1
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;00:1-14. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Bertrand L, Iturburu FG, Valdés ME, Menone ML, Amé MV. Risk evaluation and prioritization of contaminants of emerging concern and other organic micropollutants in two river basins of central Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163029. [PMID: 36990232 DOI: 10.1016/j.scitotenv.2023.163029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
A research gap exists in baseline concentrations of organic micropollutants in South American rivers. Identification of areas with different degrees of contamination and risk to the inhabitant biota is needed to improve management of freshwater resources. Here we inform the incidence and ecological risk assessment (ERA) of current used pesticides (CUPs), pharmaceutical and personal care products (PPCPs) and cyanotoxins (CTX) measured in two river basins from central Argentina (South America). Risk Quotients approach was used for ERA differentiating wet and dry seasons. High risk was associated to CUPs in both basins (45 % and 30 % of sites from Suquía and Ctalamochita rivers, respectively), mostly in the basins extremes. Main contributors to risk in water were insecticides and herbicides in Suquía river and insecticides and fungicides in Ctalamochita river. In Suquía river sediments, a very high risk was observed in the lower basin, mainly from AMPA contribution. Additionally, 36 % of the sites showed very high risk of PCPPs in Suquía river water, with the highest risk downstream the wastewater treatment plant of Córdoba city. Main contribution was from a psychiatric drug and analgesics. In sediments medium risk was observed at the same places with antibiotics and psychiatrics as main contributors. Few data of PPCPs are available in the Ctalamochita river. The risk in water was low, with one site (downstream Santa Rosa de Calamuchita town) presenting moderated risk caused by an antibiotic. CTX represented in general medium risk in San Roque reservoir, with San Antonio river mouth and the dam exit showing high risk during the wet season. The main contributor was microcystin-LR. Priority chemicals for monitoring or further management include two CUPs, two PPCPs, and one CTX, demonstrating a significant input of pollutants to water ecosystems from different sources and the need to include organic micropollutants in current and future monitoring.
Collapse
Affiliation(s)
- Lidwina Bertrand
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fernando Gastón Iturburu
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Eugenia Valdés
- Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET) and Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Juan Filloy s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Mirta Luján Menone
- Laboratorio de Ecotoxicología, Instituto de Investigaciones Marinas y Costeras (IIMYC-CONICET), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, 7600 Mar del Plata, Argentina
| | - María Valeria Amé
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET) and Dpto. Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
3
|
Serna-Galvis EA, Silva-Agredo J, Hernández F, Botero-Coy AM, Torres-Palma RA. Methods involved in the treatment of four representative pharmaceuticals in hospital wastewater using sonochemical and biological processes. MethodsX 2023; 10:102128. [PMID: 36974326 PMCID: PMC10038785 DOI: 10.1016/j.mex.2023.102128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
A primary pollution source by pharmaceuticals is hospital wastewater (HWW). Herein, the methods involved in the action of a biological system (BS, aerobic activated sludge) or a sonochemical treatment (US, 375 kHz and 30.8 W), for degrading four relevant pharmaceuticals (azithromycin, ciprofloxacin, paracetamol, and valsartan) in HWW, are shown. Before treatment of HWW, the correct performance of BS was assessed using glucose as a reference substance, monitoring oxygen consumption, and organic carbon removal. Meanwhile, for US, a preliminary test using ciprofloxacin in distilled water was carried out. The determination of risk quotients (RQ) and theoretical analyses about reactive moieties on these target substances are also presented. For both, the degradation of the pharmaceuticals and the calculation of RQ, analyses were performed by LC-MS/MS. The BS action decreased the concentration of paracetamol and valsartan by ∼96 and 86%, respectively. However, a poor action on azithromycin (2% removal) was found, whereas ciprofloxacin concentration increased ∼20%; leading to an RQ value of 1.61 (high risk) for the pharmaceuticals mixture. The analyses using a biodegradation pathway predictor (EAWAG-BDD methodology) revealed that the amide group on paracetamol and alkyl moieties on valsartan could experience aerobic biotransformations. In turn, US action decreased the concentration of the four pharmaceuticals (removals > 60% for azithromycin, ciprofloxacin, and paracetamol), diminishing the environmental risk (RQ: 0.51 for the target pharmaceuticals mixture). Atomic charge analyses (based on the electronegativity equalization method) were performed, showing that the amino-sugar on azithromycin; piperazyl ring, and double bond close to the two carbonyls on ciprofloxacin, acetamide group on paracetamol, and the alkyl moieties bonded to the amide group of valsartan are the most susceptible moieties to attacks by sonogenerated radicals. The LC-MS/MS analytical methodology, RQ calculations, and theoretical analyses allowed for determining the degrading performance of BS and US toward the target pollutants in HWW.•Biological and sonochemical treatments as useful methods for degrading 4 representative pharmaceuticals are presented.•Sonochemical treatment had higher degrading action than the biological one on the target pharmaceuticals.•Methodologies for risk environmental calculation and identification of moieties on the pharmaceuticals susceptible to radical attacks are shown.
