1
|
Tornero-Velez R, Isaacs K, Dionisio K, Prince S, Laws H, Nye M, Price PS, Buckley TJ. Data Mining Approaches for Assessing Chemical Coexposures Using Consumer Product Purchase Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:1716-1735. [PMID: 33331033 PMCID: PMC8734486 DOI: 10.1111/risa.13650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 05/08/2023]
Abstract
The use of consumer products presents a potential for chemical exposures to humans. Toxicity testing and exposure models are routinely employed to estimate risks from their use; however, a key challenge is the sparseness of information concerning who uses products and which products are used contemporaneously. Our goal was to demonstrate a method to infer use patterns by way of purchase data. We examined purchase patterns for three types of personal care products (cosmetics, hair care, and skin care) and two household care products (household cleaners and laundry supplies) using data from 60,000 households collected over a one-year period in 2012. The market basket analysis methodology frequent itemset mining (FIM) was used to identify co-occurring sets of product purchases for all households and demographic groups based on income, education, race/ethnicity, and family composition. Our methodology captured robust co-occurrence patterns for personal and household products, globally and for different demographic groups. FIM identified cosmetic co-occurrence patterns captured in prior surveys of cosmetic use, as well as a trend of increased diversity of cosmetic purchases as children mature to teenage years. We propose that consumer product purchase data can be mined to inform person-oriented use patterns for high-throughput chemical screening applications, for aggregate and combined chemical risk evaluations.
Collapse
Affiliation(s)
- Rogelio Tornero-Velez
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Kristen Isaacs
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Kathie Dionisio
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Steven Prince
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Hanna Laws
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Michael Nye
- U.S. Environmental Protection Agency, Region 8 Denver, 1595 Wynkoop Street, Denver, CO 80202
| | - Paul S Price
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| | - Timothy J Buckley
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 109 T.W. Alexander Drive, Research Triangle Park, NC 27709
| |
Collapse
|
2
|
Formaldehyde Emissions from Wooden Toys: Comparison of Different Measurement Methods and Assessment of Exposure. MATERIALS 2021; 14:ma14020262. [PMID: 33430314 PMCID: PMC7825799 DOI: 10.3390/ma14020262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Formaldehyde is considered as carcinogenic and is emitted from particleboards and plywood used in toy manufacturing. Currently, the flask method is frequently used in Europe for market surveillance purposes to assess formaldehyde release from toys, but its concordance to levels measured in emission test chambers is poor. Surveillance laboratories are unable to afford laborious and expensive emission chamber testing to comply with a new amendment of the European Toy Directive; they need an alternative method that can provide reliable results. Therefore, the application of miniaturised emission test chambers was tested. Comparisons between a 1 m3 emission test chamber and 44 mL microchambers with two particleboards over 28 days and between a 24 L desiccator chamber and the microchambers with three puzzle samples over 10 days resulted in a correlation coefficient r2 of 0.834 for formaldehyde at steady state. The correlation between the results obtained in microchambers vs. flask showed a high variability over 10 samples (r2: 0.145), thereby demonstrating the error-proneness of the flask method in comparison to methods carried out under ambient parameters. An exposure assessment was also performed for three toy puzzles: indoor formaldehyde concentrations caused by puzzles were not negligible (up to 8 µg/m3), especially when more conservative exposure scenarios were considered.
Collapse
|
3
|
Fischer I, Milton C, Wallace H. Toxicity testing is evolving! Toxicol Res (Camb) 2020; 9:67-80. [PMID: 32440338 PMCID: PMC7233318 DOI: 10.1093/toxres/tfaa011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 11/15/2022] Open
Abstract
The efficient management of the continuously increasing number of chemical substances used in today's society is assuming greater importance than ever before. Toxicity testing plays a key role in the regulatory decisions of agencies and governments that aim to protect the public and the environment from the potentially harmful or adverse effects of these multitudinous chemicals. Therefore, there is a critical need for reliable toxicity-testing methods to identify, assess and interpret the hazardous properties of any substance. Traditionally, toxicity-testing approaches have been based on studies in experimental animals. However, in the last 20 years, there has been increasing concern regarding the sustainability of these methodologies. This has created a real need for the development of new approach methodologies (NAMs) that satisfy the regulatory requirements and are acceptable and affordable to society. Numerous initiatives have been launched worldwide in attempts to address this critical need. However, although the science to support this is now available, the legislation and the pace of NAMs acceptance is lagging behind. This review will consider some of the various initiatives in Europe to identify NAMs to replace or refine the current toxicity-testing methods for pharmaceuticals. This paper also presents a novel systematic approach to support the desired toxicity-testing methodologies that the 21st century deserves.
