1
|
Aryal A, Harmon AC, Varner KJ, Noël A, Cormier SA, Nde DB, Mottram P, Maxie J, Dugas TR. Inhalation of particulate matter containing environmentally persistent free radicals induces endothelial dysfunction mediated via AhR activation at the air-blood interface. Toxicol Sci 2024; 199:246-260. [PMID: 38310335 DOI: 10.1093/toxsci/kfae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFR) is formed by the incomplete combustion of organic wastes, resulting in the chemisorption of pollutants to the surface of PM containing redox-active transition metals. In prior studies in mice, EPFR inhalation impaired endothelium-dependent vasodilation. These findings were associated with aryl hydrocarbon receptor (AhR) activation in the alveolar type-II (AT-II) cells that form the air-blood interface in the lung. We thus hypothesized that AhR activation in AT-II cells promotes the systemic release of mediators that promote endothelium dysfunction peripheral to the lung. To test our hypothesis, we knocked down AhR in AT-II cells of male and female mice and exposed them to 280 µg/m3 EPFR lo (2.7e + 16 radicals/g) or EPFR (5.5e + 17 radicals/g) compared with filtered air for 4 h/day for 1 day or 5 days. AT-II-AhR activation-induced EPFR-mediated endothelial dysfunction, reducing endothelium-dependent vasorelaxation by 59%, and eNOS expression by 50%. It also increased endothelin-1 mRNA levels in the lungs and peptide levels in the plasma in a paracrine fashion, along with soluble vascular cell adhesion molecule-1 and iNOS mRNA expression, possibly via NF-kB activation. Finally, AhR-dependent increases in antioxidant response signaling, coupled to increased levels of 3-nitrotyrosine in the lungs of EPFR-exposed littermate control but not AT-II AhR KO mice suggested that ATII-specific AhR activation promotes oxidative and nitrative stress. Thus, AhR activation at the air-blood interface mediates endothelial dysfunction observed peripheral to the lung, potentially via release of systemic mediators.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and Pennington Biomedical Research Institute, Baton Rouge, Louisiana 70803, USA
| | - Divine B Nde
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana 70803, USA
| | - Peter Mottram
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Jemiah Maxie
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
2
|
Olasupo A, Corbin DR, Shiflett MB. Trends in low temperature and non-thermal technologies for the degradation of persistent organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133830. [PMID: 38387180 DOI: 10.1016/j.jhazmat.2024.133830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The daunting effects of persistent organic pollutants on humans, animals, and the environment cannot be overemphasized. Their fate, persistence, long-range transport, and bioavailability have made them an environmental stressor of concern which has attracted the interest of the research community. Concerted efforts have been made by relevant organizations utilizing legislative laws to ban their production and get rid of them completely for the sake of public health. However, they have remained refractive in different compartments of the environment. Their bioavailability is majorly a function of different anthropogenic activities. Landfilling and incineration are among the earliest classical means of environmental remediation of waste; however, they are not sustainable due to the seepage of contaminants in landfills, the release of toxic gases into the atmosphere and energy requirements during incineration. Other advanced waste destruction technologies have been explored for the degradation of these recalcitrant pollutants; although, some are efficient, but are limited by high amounts of energy consumption, the use of organic solvents and hazardous chemicals, high capital and operational cost, and lack of public trust. Thus, this study has systematically reviewed different contaminant degradation technologies, their efficiency, and feasibility. Finally, based on techno-economic feasibility, non-invasiveness, efficiency, and environmental friendliness; radiation technology can be considered a viable alternative for the environmental remediation of contaminants in all environmental matrices at bench-, pilot-, and industrial-scale.
Collapse
Affiliation(s)
- Ayo Olasupo
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - David R Corbin
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States
| | - Mark B Shiflett
- Institute for Sustainable Engineering, 1536 W. 15th Street, Lawrence, Kansas 66045, United States; Department of Chemical and Petroleum Engineering, University of Kansas, 1530 W. 15th Street, Lawrence, Kansas, 66045, United States.
| |
Collapse
|
3
|
Yi JF, Lin ZZ, Li X, Zhou YQ, Guo Y. A short review on environmental distribution and toxicity of the environmentally persistent free radicals. CHEMOSPHERE 2023; 340:139922. [PMID: 37611755 DOI: 10.1016/j.chemosphere.2023.139922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Environmentally Persistent Free Radicals (EPFRs) are usually generated by the electron transfer of a certain radical precursor on the surface of a carrier. They are characterized with high activity, wide migration range, and relatively long half-life period. In this review, we summarized the literature on EPFRs published since 2010, including their environmental occurrence and potential cytotoxicity and biotoxicity. The EPFRs in the atmosphere are the most abundant in the environment, mainly generated from the combustion of raw materials or biochar, and the C-center types (quinones, semiquinones radicals, etc.) may exist for a relatively long time. These EPFRs can transform into other substances (such as reactive oxygen species, ROS) under the influence of environmental factors, and partly enter soil and water by wet and dry deposition of particulate matter, which may promote the generation of EPFRs in those media. The wide distribution of EPFRs in the environment may lead to their exposure to biota including humans, resulting in cytotoxicity and biotoxicity. The EPFRs can influence the normal redox process of the biota, and generate a large number of free radicals like ROS. Exposure to EPFRs may change the expression of gene and activity of metabolic enzymes, and damage the cells, as well as some organs such as the lung, trachea, and heart. However, due to the difficulty in sample extraction, identification, and quantification of the specific EPFR individuals, the toxicity and exposure evaluation of biota are still limited which merits study in the future.