Collapse
|
4
|
Prieto-Espinoza M, Di Chiara Roupert R, Belfort B, Weill S, Imfeld G. Reactive transport of micropollutants in laboratory aquifers undergoing transient exposure periods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159170. [PMID: 36198349 DOI: 10.1016/j.scitotenv.2022.159170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Groundwater quality is of increasing concern due to the ubiquitous occurrence of micropollutant mixtures. Stream-groundwater interactions near agricultural and urban areas represent an important entry pathway of micropollutants into shallow aquifers. Here, we evaluated the biotransformation of a micropollutant mixture (i.e., caffeine, metformin, atrazine, terbutryn, S-metolachlor and metalaxyl) during lateral stream water flow to adjacent groundwater. We used an integrative approach combining concentrations and transformation products (TPs) of the micropollutants, compound-specific isotope analysis (δ13C and δ15N), sequencing of 16S rRNA gene amplicons and reactive transport modeling. Duplicate laboratory aquifers (160 cm × 80 cm × 7 cm) were fed with stream water and subjected over 140 d to three successive periods of micropollutant exposures as pulse-like (6000 μg L-1) and constant (600 μg L-1) injections under steady-state conditions. Atrazine, terbutryn, S-metolachlor and metalaxyl persisted in both aquifers during all periods (<10 % attenuation). Metformin attenuation (up to 14 %) was only observed from 90 d onwards, suggesting enhanced degradation over time. In contrast, caffeine dissipated during all injection periods (>90 %), agreeing with fast degradation rates (t1/2 < 3 d) in parallel microcosm experiments and detection of TPs (theobromine and xanthine). Significant stable carbon isotope fractionation (Δδ13C ≥ 6.6 ‰) was observed for caffeine in both aquifers, whereas no enrichment in 15N occurred. A concentration dependence of caffeine biotransformation in the aquifers was further suggested by model simulations following Michaelis-Menten kinetics. Changes in bacterial community composition reflected long-term bacterial adaptation to micropollutant exposures. Altogether, the use of an integrative approach can help to understand the interplay of subsurface hydrochemistry, bacterial adaptations and micropollutants biotransformation during stream-groundwater interactions.
Collapse
Affiliation(s)
- Maria Prieto-Espinoza
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Raphaël Di Chiara Roupert
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Benjamin Belfort
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Sylvain Weill
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France
| | - Gwenaël Imfeld
- Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, Strasbourg, France.
| |
Collapse
|
5
|
de Aquino SF, Brandt EMF, Bottrel SEC, Gomes FBR, Silva SDQ. Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11765. [PMID: 34831521 PMCID: PMC8620687 DOI: 10.3390/ijerph182211765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
The risks of pharmaceuticals and endocrine disrupting compounds (P&EDC) to the environment and human health are a current topic of interest. Hundreds of P&EDC may reach the environment, hence, there is a need to rank the level of concern of human exposure to these compounds. Thus, this work aimed at setting a priority list of P&EDC in Brazil, by studying their occurrence in raw and drinking water, calculating health guideline values (GV), and estimating the risks of population exposure to water intake. Data on the Brazilian pharmaceutical market as well as published data of the monitoring of Brazilian natural and drinking water have been collected by means of an exhaustive literature review. Furthermore, many foreign data were also collected to enable a comparison of the values found in Brazilian studies. A list of 55 P&EDC that have the potential to be found in Brazilian water is proposed, and for 41 of these a risk assessment was performed by estimating their margin of exposure (ME), by considering their occurrence in drinking water, and guideline values estimated from reported acceptable daily intake (ADI) data. For seven compounds the risk was deemed high (three estrogens and four anti-inflammatories), whereas for another seven compounds, it was regarded as an 'alert' situation. Although such risk analysis is conservative, since it has been calculated based on the highest reported P&EDC concentration in drinking water, it highlights the need to enhance their monitoring in Brazil to strengthen the database and support decision makers. An analysis of the occurrence of antimicrobial resistance agents (antibiotics, resistant bacteria, and resistance genes) in surface waters was also carried out and confirmed that such agents are present in water sources throughout Brazil, which deserves the attention of policy makers and health agents to prevent dissemination of antimicrobial resistance through water use.