Collapse
Affiliation(s)
- Ida Fischer
- Institution of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Catherine Milton
- Institution of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather Wallace
- Institution of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
4
|
Bennett B, Workman T, Smith MN, Griffith WC, Thompson B, Faustman EM. Characterizing the Neurodevelopmental Pesticide Exposome in a Children's Agricultural Cohort. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1479. [PMID: 32106530 PMCID: PMC7084326 DOI: 10.3390/ijerph17051479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
Abstract
The exposome provides a conceptual model for identifying and characterizing lifetime environmental exposures and resultant health effects. In this study, we applied key exposome concepts to look specifically at the neurodevelopmental pesticide exposome, which focuses on exposures to pesticides that have the potential to cause an adverse neurodevelopmental impact. Using household dust samples from a children's agricultural cohort located in the Yakima Valley of Washington state, we identified 87 individual pesticides using liquid chromatography-tandem mass spectrometry. A total of 47 of these have evidence of neurotoxicity included in the Environmental Protection Agency (EPA) (re)registration materials. We used a mixed effects model to model trends in pesticide exposure. Over the two study years (2005 and 2011), we demonstrate a significant decrease in the neurodevelopmental pesticide exposome across the cohort, but particularly among farmworker households. Additional analysis with a non-parametric binomial analysis that weighted the levels of potentially neurotoxic pesticides detected in household dust by their reference doses revealed that the decrease in potentially neurotoxic pesticides was largely a result of decreases in some of the most potent neurotoxicants. Overall, this study provides evidence that the neurodevelopmental pesticide exposome framework is a useful tool in assessing the effectiveness of specific interventions in reducing exposure as well as setting priorities for future targeted actions.
Collapse
Affiliation(s)
- Breana Bennett
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - Marissa N. Smith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - William C. Griffith
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| | - Beti Thompson
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC 98105, USA;
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, DC 98105, USA; (B.B.); (T.W.); (M.N.S.); (W.C.G.)
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, DC 98105, USA
| |
Collapse
|
5
|
Shin HM, Moschet C, Young TM, Bennett DH. Measured concentrations of consumer product chemicals in California house dust: Implications for sources, exposure, and toxicity potential. INDOOR AIR 2020; 30:60-75. [PMID: 31587372 PMCID: PMC6917863 DOI: 10.1111/ina.12607] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 05/07/2023]
Abstract
Household dust is a reservoir of various consumer product chemicals. Thus, characterizing comprehensive chemical profiles of house dust may help improve our understanding of residential chemical exposure. We have previously developed a method for detecting a broad spectrum of chemicals in dust by applying a combination of target, suspect screening, and non-target methods with mass spectrometry preceded by liquid chromatography and gas chromatography. Building upon a previous study that detected 271 compounds in 38 dust samples, we presented concentrations of 144 compounds that were confirmed and quantified by standards in the same set of samples. Ten compounds were measured with median concentrations greater than 10 000 ng/g of dust: cis-hexadec-6-enoic acid, squalene, cholesterol, vitamin E, bis(2-ethylhexyl) phthalate, dioctyl terephthalate, linoleic acid, tricaprylin, tris(1-chloroisopropyl) phosphate, and oxybenzone. We also reviewed in vitro toxicity screening data to identify compounds that were not previously detected in indoor dust but have potential for adverse health effects. Among 119 newly detected compounds, 13 had endocrine-disrupting potential and 7 had neurotoxic potential. Toxicity screening data were not available for eight biocides, which may adversely affect health. Our results strive to provide more comprehensive chemical profiles of house dust and identified information gaps for future health studies.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
- Corresponding author: Hyeong-Moo Shin, Ph.D., University of Texas, Arlington, 500 Yates Street, Box 19049, Arlington, Texas 76019, , Voice: 817-272-2970, Fax: 817-272-2628