Collapse
Affiliation(s)
- Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xing Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yue-Qiao Zhou
- Department of Department of Medical Oncology, Qionghai People's Hospital, Qionghai, 571499, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
4
|
Lee WR, Dangal P, Cormier S, Lomnicki S, Sly PD, Vilcins D. Household characteristics associated with environmentally persistent free radicals in house dust in two Australian locations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.22.23297367. [PMID: 37961661 PMCID: PMC10635157 DOI: 10.1101/2023.10.22.23297367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The association between air pollution and adverse health outcomes has been extensively studied, and while oxidative stress in likely to be involved, the underlying mechanism(s) remain unclear. Recent studies propose environmentally persistent free radicals (EPFRs) as the missing connection between air pollution and detrimental health impacts. However, the indoor environment is rarely considered in EPFR research. We measured EPFRs in household dust from two locations in Australia and investigated household characteristics associated with EPFRs. Random forest models were built to identify important household characteristics through variable importance plots and the associations were analysed using Spearman's rho test. We found that age of house, type of garage, house outer wall material, heating method used in home, frequency of extractor fan use when cooking, traffic related air pollution, frequency of cleaning and major house renovation were important household characteristics associated with EPFRs in Australian homes. The direction of association between household characteristics and EPFRs differ between the locations. Hence, further research is warranted to determine the generalisability of our results.
Collapse
|
5
|
Aryal A, Noël A, Khachatryan L, Cormier SA, Chowdhury PH, Penn A, Dugas TR, Harmon AC. Environmentally persistent free radicals: Methods for combustion generation, whole-body inhalation and assessing cardiopulmonary consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122183. [PMID: 37442324 PMCID: PMC10528481 DOI: 10.1016/j.envpol.2023.122183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Particulate matter (PM) containing environmentally persistent free radicals (EPFRs) results from the incomplete combustion of organic wastes which chemisorb to transition metals. This process generates a particle-pollutant complex that continuously redox cycles to produce reactive oxygen species. EPFRs are well characterized, but their cardiopulmonary effects remain unknown. This publication provides a detailed approach to evaluating these effects and demonstrates the impact that EPFRs have on the lungs and vasculature. Combustion-derived EPFRs were generated (EPFR lo: 2.1e-16 radical/g, EPFR hi: 5.5e-17 radical/g), characterized, and verified as representative of those found in urban areas. Dry particle aerosolization and whole-body inhalation were established for rodent exposures. To verify that these particles and exposures recapitulate findings relevant to known PM-induced cardiopulmonary effects, male C57BL6 mice were exposed to filtered air, ∼280 μg/m3 EPFR lo or EPFR hi for 4 h/d for 5 consecutive days. Compared to filtered air, pulmonary resistance was increased in mice exposed to EPFR hi. Mice exposed to EPFR hi also exhibited increased plasma endothelin-1 (44.6 vs 30.6 pg/mL) and reduced nitric oxide (137 nM vs 236 nM), suggesting vascular dysfunction. Assessment of vascular response demonstrated an impairment in endothelium-dependent vasorelaxation, with maximum relaxation decreased from 80% to 62% in filtered air vs EPFR hi exposed mice. Gene expression analysis highlighted fold changes in aryl hydrocarbon receptor (AhR) and antioxidant response genes including increases in lung Cyp1a1 (8.7 fold), Cyp1b1 (9 fold), Aldh3a1 (1.7 fold) and Nqo1 (2.4 fold) and Gclc (1.3 fold), and in aortic Cyp1a1 (5.3 fold) in mice exposed to EPFR hi vs filtered air. We then determined that lung AT2 cells were the predominate locus for AhR activation. Together, these data suggest the lung and vasculature as particular targets for the health impacts of EPFRs and demonstrate the importance of additional studies investigating the cardiopulmonary effects of EPFRs.
Collapse
Affiliation(s)
- Ankit Aryal
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University A&M College, Baton Rouge, Louisiana, 70803, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Pratiti H Chowdhury
- Department of Biological Sciences, Louisiana State University A&M College and the Pennington Biomedical Research Institute, Baton Rouge, Louisiana, 70803, USA
| | - Arthur Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA
| | - Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
6
|
Wang Y, Huang J, Li S, Xu W, Wang H, Xu W, Li X. A mechanistic and kinetic investigation on the oxidative thermal decomposition of decabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121991. [PMID: 37328125 DOI: 10.1016/j.envpol.2023.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The thermal processes of materials containing decabromodiphenyl ether (BDE-209) normally result in the exposure of BDE-209 to high-temperature environments, generating a series of hazardous compounds. However, the evolution mechanisms of BDE-209 during oxidative thermal processes remain unclear. Thus, this paper presents a detailed investigation on the oxidative thermal decomposition mechanism of BDE-209 by utilizing density functional theory methods at the M06/cc-pVDZ theoretical level. The results show that the barrierless fission of the ether linkage dominates the initial degradation of BDE-209 at all temperatures, with branching ratio over 80%. The decomposition of BDE-209 in oxidative thermal processes is mainly along BDE-209 → pentabromophenyl and pentabromophenoxy radicals → pentabromocyclopentadienyl radicals → brominated aliphatic products. Additionally, the study results on the formation mechanisms of several hazardous pollutants indicate that the ortho-phenyl-type radicals created by ortho-C-Br bond fission (branching ratio reached 15.1% at 1600 K) can easily be converted into octabrominated dibenzo-p-dioxin and furan, which require overcoming the energy barriers of 99.0 and 48.2 kJ/mol, respectively. The O/ortho-C coupling of two pentabromophenoxy radicals also acts as a non-negligible pathway for the formation of octabrominated dibenzo-p-dioxin. The synthesis of octabromonaphthalene involves the self-condensation of pentabromocyclopentadienyl radicals, followed by an intricately intramolecular evolution. Results presented in this study can enhance our understanding of the transformation mechanism of BDE-209 in thermal processes, and offer an insight into controlling the emissions of hazardous pollutants.
