rice (WR), oats (OA), wheat (WH), and sweet potato (SP), in immersion freezing mode under mixed-phase cloud conditions. Notably, among all these food materials, PO and BA exhibit the highest ice nucleation efficiency with ice nucleation temperatures as high as -4.3 °C (T50 ∼ -7.0 ± 0.5 °C) and -6.5 °C (T50 ∼ -7.2 ± 0.2 °C), respectively. We also explore the effect of environmentally relevant physicochemical conditions on ice nucleation efficiency, including different pH, temperature, UV/O3/NOx exposure, and various cocontaminants. The change in shape, size, surface properties, hydrophobicity, and crystallinity of materials accounted for the altered INE. The increase in shape, size, and hydrophobicity of the sample generally reduces the INE, whereas an increase in crystallinity enhances the INE of the sample under our experimental conditions. The results suggest that environmentally relevant concentrations slightly alter INE, indicating their role as catalysts in environmental matrices. The outcome of studies on the ice nucleation properties of these food-containing aerosols might help in the physicochemical understanding of other biomolecule-induced ice nucleation, which is still an underdeveloped research area.
Collapse
Affiliation(s)
- Sandeep Bose
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Devendra Pal
- Department
of Atmospheric and Oceanic Sciences, McGill
University, Montreal, Quebec H3A 0B9, Canada
| | - Parisa A. Ariya
- Department
of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
- Department
of Atmospheric and Oceanic Sciences, McGill
University, Montreal, Quebec H3A 0B9, Canada
| |
Collapse
|
3
|
Kontro MH, Kirsi M, Laitinen SK. Exposure to bacterial and fungal bioaerosols in facilities processing biodegradable waste. Front Public Health 2022; 10:789861. [PMID: 36466510 PMCID: PMC9708704 DOI: 10.3389/fpubh.2022.789861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine the exposure of workers within biodegradable waste processing facilities to bacteria and fungi to identify any exposures of potential concern to health. Occupational measurements were performed in six composting and three bioenergy (bioethanol or methane/biogas) producing facilities. Bioaerosols were measured from breathing zones with Button aerosol or open face cassette filter samplers, and swab specimens were taken from the nasal mucous membranes of the workers. Aspergillus fumigatus, Bacillus cereus group, Campylobacter spp., Salmonella spp., Streptomyces spp., and Yersinia spp. were determined by real-time polymerase chain reaction (qPCR). A. fumigatus, and mesophilic and thermophilic actinobacteria were also cultivated from filters. Bacterial airborne endotoxins collected by IOM samplers were analyzed using a Limulus assay. Bioaerosol levels were high, especially in composting compared to bioenergy producing facilities. Endotoxin concentrations in composting often exceeded the occupational exposure value of 90 EU/m3, which may be harmful to the health. In addition to endotoxins, the concentrations of A. fumigatus (up to 2.4 × 105 copies/m3) and actinobacteria/Streptomyces spp. (up to 1.6 × 106 copies/m3) in the air of composting facilities were often high. Microbial and endotoxin concentrations were typically highest in waste reception and pre-treatment, equal or decreased during processing and handling of treated waste, and lowest in wheel loader cabins and control rooms/outdoors. Still, the parameters measured in wheel loader cabins were often higher than in the control sites, which suggests that the use of preventive measures could be improved. B. cereus group, Salmonella spp., and Yersinia spp. were rarely detected in bioaerosols or nasal swabs. Although Campylobacter spp. DNA was rarely detected in air, as a new finding, Campylobacter ureolyticus DNA was frequently detected in the nasal mucous membranes of workers, based on partial 16S rDNA sequencing. Moreover, especially A. fumigatus and C. ureolyticus spp. DNA concentrations in swabs after the work shift were significantly higher than before the shift, which indicates their inhalation or growth during the work shift. Microbial qPCR analysis of bioaerosols and swab samples of nasal mucosa allowed measuring exposure in various work operations and during the work shift, identifying problems for health risk assessment to improve working conditions, and evaluating the effectiveness of preventive measures and personal protection of workers.