Collapse
Affiliation(s)
| | - Emanuel Manfred Freire Brandt
- Environmental and Sanitary Engineering Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.M.F.B.); (S.E.C.B.)
| | - Sue Ellen Costa Bottrel
- Environmental and Sanitary Engineering Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil; (E.M.F.B.); (S.E.C.B.)
| | - Fernanda Bento Rosa Gomes
- Civil Engineering Graduate Programme, Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036-900, MG, Brazil;
| | - Silvana de Queiroz Silva
- Biological Sciences Department, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, MG, Brazil;
| |
Collapse
|
6
|
Jaeger A, Posselt M, Schaper JL, Betterle A, Rutere C, Coll C, Mechelke J, Raza M, Meinikmann K, Portmann A, Blaen PJ, Horn MA, Krause S, Lewandowski J. Transformation of organic micropollutants along hyporheic flow in bedforms of river-simulating flumes. Sci Rep 2021; 11:13034. [PMID: 34158517 PMCID: PMC8219703 DOI: 10.1038/s41598-021-91519-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.
Collapse
Affiliation(s)
- Anna Jaeger
- Department Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany. .,Geography Department, Humboldt University Berlin, Berlin, Germany.
| | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonas L Schaper
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andrea Betterle
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Cyrus Rutere
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Claudia Coll
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonas Mechelke
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Muhammad Raza
- Institute of Applied Geosciences, Technical University of Darmstadt, Darmstadt, Germany.,IWW Water Centre, Mülheim an der Ruhr, Germany
| | - Karin Meinikmann
- Julius Kühn Institute - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Berlin, Germany
| | - Andrea Portmann
- Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | - Phillip J Blaen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.,Yorkshire Water, Leeds, UK
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz University of Hannover, Hannover, Germany
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.,Université Claude Bernard Lyon 1, Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Villeurbanne, France
| | - Jörg Lewandowski
- Department Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Geography Department, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
7
|
Jaeger A, Coll C, Posselt M, Mechelke J, Rutere C, Betterle A, Raza M, Mehrtens A, Meinikmann K, Portmann A, Singh T, Blaen PJ, Krause S, Horn MA, Hollender J, Benskin JP, Sobek A, Lewandowski J. Using recirculating flumes and a response surface model to investigate the role of hyporheic exchange and bacterial diversity on micropollutant half-lives. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:2093-2108. [PMID: 31631204 DOI: 10.1039/c9em00327d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Enhancing the understanding of the fate of wastewater-derived organic micropollutants in rivers is crucial to improve risk assessment, regulatory decision making and river management. Hyporheic exchange and sediment bacterial diversity are two factors gaining increasing importance as drivers for micropollutant degradation, but are complex to study in field experiments and usually ignored in laboratory tests aimed to estimate environmental half-lives. Flume mesocosms are useful to investigate micropollutant degradation processes, bridging the gap between the field and batch experiments. However, few studies have used flumes in this context. We present a novel experimental setup using 20 recirculating flumes and a response surface model to study the influence of hyporheic exchange and sediment bacterial diversity on half-lives of the anti-epileptic drug carbamazepine (CBZ) and the artificial sweetener acesulfame (ACS). The effect of bedform-induced hyporheic exchange was tested by three treatment levels differing in number of bedforms (0, 3 and 6). Three levels of sediment bacterial diversity were obtained by diluting sediment from the River Erpe in Berlin, Germany, with sand (1 : 10, 1 : 1000 and 1 : 100 000). Our results show that ACS half-lives were significantly influenced by sediment dilution and number of bedforms. Half-lives of CBZ were higher than ACS, and were significantly affected only by the sediment dilution variable, and thus by bacterial diversity. Our results show that (1) the flume-setup is a useful tool to study the fate of micropollutants in rivers, and that (2) higher hyporheic exchange and bacterial diversity in the sediment can increase the degradation of micropollutants in rivers.