Collapse
Affiliation(s)
- Yao Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Jinbao Huang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Sijia Li
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weifeng Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Hong Wang
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Weiwei Xu
- School of Physics and Mechatronic Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Xinsheng Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
7
|
Azam S, Kurashov V, Golbeck JH, Bhattacharyya S, Zheng S, Liu S. Comparative 6+studies of environmentally persistent free radicals on nano-sized coal dusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163163. [PMID: 37003338 DOI: 10.1016/j.scitotenv.2023.163163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Coal dust is the major hazardous pollutant in the coal mining environment. Recently environmentally persistent free radicals (EPFRs) were identified as one of the key characteristics which could impart toxicity to the particulates released into the environment. The present study used Electron Paramagnetic Resonance (EPR) spectroscopy to analyze the characteristics of EPFRs present in different types of nano-size coal dust. Further, it analyzed the stability of the free radicals in the respirable nano-size coal dust and compared their characteristics in terms of EPR parameters (spin counts and g-values). It was found that free radicals in coal are remarkably stable (can remain intact for several months). Also, Most of the EPFRs in the coal dust particles are either oxygenated carbon centered or a mixture of carbon and oxygen-centered free radicals. EPFRs concentration in the coal dust was found to be proportional to the carbon content of coal. The characteristic g-values were found to be inversely related to the carbon content of coal dust. The spin concentrations in the lignite coal dust were between 3.819 and 7.089 μmol/g, whereas the g-values ranged from 2.00352 to 2.00363. The spin concentrations in the bituminous coal dust were between 11.614 and 25.562 μmol/g, whereas the g-values ranged from 2.00295 to 2.00319. The characteristics of EPFRs present in coal dust identified by this study are similar to the EPFRs, which were found in other environmental pollutants such as combustion-generated particulates, PM2.5, indoor dust, wildfires, biochar, haze etc., in some of the previous studies. Considering the toxicity analysis of environmental particulates containing EPFRs similar to those identified in the present study, it can be confidently hypothesized that the EPFRs in the coal dust might play a major role in modulating the coal dust toxicity. Hence, it is recommended that future studies should analyze the role of EPFR-loaded coal dust in mediating the inhalation toxicity of coal dust.
Collapse
Affiliation(s)
- Sikandar Azam
- Department of Energy and Mineral Engineering, G(3) Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vasily Kurashov
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - John H Golbeck
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Sekhar Bhattacharyya
- Department of Energy and Mineral Engineering, G(3) Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siyang Zheng
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, 15213, USA
| | - Shimin Liu
- Department of Energy and Mineral Engineering, G(3) Center and Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Jia SM, Wang DQ, Liu LY, Zhang ZF, Ma WL. Size-resolved environmentally persistent free radicals in cold region atmosphere: Implications for inhalation exposure risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130263. [PMID: 36332281 DOI: 10.1016/j.jhazmat.2022.130263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Environmental persistent free radicals (EPFRs) have attracted more attentions recently due to their potential adverse effects to human. EPFRs in full-size range particles were comprehensively investigated in this study. The average EPFRs concentration during heating season was 3.01 × 1014 spins/m3, which was much higher than that in non-heating season (4.30 × 1013 spins/m3). The highest concentration of EPFRs presented in 0.56-1.0 µm particles during heating season, while it shifted to 5.6-10 µm particles during non-heating season. Besides, the contributions of EPFRs on PM>10 to the total concentration of EPFRs cannot be neglected, especially in the non-heating season. The International Commission on Radiological Protection model and the specific factors of the Chinese population were applied to evaluate the inhalation exposure risk of EPFRs. The results indicated that the exposure levels of EPFRs to the upper respiratory tract were much higher. The daily exposure dose of EPFRs suggested the inhalation exposure risk of 3-4 years old was higher than other age groups. In summary, these finding provided new insights for the full range particle size distribution and the inhalation exposure risk of EPFRs, which improved our understanding on the environmental fate and the health risk of EPFRs in atmosphere.
Collapse
Affiliation(s)
- Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - De-Qi Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin 150090, China.
| |
Collapse
|
9
|
Guo C, Richmond-Bryant J. A critical review of environmentally persistent free radical (EPFR) solvent extraction methodology and retrieval efficiency. CHEMOSPHERE 2021; 284:131353. [PMID: 34225117 PMCID: PMC8487994 DOI: 10.1016/j.chemosphere.2021.131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/14/2021] [Accepted: 06/26/2021] [Indexed: 05/16/2023]
Abstract
Long-lived environmentally persistent free radical (EPFR) exposures have been shown in toxicology studies to lead to respiratory and cardiovascular effects, which were thought to be due to the persistence of EPFR and their ability to produce reactive oxygen species. To characterize EPFR exposure and resulting health impacts, it is necessary to identify and systematize analysis protocols. Both direct measurement and solvent extraction methods have been applied to analyze environmental samples containing EPFR. The use of different protocols and solvents in EPFR analyses makes it difficult to compare results among studies. In this work, we reviewed EPFR studies that involved solvent extraction and carefully reported the details of the extraction methodology and retrieval recovery. EPFR recovery depends on the structure of the radical species and the solvent. For the limited number of studies available for review, the polar solvents had superior recovery in more studies. Radicals appeared to be more oxygen-centered following extraction for fly ash and particulate matter (PM) samples. Different solvent extraction methods to retrieve EPFR may produce molecular products during the extraction, thus potentially changing the sample toxicity. The number of studies reporting detailed methodologies is limited, and data in these studies were not consistently reported. Thus, inference about the solvent and protocol that leads to the highest EPFR extraction efficiency for certain types of radicals is not currently possible. Based on our review, we proposed reporting criteria to be included for future EPFR studies.