Collapse
Affiliation(s)
- Merja H. Kontro
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Maija Kirsi
- Work Environment Laboratories, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sirpa K. Laitinen
- Department of Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland,*Correspondence: Sirpa K. Laitinen
| |
Collapse
|
4
|
Viegas C, Caetano LA, Viegas S. Occupational exposure to Aspergillus section Fumigati: Tackling the knowledge gap in Portugal. ENVIRONMENTAL RESEARCH 2021; 194:110674. [PMID: 33440201 DOI: 10.1016/j.envres.2020.110674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Aspergillus section Fumigati is one of the sections of the Aspergillus genus most often associated with respiratory symptoms. The azole-resistant clinical isolates in this section have been widely described worldwide. More recently, the environmental origin of azole resistance has been correlated with the development of fungal diseases and therapeutic failure. This paper presents a review of several studies performed in Portuguese occupational environments focusing on occupational exposure to this section and give guidance to exposure assessors and industrial hygienists to ensure an accurate exposure assessment. Future studies should tackle the limitations concerning the assessment of occupational exposure to the Fumigati section, in order to allow the implementation of adequate risk management measures. In the light of the results of previous studies, the following approach is proposed to ensure an accurate exposure assessment: a) a combination of active and passive sampling methods appropriate to each occupational environment; b) the use, in parallel, of culture-based methods and molecular tools to overcome the limitations of each method; c) evaluation of the mycobiota azole resistance profile; and d) consider the possible simultaneous presence of mycotoxins produced by this section when assessing workers occupational exposure. In sum, preventing the development of fungal strains resistant to azoles will only be achieved with a holistic approach. An adequate "One Health approach" can contribute positively to concerted actions in different sectors, by reducing the use of fungicides through the introduction of crops and agricultural practices that prevent fungal colonization, and by promoting the rational use of antifungal drugs in human and animal health.
Collapse
Affiliation(s)
- Carla Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal.
| | - Liliana Aranha Caetano
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Viegas
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Portugal; NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, Portugal; Comprehensive Health Research Center (CHRC), Portugal
| |
Collapse
|
5
|
Assessment of airborne particles and bioaerosols concentrations in a waste recycling environment in Brazil. Sci Rep 2020; 10:14812. [PMID: 32908228 PMCID: PMC7481203 DOI: 10.1038/s41598-020-71787-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022] Open
Abstract
This study aims to assess the concentrations of size-fractioned particle mass (PM1.0, PM2.5, PM4.0, PM10) and number (PNC0.3, PNC0.5, PNC1.0, PNC2.5), bacteria, and fungi in a Materials Recycling Facility (MRF) in Brazil. The measurements were performed inside the waste processing shed (P1) and in the outdoor environment (P2) during working days in winter and spring of 2017, and summer of 2019. A total of 2,400 min of PM, 1,440 min of PNC, and 216 samples of bioaerosols were collected in the morning and afternoon. P1 has the strongest air contamination with mean values of 475.5 ± 563.7 µg m−3 for PM10, 58.6 ± 36.0 cm−3 for PNC0.3, 1,088.8 ± 825.2 colony-forming units per cubic meter (CFU m−3) for bacteria, and 2,738.3 ± 1,381.3 CFU m−3 for fungi. The indoor/outdoor ratios indicated the large influence of indoor sources due to the activities performed inside P1 that promote the generation and resuspension of pollutants. Gram-positive bacteria dominated with 58.6% of indoor samples. Overall, our results show a critical indoor air quality situation in a Brazilian MRF, which may cause several health risks for waste pickers. Finally, we call attention to the lack of occupational exposure limits for bioaerosols in industrial workplaces and mainly in MRFs.
Collapse
|
6
|
Methods for Bioaerosol Characterization: Limits and Perspectives for Human Health Risk Assessment in Organic Waste Treatment. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bioaerosol characterization represents a major challenge for the risk assessment and management of exposed people. One of the most important bioaerosol sources is the organic waste collection and treatment. This work analyzed and discussed the literature with the purpose of investigating the main techniques used nowadays for bioaerosol monitoring during organic waste treatment. The discussion includes an overview on the most efficient sampling, DNA extraction, and analysis methods, including both the cultural and the bio-molecular approach. Generally, an exhaustive biological risk assessment is not applied due to the organic waste heterogeneity, treatment complexity, and unknown aerosolized emission rate. However, the application of bio-molecular methods allows a better bioaerosol characterization, and it is desirable to be associated with standardized cultural methods. Risk assessment for organic waste workers generally includes the evaluation of the potential exposition to pathogens and opportunistic pathogens or to other microorganisms as biomarkers. In most cases, Saccharopolyspora rectivirgula, Legionella spp., Aspergillus spp., and Mycobacterium spp. are included. Future perspectives are focused on identifying common composting biomarkers, on investigating the causality process between chronic bioaerosol exposure and disease onset, and finally, on defining common exposure limits.