| | - Christoph Moschet
- Department of Civil and Environmental Engineering, University of California, Davis, California, USA
| | - Thomas M. Young
- Department of Civil and Environmental Engineering, University of California, Davis, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis, California, USA
| |
Collapse
|
6
|
Demirtepe H, Melymuk L, Diamond ML, Bajard L, Vojta Š, Prokeš R, Sáňka O, Klánová J, Palkovičová Murínová Ľ, Richterová D, Rašplová V, Trnovec T. Linking past uses of legacy SVOCs with today's indoor levels and human exposure. ENVIRONMENT INTERNATIONAL 2019; 127:653-663. [PMID: 30991221 DOI: 10.1016/j.envint.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Semivolatile organic compounds (SVOCs) emitted from consumer products, building materials, and indoor and outdoor activities can be highly persistent in indoor environments. Human exposure to and environmental contamination with polychlorinated biphenyls (PCBs) was previously reported in a region near a former PCB production facility in Slovakia. However, we found that the indoor residential PCB levels did not correlate with the distance from the facility. Rather, indoor levels in this region and those reported in the literature were related to the historic PCB use on a national scale and the inferred presence of primary sources of PCBs in the homes. Other SVOCs had levels linked with either the activities in the home, e.g., polycyclic aromatic hydrocarbons (PAHs) with wood heating; or outdoor activities, e.g., organochlorine pesticides (OCPs) with agricultural land use and building age. We propose a classification framework to prioritize SVOCs for monitoring in indoor environments and to evaluate risks from indoor SVOC exposures. Application of this framework to 88 measured SVOCs identified several PCB congeners (CB-11, -28, -52), hexachlorobenzene (HCB), benzo(a)pyrene, and γ-HCH as priority compounds based on high exposure and toxicity assessed by means of toxicity reference values (TRVs). Application of the framework to many emerging compounds such as novel flame retardants was not possible because of either no or outdated TRVs. Concurrent identification of seven SVOC groups in indoor environments provided information on their comparative levels and distributions, their sources, and informed our assessment of associated risks.
Collapse
Affiliation(s)
- Hale Demirtepe
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic.
| | - Miriam L Diamond
- Department of Earth Sciences, and Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Lola Bajard
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Šimon Vojta
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ondřej Sáňka
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Masaryk University, Kamenice 753/5, pavilion A29, 625 00 Brno, Czech Republic
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Vladimíra Rašplová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| |
Collapse
|
7
|
Biomonitoring and Subsequent Risk Assessment of Combined Exposure to Phthalates in Iranian Children and Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112336. [PMID: 30360526 PMCID: PMC6265767 DOI: 10.3390/ijerph15112336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/29/2023]
Abstract
This study aimed to estimate the exposure and related health risks of phthalates, and to assess the health risks from combined exposure to three of the phthalates sharing the same mode of action (anti-androgenicity) in children. We determined the internal exposure of 56 Iranian children and adolescents aged 6 to 18 years by analyzing seven urinary metabolites of five phthalates. The estimated daily intake values derived from the biomonitoring data ranged from 0.01 µg/kg bw/day for butyl benzyl phthalate (BBP), to 17.85 µg/kg bw/day for di(2-ethylhexyl) phthalate (DEHP). The risk assessment revealed that not only the exposure to the individual phthalates, but also the combined exposure to the three anti-androgenic phthalates (DEHP, DBP, BBP) did not raise a safety concern (hazard index values averaged 0.2). The range of maximum cumulative ratio values varied from around 1 for most individuals to around 2 in some individuals, indicating that the combined exposures were dominated by one and in some cases by two of the three anti-androgenic phthalates, especially dibutyl phthalate (DBP) and/or DEHP. Based on biomonitoring data, the overall combined exposure of Iranian children to phthalates does not raise a concern, while reduction of exposure is best focused on DEHP and DBP that showed the highest hazard quotient.