Collapse
Affiliation(s)
- Chuqi Guo
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Jennifer Richmond-Bryant
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Characteristics and Potential Inhalation Exposure Risks of Environmentally Persistent Free Radicals in Atmospheric Particulate Matter and Solid Fuel Combustion Particles in High Lung Cancer Incidence Area, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12111467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmentally persistent free radicals (EPFRs) were previously considered an unrecognized composition of air pollutants and might help explain the long-standing medical mystery of why non-smokers develop tobacco-related diseases such as lung cancer. However, there is no investigated on EPFRs in Xuanwei rural areas, especially in high prevalence of lung cancer areas. In this study, we selected six types of coal and three types of biomass in Xuanwei, then conducted simulated combustion, and six group of atmospheric particulate matters (APMs) to explore the content and particle size distribution pattern of EPFRs and a new health risk assessment method to evaluate the risk of EPFRs in PM for adults and children. Our results show that the contribution of EPFRs for biomass combustion, coal combustion and APMs were mainly distributed in the size range of <1.1 μm, which accounted for 76.15 ± 4.14%, 74.85 ± 10.76%, and 75.23 ± 8.18% of PM3.3. The mean g factors and ΔHp-p indicated that the EPFRs were mainly oxygen-centered radicals in PM in Xuanwei. The results suggest that the health risk of EPFRs is significantly increased when the particle size distribution of EPFRs is taken into account, and coal combustion particulate matter (174.70 ± 37.86 cigarettes for an adult, 66.39 ± 14.39 cigarettes per person per year for a child) is more hazardous to humans than biomass combustion particulate matter (69.41 ± 4.83 cigarettes for an adult, 26.37 ± 1.84 cigarettes per person per year for), followed by APMs (102.88 ± 39.99 cigarettes for an adult, 39.10 ±15.20 cigarettes per person per year for) in PM3.3. Our results provides a new perspective and evidence for revealing the reason for the high incidence of lung cancer in Xuanwei, China.
Collapse
|
11
|
Harmon AC, Noël A, Subramanian B, Perveen Z, Jennings MH, Chen YF, Penn AL, Legendre K, Paulsen DB, Varner KJ, Dugas TR. Inhalation of particulate matter containing free radicals leads to decreased vascular responsiveness associated with an altered pulmonary function. Am J Physiol Heart Circ Physiol 2021; 321:H667-H683. [PMID: 34415187 PMCID: PMC8794232 DOI: 10.1152/ajpheart.00725.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/31/2022]
Abstract
Airborne particulate matter (PM) is associated with an increased risk for cardiovascular diseases. Although the goal of thermal remediation is to eliminate organic wastes through combustion, when incomplete combustion occurs, organics chemisorb to transition metals to generate PM-containing environmentally persistent free radicals (EPFRs). Similar EPFR species have been detected in PM found in diesel and gasoline exhaust, woodsmoke, and urban air. Prior in vivo studies demonstrated that EPFRs reduce cardiac function secondary to elevations in pulmonary arterial pressures. In vitro studies showed that EPFRs increase ROS and cytokines in pulmonary epithelial cells. We thus hypothesized that EPFR inhalation would promote lung inflammation and oxidative stress, leading to systemic inflammation, vascular endothelial injury, and a decline in vascular function. Mice were exposed to EPFRs for either 4 h or for 4 h/day for 10 days and lung and vascular function were assessed. After a 4-h exposure, plasma nitric oxide (NO) was reduced while endothelin-1 (ET-1) was increased, however lung function was not altered. After 10 day, plasma NO and ET-1 levels were again altered and lung tidal volume was reduced. These time course studies suggested the vasculature may be an early target of injury. To test this hypothesis, an intermediate time point of 3 days was selected. Though the mice exhibited no marked inflammation in either the lung or the blood, we did note significantly reduced endothelial function concurrent with a reduction in lung tidal volume and an elevation in annexin V protein levels in the lung. Although vascular dysfunction was not dependent upon inflammation, it may be associated with an injury at the air-blood interface. Gene expression analysis suggested roles for oxidative stress and aryl hydrocarbon receptor (Ahr) signaling. Studies probing the relationship between pulmonary oxidative stress and AhR signaling at the air-blood interface with vascular dysfunction seem warranted.NEW & NOTEWORTHY Particulate matter (PM) resulting from the combustion of organic matter is known to contribute to cardiopulmonary disease. Despite hypotheses that cardiovascular dysfunction occurring after PM exposures is secondary to lung or systemic inflammation, these studies investigating exposures to PM-containing environmentally persistent free radicals (EPFRs) demonstrate that cardiovascular dysfunction precedes pulmonary inflammation. The cardiopulmonary health consequences of EPFRs have yet to be thoroughly evaluated, especially in healthy, adult mice. Our data suggest the vasculature as a direct target of PM exposure, and our studies aimed to elucidate the mechanisms contributing to EPFR-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ashlyn C Harmon
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | | | - Zakia Perveen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Merilyn H Jennings
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Yi-Fan Chen
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kelsey Legendre
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Daniel B Paulsen
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Kurt J Varner
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tammy R Dugas