Collapse
|
7
|
Mack SM, Madl AK, Pinkerton KE. Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. Compr Physiol 2019; 10:1-20. [PMID: 31853953 PMCID: PMC7553137 DOI: 10.1002/cphy.c180040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers have been studying the respiratory health effects of ambient air pollution for more than 70 years. While air pollution as a whole can include gaseous, solid, and liquid constituents, this article focuses only on the solid and liquid fractions, termed particulate matter (PM). Although PM may contain anthropogenic, geogenic, and/or biogenic fractions, in this article, particles that originate from microbial, fungal, animal, or plant sources are distinguished from PM as bioaerosols. Many advances have been made toward understanding which particle and exposure characteristics most influence deposition and clearance processes in the respiratory tract. These characteristics include particle size, shape, charge, and composition as well as the exposure concentration and dose rate. Exposure to particles has been directly associated with the exacerbation and, under certain circumstances, onset of respiratory disease. The circumstances of exposure leading to disease are dependent on stressors such as human activity level and changing particle composition in the environment. Historically, researchers assumed that bioaerosols were too large to be inhaled into the deep lung, and thus, not applicable for study in conjunction with PM2.5 (the 2.5-μm and below size fraction that can reach the deep lung); however, this concept is beginning to be challenged. While there is extensive research on the health effects of PM and bioaerosols independent of each other, only limited work has been performed on their coexposure. Studying these two particle types as dual stressors to the respiratory system may aid in more thoroughly understanding the etiology of respiratory injury and disease. © 2020 American Physiological Society. Compr Physiol 10:1-20, 2020.
Collapse
Affiliation(s)
- Savannah M. Mack
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Amy K. Madl
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| |
Collapse
|
8
|
Piovesana S, Capriotti AL, Foglia P, Montone CM, La Barbera G, Zenezini Chiozzi R, Laganà A, Cavaliere C. Development of an Analytical Method for the Metaproteomic Investigation of Bioaerosol from Work Environments. Proteomics 2019; 19:e1900152. [PMID: 31315163 DOI: 10.1002/pmic.201900152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Indexed: 11/10/2022]
Abstract
The metaproteomic analysis of air particulate matter provides valuable information about the properties of bioaerosols in the atmosphere and their influence on climate and public health. In this work, a new method for the extraction and analysis of proteins in airborne particulate matter from quartz microfiber filters is developed. Different protein extraction procedures are tested to select the best extraction protocol based on protein recovery. The optimized method is tested for the extraction of proteins from spores of ubiquitous bacteria species and used for the metaproteomic characterization of filters from three work environments. In particular, ambient aerosol samples are collected in a composting plant, in a wastewater treatment plant, and in an agricultural holding. A total of 179, 15, 205, and 444 proteins are identified in composting plant, wastewater treatment plant, and agricultural holding, (cow stable and blending plant), respectively. In agreement with the major categories of primary biological aerosol particles, all identified proteins originated primarily from fungi, bacteria, and plants. The paper is the first metaproteomic study applied to bioaerosol samples collected in occupationally relevant environmental sites and, even though not aimed at monitoring the risk exposure of workers, it provides information on the possible exposure in the working environmental sites.
Collapse
Affiliation(s)
- Susy Piovesana
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Patrizia Foglia
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giorgia La Barbera
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
9
|
Abbasi F, Samaei MR. The effect of temperature on airborne filamentous fungi in the indoor and outdoor space of a hospital. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16868-16876. [PMID: 29299864 DOI: 10.1007/s11356-017-0939-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/04/2017] [Indexed: 05/23/2023]
Abstract
Fungi are one of the bioaerosols in indoor air of hospitals. They have adverse effects on staff and patients. The aim of this study was to investigate the effects of three incubation temperature on the density and composition of airborne fungi in an indoor and outdoor space of hospital. Sabouraud dextrose agar was used for culture the fungi. For improvement of aseptic properties, chloramphenicol was added to this medium. The density of airborne fungi was less than 282 CFU/m3. The highest density was detected in emergency room and the lowest of them was in neonatal intensive care unit (NICU) and operation room (OR). Results showed that fungi levels at 25 °C were higher than 37 and 15 °C (p = 0.006). In addition, ten different genera of fungi were identified in all departments. The predominant fungi were Fusarium spp., Penicillium spp., Paecilomyces spp., and Aspergillus niger. Moreover, the density and trend of distribution of Fusaruim spp. in the indoor space was directivity to outdoor space by ventilation system. The present study has provided that incubation temperature had effect on airborne fungi remarkably. We are suggested that more studies would be conducted on incubation temperature and other ambient factors on airborne fungi.