Collapse
Affiliation(s)
- Anna Jaeger
- Department Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Warner W, Licha T, Nödler K. Qualitative and quantitative use of micropollutants as source and process indicators. A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:75-89. [PMID: 31176825 DOI: 10.1016/j.scitotenv.2019.05.385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, micropollutants such as pharmaceuticals, pesticides and personal care products can be found ubiquitously in the anthropogenically influenced water cycle. As micropollutants have virtually no natural background concentrations they are significantly more sensitive in detecting processes and flow paths than classic inorganic tracers and indicators and at the same time they are often highly source specific. Therefore, using micropollutants as environmental indicators for anthropogenic activities is a common and frequently applied method today. As they interact in many ways with environmental matrices they can be used for source apportionment as well as to estimate flow paths and residence times in waterbodies. This review gives a systematic overview over the large variety of micropollutants used as indicators in the aquatic environment over the last decades together with the prerequisites on their use. Their application is subdivided into their qualitative (compound presence or absence) and quantitative (volume flows) use and shows the numerous possibilities from gaining basic information on the water regime up to advanced applications such as wastewater-based epidemiology.
Collapse
Affiliation(s)
- Wiebke Warner
- Department of Applied Geology, Geoscience Centre, University of Goettingen, Goldschmidtstr. 3, 37077 Goettingen, Germany.
| | - Tobias Licha
- Department of Applied Geology, Geoscience Centre, University of Goettingen, Goldschmidtstr. 3, 37077 Goettingen, Germany
| | - Karsten Nödler
- TZW: DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe
| |
Collapse
|
9
|
Guillet G, Knapp JLA, Merel S, Cirpka OA, Grathwohl P, Zwiener C, Schwientek M. Fate of wastewater contaminants in rivers: Using conservative-tracer based transfer functions to assess reactive transport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1250-1260. [PMID: 30625655 DOI: 10.1016/j.scitotenv.2018.11.379] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/24/2018] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Interpreting the fate of wastewater contaminants in streams is difficult because their inputs vary in time and several processes synchronously affect reactive transport. We present a method to disentangle the various influences by performing a conservative-tracer test while sampling a stream section at various locations for chemical analysis of micropollutants. By comparing the outflow concentrations of contaminants with the tracer signal convoluted by the inflow time series, we estimated reaction rate coefficients and calculated the contaminant removal along a river section. The method was tested at River Steinlach, Germany, where 38 contaminants were monitored. Comparing day-time and night-time experiments allowed distinguishing photo-dependent degradation from other elimination processes. While photo-dependent degradation showed to be highly efficient for the removal of metroprolol, bisoprolol, and venlafaxine, its impact on contaminant removal was on a similar scale to the photo-independent processes when averaged over 24 h. For a selection of compounds analyzed in the present study, bio- and photodegradation were higher than in previous field studies. In the Steinlach study, we observed extraordinarily effective removal processes that may be due to the higher proportion of treated wastewater, temperature, DOC and nitrate concentrations, but also a higher surface to volume ratio from low flow conditions that favorizes photodegradation through the shallow water column and a larger transient storage than observed in comparable studies.
Collapse
Affiliation(s)
- Gaëlle Guillet
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Julia L A Knapp
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Sylvain Merel
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Olaf A Cirpka
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Christian Zwiener
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany
| | - Marc Schwientek
- Center for Applied Geoscience, University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.