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| |
Collapse
|
12
|
Liu X, Yang L, Liu G, Zheng M. Formation of Environmentally Persistent Free Radicals during Thermochemical Processes and their Correlations with Unintentional Persistent Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6529-6541. [PMID: 33956443 DOI: 10.1021/acs.est.0c08762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Attention is increasingly being paid to environmentally persistent free radicals (EPFRs), which are organic pollutants with the activities of free radicals and stabilities of organic pollutants. EPFRs readily form during thermal processes through the decomposition of organic precursors such as phenols, halogenated phenols, and quinone-type molecules, which are also important precursors of toxic unintentionally produced persistent organic pollutants (UPOPs). We have found that EPFRs are important intermediates for UPOP formation during thermal-related processes. However, interest in EPFRs is currently mostly focused on the toxicities and formation mechanisms of EPFRs themselves. Little information is available on the important roles EPFRs play in toxic UPOP formation during thermal processes. Here, we review the mechanisms involved in EPFR formation and transformation into UPOPs during thermal processes. The review is focused on typical EPFRs, including cyclopentadiene, phenoxy, and semiquinone radicals. The reaction temperature, metal species present, and oxygen concentration strongly affect EPFR and UPOP formation during thermal-related processes. Gaps in current knowledge and future directions for research into EPFR and UPOP formation, transformation, and control are presented. Understanding the relationships between EPFRs and UPOPs will allow synergistic control strategies to be developed for thermal-related industrial sources of EPFRs and UPOPs.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
13
|
Odinga ES, Waigi MG, Gudda FO, Wang J, Yang B, Hu X, Li S, Gao Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in biochars. ENVIRONMENT INTERNATIONAL 2020; 134:105172. [PMID: 31739134 DOI: 10.1016/j.envint.2019.105172] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 05/22/2023]
Abstract
Biochars are used globally in agricultural crop production and environmental remediation. However, environmentally persistent free radicals (EPFRs), which are stable emerging pollutants, are generated as a characteristic feature during biomass pyrolysis. EPFRs can induce the formation of reactive oxygen species, which poses huge agro-environmental and human health risks. Their half-lives and persistence in both biochar residues and in the atmosphere may lead to potentially adverse risks in the environment. This review highlights the comprehensive research into these bioreactive radicals, as well as the bottlenecks of biochar production leading up to the formation and persistence of EPFRs. Additionally, a way forward has been proposed, based on two main recommendations. A global joint initiative to create an all-encompassing regulations policy document that will improve both the technological and the quality control aspects of biochars to reduce EPFR generation at the production level. Furthermore, environmental impact and risk assessment studies should be conducted in the extensive applications of biochars in order to protect the environmental and human health. The highlighted key research directions proposed herein will shape the production, research, and adoption aspects of biochars, which will mitigate the considerable concerns raised on EPFRs.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shunyao Li
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
14
|
Ding J, Guan Y, Cong Y, Chen L, Li YF, Zhang L, Zhang L, Wang J, Bai R, Zhao Y, Chen C, Wang L. Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Anal Chem 2019; 92:975-982. [DOI: 10.1021/acs.analchem.9b03913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lili Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jian Wang
- Canadian Light Source and University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Xu M, Wu T, Tang YT, Chen T, Khachatryan L, Iyer PR, Guo D, Chen A, Lyu M, Li J, Liu J, Li D, Zuo Y, Zhang S, Wang Y, Meng Y, Qi F. Environmentally persistent free radicals in PM 2.5: a review. ACTA ACUST UNITED AC 2019; 1:177-197. [PMID: 34308260 DOI: 10.1007/s42768-019-00021-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Environmentally persistent free radicals (EPFRs) are a new class of pollutants that are long-lived in fine particles (PM2.5), i.e., their 1/e lifetime ranges from days to months (or even infinite). They are capable of producing harmful reactive oxygen species such as hydroxyl radicals. The redox cycling of EPFRs is considered as an important pathway for PM2.5 to induce oxidative stress inside the humans, causing adverse health effects such as respiratory and cardiovascular diseases. Consequently, research regarding their toxicity, formation and environmental occurrences in PM2.5 has attracted increasing attentions globally during the past two decades. However, literature data in this field remain quite limited and discrete. Hence, an extensive review is urgently needed to summarize the current understanding of this topic. In this work, we systematically reviewed the analytical methods and environmental occurrences, e.g., types, concentrations, and decay behaviors, as well as possible sources of EPFRs in PM2.5. The types of pretreatment methods, g-values of common EPFRs and categories of decay processes were discussed in detail. Moreover, great efforts were made to revisit the original data of the published works of EPFRs in airborne particulate matter and provided additional useful information for comparison where possible, e.g., their mean and standard deviation of g-values, line widths (ΔH p-p), and concentrations. Finally, possible research opportunities were highlighted to further advance our knowledge of this emerging issue.