Collapse
Affiliation(s)
- Fariba Abbasi
- Department of environmental health engineering, School of health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Research Center for Health Sciences, Institute of health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
Zhang S, Ren Q, Qi H, Liu S, Liu Y. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS NANO 2019; 13:2729-2748. [PMID: 30773006 DOI: 10.1021/acsnano.8b08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Current understanding of the health risks and adverse effects upon exposure to fine particles is premised on the direct association of particles with target organs, particularly the lung; however, fine-particle exposure has also been found to have detrimental effects on sealed cavities distant to the portal-of-entry, such as joints. Moreover, the fundamental toxicological issues have been ascribed to the direct toxic mechanisms, in particular, oxidative stress and proinflammatory responses, without exploring the indirect mechanisms, such as compensated, adaptive, and secondary effects. In this Review, we recapitulate the current findings regarding the detrimental effects of fine-particle exposure on joints, the surrounding cells, and microenvironment, as well as their deteriorating impact on the progression of arthritis. We also elaborate the likely molecular mechanisms underlying the particle-induced detrimental influence on joints, not limited to direct toxicity, but also considering the other indirect mechanisms. Because of the similarities between fine air particles and engineered nanomaterials, we compare the toxicities of engineered nanomaterials to those of fine air particles. Arthritis and joint injuries are prevalent, particularly in the elderly population. Considering the severity of global exposure to fine particles and limited studies assessing the detrimental effects of fine-particle exposure on joints and arthritis, this Review aims to appeal to a broad interest and to promote more research efforts in this field.
Collapse
Affiliation(s)
- Shuping Zhang
- Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Hui Qi
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
- Beijing Research Institute of Traumatology and Orthopaedics , Beijing 100035 , P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Yajun Liu
- Beijing Jishuitan Hospital , Peking University Health Science Center , Beijing 100035 , P. R. China
| |
Collapse
|
11
|
Herrmann RF, Grosser R, Farrar D, Brobst R. Field Studies Measuring the Aerosolization of Endotoxin During the Land Application of Class B Biosolids. AEROBIOLOGIA 2017; 33:417-434. [PMID: 30220779 PMCID: PMC6134863 DOI: 10.1007/s10453-017-9480-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/22/2017] [Indexed: 06/08/2023]
Abstract
Endotoxins are a component of Gram-negative bacteria cell walls and are known to be present in biosolids. Endotoxins have been shown to be potent stimulators of the innate immune response causing airway irritation and shortness of breath. Class B biosolids are routinely applied to agricultural lands to enhance soil properties and can be used as an alternative to chemical fertilizers. This study investigated the aerosolized endotoxin dispersed during the land application of Class B biosolids on agricultural land and a concrete surface at two sites in Colorado, USA. Aerosolized endotoxin was captured using HiVol samplers fitted with glass fiber filters, polycarbonate filter cassettes (both open and closed) and BioSampler impinger air samplers. Endotoxins were also measured in the biosolids to allow for correlating bulk biosolids concentrations with aerosol emission rates. Endotoxin concentrations in biosolids, impinger solutions and filter extracts were determined using the kinetic Limulus amebocyte lysate assay. Aerosolized endotoxin concentration was detected from all sites with levels ranging from 0.5 to 642 EU/m3. The four types of sampling apparatus were compared, and the HiVol and open-faced cassette samplers produced higher time-weighted average (TWA) measurements (EU/m3) than the impinger and closed cassette samplers. Ambient wind speed was found to be the variable best describing the observed results with optimal wind speed for highest deposition estimated at 5 m s-1. It is argued that HiVol air samplers are a particularly reliable approach and subsequent analyses relating TWA measurements to wind speed and biosolids characteristics were based on the measurements collected with those samplers.