| |
Collapse
|
10
|
Jaeger A, Posselt M, Betterle A, Schaper J, Mechelke J, Coll C, Lewandowski J. Spatial and Temporal Variability in Attenuation of Polar Organic Micropollutants in an Urban Lowland Stream. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2383-2395. [PMID: 30754970 DOI: 10.1021/acs.est.8b05488] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Contamination of rivers by trace organic compounds (TrOCs) poses a risk for aquatic ecosystems and drinking water quality. Spatially- and temporally varying environmental conditions are expected to play a major role in controlling in-stream attenuation of TrOCs. This variability is rarely captured by in situ studies of TrOC attenuation. Instead, snap-shots or time-weighted average conditions and corresponding attenuation rates are reported. The present work sought to investigate this variability and factors controlling it by analysis of 24 TrOCs over a 4.7 km reach of the River Erpe (Berlin, Germany). The factors investigated included sunlight and water temperature as well as the presence of macrophytes. Attenuation rate constants in 48 consecutive hourly water parcels were tracked along two contiguous river sections of different characteristics. Section 1 was less shaded and more densely covered with submerged macrophytes compared to section 2. The sampling campaign was repeated after macrophyte removal from section 1. The findings show, that section 1 generally provided more favorable conditions for both photo- and biodegradation. Macrophyte removal enhanced photolysis of some compounds (e.g., hydrochlorothiazide and diclofenac) while reducing the biodegradation of metoprolol. The transformation products metoprolol acid and valsartan acid were formed along the reach under all conditions.
Collapse
Affiliation(s)
- Anna Jaeger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Berlin , Germany
- Humboldt University Berlin , Geography Department , Berlin , Germany
| | - Malte Posselt
- Stockholm University , Department of Environmental Science and Analytical Chemistry , Stockholm , Sweden
| | - Andrea Betterle
- Eawag , Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water , Dübendorf , Switzerland
- University of Neuchâtel , Centre of Hydrogeology and Geothermics , Neuchâtel , Switzerland
- University of Padova , Department of ICEA and International Center for Hydrology , Padua , Italy
| | - Jonas Schaper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Berlin , Germany
- Technical University of Berlin , Chair of Water Quality Engineering , Berlin , Germany
| | - Jonas Mechelke
- Eawag , Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water , Dübendorf , Switzerland
- ETH Zürich , Institute of Biogeochemistry and Pollutant Dynamics , Zürich , Switzerland
| | - Claudia Coll
- Stockholm University , Department of Environmental Science and Analytical Chemistry , Stockholm , Sweden
| | - Joerg Lewandowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Berlin , Germany
- Humboldt University Berlin , Geography Department , Berlin , Germany
| |
Collapse
|
11
|
Ivanovsky A, Belles A, Criquet J, Dumoulin D, Noble P, Alary C, Billon G. Assessment of the treatment efficiency of an urban stormwater pond and its impact on the natural downstream watercourse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:120-130. [PMID: 30114571 DOI: 10.1016/j.jenvman.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
During the last few decades, stormwater ponds have become an alternative management practice in order to avoid flooding and to contain rainwater and runoff in urban areas where impervious land cover has increased. A second purpose of stormwater ponds is to improve the quality of runoff water that is usually contaminated with nitrogen, phosphorus, metals and organic micropollutants. Processes used are based on natural methods such as settlement and contribute to minimize the impact of these inputs to the natural aquatic system. This study aims to better understand the behavior of a wet stormwater pond, Heron Lake (33 ha) located in the city of Villeneuve d'Ascq in northern France through various indicators [trace metals, PAHs, PCBs, caffeine (CAF), carbamazepine (CBZ), nutrients and pathogens]. For that purpose, water quality was monitored for 1 year, mainly at the entrance and at the outlet of the lake. Sampling have also been done in the downstream aquatic environment, the Marque River. Sediments were sampled in the lake to evaluate the pollution trapped during sedimentation. Our results of both water and sediment sampling highlight: (i) the wastewater input into the Heron Lake is estimated to be equivalent to that of roughly 3800 inhabitants; (ii) the removal rates observed at the outlet, relative to concentrations at the entrance channel, vary as follows for these dissolved species: 24% for NO3- and PO43-, 28% for CBZ, 35% for Cu, 63% for Pb, 78% for CAF, 84% for Zn and up to 93% for NH4+; (iii) there are high levels of sediment contamination with metals, PAHs and PCBs at the entrance channel; (iv) the eutrophication of this pond is attributed to persistent high nutrient concentrations in both water and sediment, and has contributed to the development of an invasive macrophyte, the Elodea nuttallii; and (v) there appears to be only a negligible impact of the discharge from the lake to the natural watercourse, contributing annual loads of <2 up to 6% of the total amount of Cu, Pb, Zn, CAF, CBZ and nutrients measured in the Marque River, and having a slight diluting effect on concentrations in the Marque River.