Collapse
Affiliation(s)
- Mengxia Xu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.,New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.,New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yu-Ting Tang
- School of Geographical Sciences, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tong Chen
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lavrent Khachatryan
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Poornima Ramesh Iyer
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Dengting Guo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Anran Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Miao Lyu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jinhu Li
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Jiaqi Liu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Dan Li
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yuxin Zuo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shihan Zhang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yiran Wang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Yining Meng
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Fei Qi
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
16
|
Zhang Y, Guo X, Si X, Yang R, Zhou J, Quan X. Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:348-354. [PMID: 31207524 DOI: 10.1016/j.scitotenv.2019.06.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Environmentally persistent free radicals (EPFRs) are detected in the clay, mineral or humic part of the soil, especially in soil contaminated with phenolic compounds. To clarify the detailed information on the formation of EPFRs, we used the contaminated soil with catechol to mimic their formation process in laboratory scale and tested their biotoxicity with luminescent bacteria (Photobacterium phosphoreum, P. phosphoreum). Our results showed that the concentration of EPFRs reached the maximum at pyrolysis temperature of 300 °C, and EPFRs could significantly inhibit the luminescence of P. phosphoreum. Based on the detection of OH radicals in the aquatic system we used, we speculated that the generation of OH may be a crucial contributor to the toxicity of EPFRs. Our results aid to understand the detailed process on the formation of EPFRs in contaminated soil, as well as the basic biotoxicity data of EPFRs, which will be helpful and essential for their potential environmental risk assessments.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xi Guo
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Si
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruixin Yang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Jiang H, Liu Y, Xie Y, Liu J, Chen T, Ma Q, He H. Oxidation Potential Reduction of Carbon Nanomaterials during Atmospheric-Relevant Aging: Role of Surface Coating. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10454-10461. [PMID: 31403290 DOI: 10.1021/acs.est.9b02062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials from various sources are the important component of PM2.5 and have many adverse effects on human health. They are prone to interact with other pollutants and subsequently age, defined here as changes in chemical properties. In this work, we investigated the aging process of various carbon nanoparticle samples such as Special Black 4A, Printex U, single-walled carbon nanotubes, and hexane flame soot by ambient air and studied the evolution of their oxidation potential. We found that coatings of inorganic and organic species dominated the aging process of carbonaceous particles by ambient air. The amounts of disordered carbon and C-H functional groups of aged carbonaceous particles decreased during the aging process; meanwhile, the contents of sulfate and nitrate showed significant increases. In addition, the oxidation potential measured by the dithiothreitol assay remarkably declined as a function of aging time with ambient air evidently because of heterogeneous reactions between SO2 and NO2, as well as the coating with organic vapors. This work is important for understanding the oxidation potential changes of carbonaceous particles during atmospheric transport.
Collapse
Affiliation(s)
- Haotian Jiang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Yun Xie
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | - Tianzeng Chen
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qingxin Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| | - Hong He
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , China
| |
Collapse
|
18
|
Zhang Y, Demokritou P, Ryan DK, Bello D. Comprehensive Assessment of Short-Lived ROS and H 2O 2 in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7574-7583. [PMID: 31120250 DOI: 10.1021/acs.est.8b05677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Inhalation exposure to nanoparticles from toner-based laser printer and photocopier emissions (LPEs) induces airway inflammation and systemic oxidative stress, cytotoxicity, and genotoxicity (such as DNA damage). Recent evidence from human and in vitro studies suggests a strong role for oxidative stress caused by free radicals, such as reactive oxygen species (ROS), in the toxicity of laser printer emissions. However, the amount of ROS generated from laser printer nanoparticle emissions and the relative contribution of various fractions (vapors, organics, metals, and metal oxides) have not been investigated to-date. In this study, we aim to quantify short-lived ROS and H2O2 laser printer emissions, as well as the relative contribution of various fractions of LPEs in ROS generation. An aerosol chamber with HEPA filtered air was used to generate LPE emissions from one representative printer. In separate experiments, size fractionated LPEs were collected on filters (particles) or impingers (particles and vapors). The nanoscale fraction of LPEs (PM0.1) was further separated into the organic fraction and inorganic (transition metals/metal oxides) following a sequence of extraction with solvents and centrifugation. The short-lived ROS and H2O2 generated from each fraction were quantified with an acellular Trolox-based liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) method recently developed in our lab. The particulate fraction of LPEs PM0.1 generated 2.68 times more total ROS (sum of short-lived ROS and H2O2) than the vapor fraction. In tested LPEs, transition metal oxides, which constituted 3% by mass, produced 69× and 202× times more short-lived ROS and H2O2, respectively, on a mass basis, than the organic fraction. Furthermore, fresh PM0.1 generated 282× and 32× times more short-lived ROS and H2O2, respectively, than aged and processed PM0.1. We conclude that transition metal oxides, albeit a minor constituent of the LPE PM0.1 emissions, are the species responsible for the majority of acellular ROS in this printer. A larger range of printers should be tested in the future. Because transition metal oxides in toners originate primarily from engineering nanomaterials (ENMs) in printer toner powder, reformulation of toner powders to contain less of these ROS active metals is recommended.