Collapse
|
8
|
Kurohane K, Kimura A, Terasawa R, Kobayashi K, Suzuki W, Matsuoka T, Imai Y. An Aliphatic Ester Diisopropyl Sebacate Exhibited an Adjuvant Effect on Fluorescein Isothiocyanate-Induced Contact Hypersensitivity Mouse Models. Biol Pharm Bull 2018; 41:147-150. [DOI: 10.1248/bpb.b17-00723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ayako Kimura
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Rie Terasawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kamiyu Kobayashi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Wakana Suzuki
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takeshi Matsuoka
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
9
|
Ferguson A, Penney R, Solo-Gabriele H. A Review of the Field on Children's Exposure to Environmental Contaminants: A Risk Assessment Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E265. [PMID: 28273865 PMCID: PMC5369101 DOI: 10.3390/ijerph14030265] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 01/21/2023]
Abstract
Background: Children must be recognized as a sensitive population based on having biological systems and organs in various stages of development. The processes of absorption, distribution, metabolism and elimination of environmental contaminants within a child's body are considered less advanced than those of adults, making them more susceptible to disease outcomes following even small doses. Children's unique activities of crawling and practicing increased hand-to-mouth ingestion also make them vulnerable to greater exposures by certain contaminants within specific environments. Approach: There is a need to review the field of children's environmental exposures in order to understand trends and identify gaps in research, which may lead to better protection of this vulnerable and sensitive population. Therefore, explored here are previously published contemporary works in the broad area of children's environmental exposures and potential impact on health from around the world. A discussion of children's exposure to environmental contaminants is best organized under the last four steps of a risk assessment approach: hazard identification, dose-response assessment, exposure assessment (including children's activity patterns) and risk characterization. We first consider the many exposure hazards that exist in the indoor and outdoor environments, and emerging contaminants of concern that may help guide the risk assessment process in identifying focus areas for children. A section on special diseases of concern is also included. Conclusions: The field of children's exposures to environmental contaminants is broad. Although there are some well-studied areas offering much insight into children exposures, research is still needed to further our understanding of exposures to newer compounds, growing disease trends and the role of gene-environment interactions that modify adverse health outcomes. It is clear that behaviors of adults and children play a role in reducing or increasing a child's exposure, where strategies to better communicate and implement risk modifying behaviors are needed, and can be more effective than implementing changes in the physical environment.
Collapse
Affiliation(s)
- Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 820, Little Rock, AR 72205, USA.
| | - Rosalind Penney
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 820, Little Rock, AR 72205, USA.
| | - Helena Solo-Gabriele
- Department of Civil, Architectural, and Environmental Engineering, College of Engineering, University of Miami, Florida, 1251 Memorial Drive, Coral Gables, FL 33146, USA.
| |
Collapse
|
10
|
Kurohane K, Sekiguchi K, Ogawa E, Tsutsumi M, Imai Y. Dibutyl Phthalate Rather than Monobutyl Phthalate Facilitates Contact Hypersensitivity to Fluorescein Isothiocyanate in a Mouse Model. Biol Pharm Bull 2017; 40:2010-2013. [DOI: 10.1248/bpb.b17-00557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kohta Kurohane
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kota Sekiguchi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Erina Ogawa
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Masato Tsutsumi
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
11
|
Children's Exposure to Environmental Contaminants: An Editorial Reflection of Articles in the IJERPH Special Issue Entitled, "Children's Exposure to Environmental Contaminants". INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111117. [PMID: 27834888 PMCID: PMC5129327 DOI: 10.3390/ijerph13111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
Children are at increased vulnerability to many environmental contaminants compared to adults due to their unique behavior patterns, increased contaminant intake per body weight, and developing biological systems. Depending upon their age, young children may crawl on the floor and may practice increased hand to mouth activity that may increase their dose-intake of specific contaminants that accumulate in dust and other matrices. Children are also smaller in size than adults, resulting in a greater body burden for a given contaminant dose. Because children undergo rapid transitions through particular developmental stages they are also especially vulnerable during certain growth-related time windows. A Special Issue was organized focused on the latest findings in the field of children’s environmental exposure for these reasons. This editorial introduces articles in this Special Issue and emphasizes their main findings in advancing the field. From the many articles submitted to this Special Issue from around the world, 23 were accepted and published. They focus on a variety of research areas such as children’s activity patterns, improved risk assessment methods to estimate exposures, and exposures in various contexts and to various contaminants. The future health of a nation relies on protecting the children from adverse exposures and understanding the etiology of childhood diseases. The field of children’s environmental exposures must consider improved and comprehensive research methods aimed at introducing mitigation strategies locally, nationally, and globally. We are happy to introduce a Special Issue focused on children’s environmental exposure and children’s health and hope that it contributes towards improved health of children.
Collapse
|