Collapse
Affiliation(s)
- A Ivanovsky
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, F-59000, Lille, France
| | - A Belles
- IMT Mines Douai, LGCgE, GCE, 59500, Douai, France
| | - J Criquet
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, F-59000, Lille, France
| | - D Dumoulin
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, F-59000, Lille, France
| | - P Noble
- Univ. Lille CNRS, UMR 8198 EEP, F-59000, Lille, France; DGSE - University of Nevada, Reno, NV, 89503, USA
| | - C Alary
- IMT Mines Douai, LGCgE, GCE, 59500, Douai, France
| | - G Billon
- Univ. Lille CNRS, UMR 8516 - LASIR, Equipe Physico-Chimie de l'Environnement, F-59000, Lille, France.
| |
Collapse
|
12
|
Advancing Sequential Managed Aquifer Recharge Technology (SMART) Using Different Intermediate Oxidation Processes. WATER 2017. [DOI: 10.3390/w9030221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Managed aquifer recharge (MAR) systems are an efficient barrier for many contaminants. The biotransformation of trace organic chemicals (TOrCs) strongly depends on the redox conditions as well as on the dissolved organic carbon availability. Oxic and oligotrophic conditions are favored for enhanced TOrCs removal which is obtained by combining two filtration systems with an intermediate aeration step. In this study, four parallel laboratory-scale soil column experiments using different intermittent aeration techniques were selected to further optimize TOrCs transformation during MAR: no aeration, aeration with air, pure oxygen and ozone. Rapid oxygen consumption, nitrate reduction and dissolution of manganese confirmed anoxic conditions within the first filtration step, mimicking traditional bank filtration. Aeration with air led to suboxic conditions, whereas oxidation by pure oxygen and ozone led to fully oxic conditions throughout the second system. The sequential system resulted in an equal or better transformation of most TOrCs compared to the single step bank filtration system. Despite the fast oxygen consumption, acesulfame, iopromide, iomeprol and valsartan were degraded within the first infiltration step. The compounds benzotriazole, diclofenac, 4-Formylaminoantipyrine, gabapentin, metoprolol, valsartan acid and venlafaxine revealed a significantly enhanced removal in the systems with intermittent oxidation compared to the conventional treatment without aeration. Further improvement of benzotriazole and gabapentin removal by using pure oxygen confirmed potential oxygen limitation in the second column after aeration with air. Ozonation resulted in an enhanced removal of persistent compounds (i.e., carbamazepine, candesartan, olmesartan) and further increased the attenuation of gabapentin, methylbenzotriazole, benzotriazole, and venlafaxine. Diatrizoic acid revealed little degradation in an ozone–MAR hybrid system.
Collapse
|
13
|
Recent Advances in the Use of Chemical Markers for Tracing Wastewater Contamination in Aquatic Environment: A Review. WATER 2017. [DOI: 10.3390/w9020143] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Nödler K, Tsakiri M, Aloupi M, Gatidou G, Stasinakis AS, Licha T. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:282-290. [PMID: 26774775 DOI: 10.1016/j.envpol.2016.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling locations irgarol 1051 exceeded its annual average EQS value but not the maximum allowable concentration of 16 ng L(-1).
Collapse
Affiliation(s)
- Karsten Nödler
- TZW: DVGW - Technologiezentrum Wasser, Karlsruher Straße 84, 76139 Karlsruhe, Germany.
| | - Maria Tsakiri
- Department Applied Geology, Geoscience Centre of the University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
| | - Maria Aloupi
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece
| | - Georgia Gatidou
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece; Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs. Lyngby, Denmark
| | - Athanasios S Stasinakis
- Water and Air Quality Laboratory, Department of Environment, University of the Aegean, University Hill, 81100 Mytilene, Greece; Department of Environmental Engineering, Technical University of Denmark, Miljøvej, B 113, 2800 Kgs. Lyngby, Denmark
| | - Tobias Licha
- Department Applied Geology, Geoscience Centre of the University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany
| |
Collapse
|