Collapse
Affiliation(s)
- Yipei Zhang
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Philip Demokritou
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
| | - David K Ryan
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Dhimiter Bello
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| |
Collapse
|
19
|
Zhang Y, Yang R, Si X, Duan X, Quan X. The adverse effect of biochar to aquatic algae- the role of free radicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:429-437. [PMID: 30826605 DOI: 10.1016/j.envpol.2019.02.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
The application of biochar in remediation and recovery of heavy metals and/or organic contaminants in water and soil is increasing. However, the adverse effect of biochar to aquatic organisms has not received enough attention. In this study, we conducted a study on the biotoxicity of biochar pyrolyzed from pine needle under oxygen-limited conditions. The toxicity of biochar was expressed with the following endpoints: cell growth, chlorophyll-a (Chl-a), reactive oxygen species (ROS), superoxide dismutase (SOD) content of Scenedesmus obliquus (S. obliquus) and the luminescence of Photobacterium phosphoreum (P. phosphoreum). Here, the effect of free radicals (FRs) contained in biochar was stressed. Our results show that the toxicity of biochar is significantly correlated with the concentration of FRs in biochar particles. Meanwhile, we found the FRs-containing biochar could induce the production of acellular ROS (such as ·OH) in water, which would also induce the production of interior cellular ROS in aquatic organisms. Our findings provide a new insight into the mechanism of toxicity aroused by biochar applications and aid in understanding its potential ecological risk.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ruixin Yang
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xiaohui Si
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xingwei Duan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
20
|
Jia H, Zhao S, Shi Y, Zhu K, Gao P, Zhu L. Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:92-98. [PMID: 30236946 DOI: 10.1016/j.jhazmat.2018.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 05/16/2023]
Abstract
Environmentally persistent free radicals (EPFRs) have been widely detected in superfund sites and atmospheric particles contaminated with organic contaminants, but the impacts of environmental factors such as light irradiation on the formation and evolution of EPFRs remain unclear. In the present study, in-situ irradiated Fourier transform infrared spectrometer and electron paramagnetic resonance were applied to probe the formation mechanisms of EPFRs during photo-transformation of polycyclic aromatic hydrocarbons (PAHs) on montmorillonite surface. EPFRs were only detected on Fe(III)-montmorillonite containing PAHs with relatively high electron-donating ability, such as anthracene (ANT), but not in the systems of Fe(III)-montmorillonite spiked with phenanthrene or Na(I)-montmorillonite. The 1/e lifetime of the EPFRs was much shorter under light irradiation (5.49 h) than in dark (30.3 h), suggesting that light irradiation facilitated the transformation of EPFRs. On the one hand, light irradiation promoted direct electron transfer from ANT to the mineral surface, accelerating the formation of PAHs-type radical cations. On the other hand, light irradiation induced the generation of reactive oxygen species, which facilitated the transformation from radical cations to oxygenic EPFRs, which finally led to ANT degradation. This work clarified the underlying mechanisms for EPFRs generation and evolution on clay minerals.
Collapse
Affiliation(s)
- Hanzhong Jia
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Song Zhao
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Yafang Shi
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Lingyan Zhu
- College of Resources and Environment, Key Laboratory of Plant Nutrition and The Agri-Environment in Northwest China, Ministry of Agriculture, Northwest A & F University, Yangling 712100, China.
| |
Collapse
|
21
|
Jia H, Zhao S, Shi Y, Zhu L, Wang C, Sharma VK. Transformation of Polycyclic Aromatic Hydrocarbons and Formation of Environmentally Persistent Free Radicals on Modified Montmorillonite: The Role of Surface Metal Ions and Polycyclic Aromatic Hydrocarbon Molecular Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5725-5733. [PMID: 29658709 DOI: 10.1021/acs.est.8b00425] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper presents the transformation of PAHs (phenanthrene, anthracene, benzo[a]anthracene, pyrene, and benzo[a]pyrene) on montmorillonite clays that are modified by transition-metal ions [Fe(III), Cu(II), Ni(II), Co(II), or Zn(II)] at room temperature (∼23 °C). The decay of these PAHs follows first-order kinetics, and the dependence of the observed rate constants ( kobs, day-1) on the presence of metal ions follows the order Fe(III) > Cu(II) > Ni(II) > Co(II) > Zn(II). The values of kobs show reasonable linear relationships with the oxidation potentials of the PAHs and the redox potentials of the metal ions. Notably, transformation of these PAHs results in the formation of environmentally persistent free radicals (EPFRs), which are of major concern due to their adverse effects on human health. The potential energy surface (PES) calculations using density functional theory were performed to understand the trends in kobs and the plausible mechanisms for radical formation from the PAHs on modified clays. The yields and stability of these EPFRs from anthracene and benzo[a]pyrene on clay surfaces varies with both the parent PAH and the metal ion. The results demonstrated the potential role of metals in the formation and fate of PAH-induced EPFR at co-contaminated sites.
Collapse
Affiliation(s)
- Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment , Northwest A&F University , Yangling 712100 , China
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Song Zhao
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Yafang Shi
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment , Northwest A&F University , Yangling 712100 , China
| | - Lingyan Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment , Northwest A&F University , Yangling 712100 , China
| | - Chuanyi Wang
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
22
|
Dugas TR. Unraveling mechanisms of toxicant-induced oxidative stress in cardiovascular disease. CURRENT OPINION IN TOXICOLOGY 2017; 7:1-8. [PMID: 29423456 DOI: 10.1016/j.cotox.2017.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To date, numerous clinical studies examining correlations between oxidative stress biomarkers and cardiovascular diseases (CVD) have repeatedly suggested a role for oxidant injury in the pathogenesis of diseases such as atherosclerosis. Despite this, antioxidant supplementation trials have not demonstrated a reduction in disease progression. Nevertheless, small animal and epidemiological studies have linked exposures to certain toxicants with increased CVD risk involving putative oxidative stress mechanisms. A few prototypical vascular toxicants will be discussed as examples of toxicants that likely act via oxidative stress mechanisms. For discussion, we will classify these toxicants as those that induce direct (e.g., arsenic, nucleoside reverse transcriptase inhibitors) versus indirect (particulate matter, ozone) oxidative stress mechanisms, and those that likely induce CVD through both direct and indirect mechanisms (cigarette smoke). Finally, new findings in oxidative stress research, including the emerging importance of reactive sulfur species, hydrogen peroxide as a presumed endothelium-derived hyperpolarizing factors, etc., will be discussed, as well as the need to determine the role of toxicants in modulating these newly identified pathways. Moreover, given the lack of success in conclusively demonstrating the roles of oxidative stress in CVD risk stratification, research probing the roles of toxicant exposures in propagating CVD pathogenesis may be a novel approach for more conclusively delineating the causal role of oxidative stress in CVD initiation and progression.