Collapse
Affiliation(s)
- R. F. Herrmann
- US Environmental Protection Agency, ORD/NRMRL, 26 W. Martin Luther King Dr., Mail Location 190, Cincinnati, OH 45268
| | - R.J. Grosser
- Pegasus Technical Services, Inc., 46 E. Hollister, Cincinnati, OH 45219
| | - D. Farrar
- US Environmental Protection Agency, ORD/NCEA, 26 W. Martin Luther King Dr., Mail Location A110, Cincinnati, OH 45268
| | - R.B. Brobst
- US Environmental Protection Agency, Region 8, Denver, CO 80202
| |
Collapse
|
12
|
Rashidi S, Shahmoradi B, Maleki A, Sharafi K, Darvishi E. Density assessment and mapping of microorganisms around a biocomposting plant in Sanandaj, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:233. [PMID: 28444609 DOI: 10.1007/s10661-017-5914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/23/2017] [Indexed: 05/22/2023]
Abstract
Exposure to microorganisms can cause various diseases or exacerbate the excitatory responses, inflammation, dry cough and shortness of breath, reduced lung function, chronic obstructive pulmonary disease, and allergic response or allergic immune. The aim of the present study was to investigate the density of microorganisms around the air of processing facilities of a biocomposting plant. Each experiment was carried out according to ASTM E884-82 (2001) method. The samples were collected from inhaled air in four locations of the plant, which had a high traffic of workers and employees, including screen, conveyor belt, aerated compost pile, and static compost pile. The sampling was repeated five times for each location selected. The wind speed and its direction were measured using an anemometer. Temperature and humidity were also recorded at the time of sampling. The multistage impactor used for sampling was equipped with a solidified medium (agar) and a pump (with a flow rate of 28.3 l/m) for passing air through the media. It was found that the mean density of total bacteria was >1.7 × 103 cfu/m3 in the study area. Moreover, the mean densities of fungi, intestinal bacteria (Klebsiella), and Staphylococcus aureus were 5.9 × 103, 3.3 × 103, and 4.1 × 103 cfu/m3, respectively. In conclusion, according to the findings, the density of bacteria and fungi per cubic meter of air in the samples collected around the processing facilities of the biocomposting plant in Sanandaj City was higher than the microbial standard for inhaled air.
Collapse
Affiliation(s)
- Sanaz Rashidi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - B Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran.
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Afshin Maleki
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Environmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Kiomars Sharafi
- Department of Environmental Health Engineering, Faculty of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Darvishi
- Center of Excellence for Occupational Health, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
13
|
Traversi D, Gorrasi I, Bonetta S, Leinardi R, Pietrangeli B, Carraro E, Gilli G. Green job bio-aerosol exposure during anaerobic digestion for biomass energetic valorisation. ENVIRONMENTAL RESEARCH 2015; 138:425-431. [PMID: 25791865 DOI: 10.1016/j.envres.2015.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 06/04/2023]
Abstract
The continued expansion of the green economy increases the risk profile for green occupational jobs. One of the broadest green sectors in terms of growth is the anaerobic digestion of biomasses. In recent years, this development has also interested Italian regions. The management of biomass includes biological risk and the risk of particulate and endotoxin exposure. In the present study, we evaluated airborne exposure for anaerobic digestion workers at two real-scale plants. Digested biomass has different origins, ranging from cattle sludge and manure to poultry manure to agricultural harvesting or processing residues, particularly from maize and fruits. Two sampling points were chosen: at the first, the input biomasses were stored, and the hopper was loaded; at the second, the digested sludge exited the digester. The microbiological parameters, assessed using an active sampler and cultural method, were the total bacteria counts (at 22, 37, and 55°C), yeasts, fungi, Pseudomonaceae, Clostridia spp., Enterobacteriaceae and Actinomycetes. Moreover, at the same sampling points, we evaluated six PM10 fraction levels (10.0-7.2, 7.2-3.0, 3.0-1.5, 1.5-0.95, 0.95-0.49, and <0.49µm) and the endotoxin content of each fraction. In this investigation, the microbe contamination of the air varied from low to high levels, while the PM10 and endotoxin levels were limited, reaching rural environmental levels (61.40µg/m(3) and 18.88EU/m(3), respectively). However, contamination and occupational risk must be evaluated individually for each plant because numerous variables influence the risk magnitude, particularly digested sludge treatments, such as input biomass nature, storage, movement conditions, building configuration and technological processes.
Collapse
Affiliation(s)
- Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy.
| | - Ilaria Gorrasi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Riccardo Leinardi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Biancamaria Pietrangeli
- Department Productive Plants & Environment Interaction (DIPIA), National Institute of Occupational Safety & Prevention INAIL, I-00184 Rome, Italy
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
| |
Collapse
|
14
|
Pearson C, Littlewood E, Douglas P, Robertson S, Gant TW, Hansell AL. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2015; 18:43-69. [PMID: 25825807 PMCID: PMC4409048 DOI: 10.1080/10937404.2015.1009961] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The number of composting sites in Europe is rapidly increasing, due to efforts to reduce the fraction of waste destined for landfill, but evidence on possible health impacts is limited. This article systematically reviews studies related to bioaerosol exposures within and near composting facilities and associated health effects in both community and occupational health settings. Six electronic databases and bibliographies from January 1960 to July 2014 were searched for studies reporting on health outcomes and/or bioaerosol emissions related to composting sites. Risk of bias was assessed using a customized score. Five hundred and thirty-six papers were identified and reviewed, and 66 articles met the inclusion criteria (48 exposure studies, 9 health studies, 9 health and exposure studies). Exposure information was limited, with most measurements taken in occupational settings and for limited time periods. Bioaerosol concentrations were highest on-site during agitation activities (turning, shredding, and screening). Six studies detected concentrations of either Aspergillus fumigatus or total bacteria above the English Environment Agency's recommended threshold levels beyond 250 m from the site. Occupational studies of compost workers suggested elevated risks of respiratory illnesses with higher bioaerosol exposures. Elevated airway irritation was reported in residents near composting sites, but this may have been affected by reporting bias. The evidence base on health effects of bioaerosol emissions from composting facilities is still limited, although there is sufficient evidence to support a precautionary approach for regulatory purposes. While data to date are suggestive of possible respiratory effects, further study is needed to confirm this and to explore other health outcomes.
Collapse
Affiliation(s)
- Clare Pearson
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
| | - Emma Littlewood
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
| | - Philippa Douglas
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
| | - Sarah Robertson
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Timothy W. Gant
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Anna L. Hansell
- Small Area Health Statistics Unit, MRC-PHE Centre for Environment and Health & NIHR HPRU in Health Impact of Environmental Hazards, Imperial College London, London, United Kingdom
- Public Health and Primary Care, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
15
|
Raulf M, Hoffmeyer F, van Kampen V, Deckert A, Brüning T, Bünger J. Cellular and Soluble Inflammatory Markers in Induced Sputum of Composting Plant Workers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 858:19-29. [PMID: 25634128 DOI: 10.1007/5584_2014_108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory processes, including respiratory symptoms, can be induced among workers in composting plants exposed to bioaerosols containing microorganisms and their compounds. We evaluated inflammatory processes in the lower respiratory tract via cellular and soluble mediator profiles in induced sputum (IS). IS samples of 140 current (35% smokers) and 49 former compost workers (29% smokers) as well as 29 white-collar workers (17% smokers) were collected and analyzed for the cell count and composition, and for soluble biomarkers. Significant differences between current and former compost workers and white-collar workers were detected for total cell count (p=0.0004), neutrophils (p=0.0045), sCD14 (p=0.008), and 8-isoprostane (p<0.0001). IS of non-smoking former compost workers showed lower concentrations of IL-8, total protein, immunoreactive MMP-9 and sCD14, compared with non-smoking current compost workers. 10.1% of the study population was suffering from chronic bronchitis with significant differences (p=0.018) between former compost workers (24.5%), current workers (5%), and white-collar workers (10.3%). Significantly lower IL-8 (p=0.0002), neutrophils (p=0.001), and MMP-9 (p=0.0023) values were measured in healthy subjects compared with subjects with chronic bronchitis. In conclusion, changes in lower airways were detected by analysis of biomarkers in IS of current exposed and, to a lesser extent, in IS of former compost workers. These effects are especially pronounced in subjects with chronic bronchitis.
Collapse
Affiliation(s)
- M Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany,
| | | | | | | | | | | |
Collapse
|