Collapse
Affiliation(s)
- Tammy R Dugas
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803
| |
Collapse
|
23
|
Yang L, Liu G, Zheng M, Jin R, Zhu Q, Zhao Y, Wu X, Xu Y. Highly Elevated Levels and Particle-Size Distributions of Environmentally Persistent Free Radicals in Haze-Associated Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7936-7944. [PMID: 28613843 DOI: 10.1021/acs.est.7b01929] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Levels and particle-size distributions of environmentally persistent free radicals (EPFRs) in haze-associated atmospheric particulate matter (PM) have not been highlighted, even though they may enter the human body along with PM and adversely affect human health. This study quantified the levels of EPFRs in airborne PM with different aerodynamic diameters (dae) using electron paramagnetic resonance (EPR) spectroscopy. EPR spectra showed a single, unstructured signal from persistent semiquinone radicals. The average concentration of EPFRs in the airborne PM during haze events was 2.18 × 1220 spins/g (range: 3.06 × 1019-6.23 × 1020 spins/g), approximately 2 orders of magnitude higher than that reported previously in the US atmosphere. Particle-size distributions of EPFRs in four different PM fractions (dae > 10 μm, 10 μm < dae < 2.5 μm, 2.5 μm <dae < 1 μm, dae < 1 μm) indicated the highest levels of EPFRs in the PM fraction with dae < 1 μm, with average 1/e lifetime of 59.2 days. A significant occurrence of EPFRs in PM samples collected from coal-burning activities (1.52 × 1022 spins/g), automobile exhaust (3.0 × 1022 spins/g), and biomass burning activities (1.14 × 1022 spins/g) was detected, which may be potential primary sources of EPFRs in airborne PM. The results in this study may help to understand the sources and potential risks of EPFRs in airborne fine particles.
Collapse
Affiliation(s)
- Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rong Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yuyang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiaolin Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
24
|
Jia H, Zhao S, Nulaji G, Tao K, Wang F, Sharma VK, Wang C. Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6000-6008. [PMID: 28492316 DOI: 10.1021/acs.est.7b00599] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 1017 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O2 and H2O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.
Collapse
Affiliation(s)
- Hanzhong Jia
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Song Zhao
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Gulimire Nulaji
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Kelin Tao
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Fu Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University , College Station, Texas 77843, United States
| | - Chuanyi Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011, China
| |
Collapse
|
25
|
Patterson MC, DiTusa MF, McFerrin CA, Kurtz R, Hall RW, Poliakoff ED, Sprunger PT. Formation of environmentally persistent free radicals (EPFRs) on ZnO at room temperature: Implications for the fundamental model of EPFR generation. Chem Phys Lett 2017; 670:5-10. [PMID: 28824195 PMCID: PMC5560487 DOI: 10.1016/j.cplett.2016.12.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Environmentally persistent free radicals (EPFRs) have significant environmental and public health impacts. In this study, we demonstrate that EPFRs formed on ZnO nanoparticles provide two significant surprises. First, EPR spectroscopy shows that phenoxy radicals form readily on ZnO nanoparticles at room temperature, yielding EPR signals similar to those previously measured after 250°C exposures. Vibrational spectroscopy supports the conclusion that phenoxy-derived species chemisorb to ZnO nanoparticles under both exposure temperatures. Second, DFT calculations indicate that electrons are transferred from ZnO to the adsorbed organic (oxidizing the Zn), the opposite direction proposed by previous descriptions of EPFR formation on metal oxides.
Collapse
Affiliation(s)
| | - Mark F. DiTusa
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Cheri A. McFerrin
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - R.L. Kurtz
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Randall W. Hall
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - E. D. Poliakoff
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - P. T. Sprunger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
26
|
Potential Harmful Effects of PM2.5 on Occurrence and Progression of Acute Coronary Syndrome: Epidemiology, Mechanisms, and Prevention Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080748. [PMID: 27463723 PMCID: PMC4997434 DOI: 10.3390/ijerph13080748] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
The harmful effects of particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and its association with acute coronary syndrome (ACS) has gained increased attention in recent years. Significant associations between PM2.5 and ACS have been found in most studies, although sometimes only observed in specific subgroups. PM2.5-induced detrimental effects and ACS arise through multiple mechanisms, including endothelial injury, an enhanced inflammatory response, oxidative stress, autonomic dysfunction, and mitochondria damage as well as genotoxic effects. These effects can lead to a series of physiopathological changes including coronary artery atherosclerosis, hypertension, an imbalance between energy supply and demand to heart tissue, and a systemic hypercoagulable state. Effective strategies to prevent the harmful effects of PM2.5 include reducing pollution sources of PM2.5 and population exposure to PM2.5, and governments and organizations publicizing the harmful effects of PM2.5 and establishing air quality standards for PM2.5. PM2.5 exposure is a significant risk factor for ACS, and effective strategies with which to prevent both susceptible and healthy populations from an increased risk for ACS have important clinical significance in the prevention and treatment of ACS.
Collapse
|