1
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae134. [PMID: 39436782 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Gómez M, Martínez D, Páez-Triana L, Luna N, Ramírez A, Medina J, Cruz-Saavedra L, Hernández C, Castañeda S, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Influence of dengue virus serotypes on the abundance of Aedes aegypti insect-specific viruses (ISVs). J Virol 2024; 98:e0150723. [PMID: 38095414 PMCID: PMC10804971 DOI: 10.1128/jvi.01507-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024] Open
Abstract
A comprehensive understanding of the virome in mosquito vectors is crucial for assessing the potential transmission of viral agents, designing effective vector control strategies, and advancing our knowledge of insect-specific viruses (ISVs). In this study, we utilized Oxford Nanopore Technologies metagenomics to characterize the virome of Aedes aegypti mosquitoes collected in various regions of Colombia, a country hyperendemic for dengue virus (DENV). Analyses were conducted on groups of insects with previous natural DENV infection (DENV-1 and DENV-2 serotypes), as well as mosquito samples that tested negative for virus infection (DENV-negative). Our findings indicate that the Ae. aegypti virome exhibits a similar viral composition at the ISV family and species levels in both DENV-positive and DENV-negative samples across all study sites. However, differences were observed in the relative abundance of viral families such as Phenuiviridae, Partitiviridae, Flaviviridae, Rhabdoviridae, Picornaviridae, Bromoviridae, and Virgaviridae, depending on the serotype of DENV-1 and DENV-2. In addition, ISVs are frequently found in the core virome of Ae. aegypti, such as Phasi Charoen-like phasivirus (PCLV), which was the most prevalent and showed variable abundance in relation to the presence of specific DENV serotypes. Phylogenetic analyses of the L, M, and S segments of the PCLV genome are associated with sequences from different regions of the world but show close clustering with sequences from Brazil and Guadeloupe, indicating a shared evolutionary relationship. The profiling of the Ae. aegypti virome in Colombia presented here improves our understanding of viral diversity within mosquito vectors and provides information that opens the way to possible connections between ISVs and arboviruses. Future studies aimed at deepening our understanding of the mechanisms underlying the interactions between ISVs and DENV serotypes in Ae. aegypti could provide valuable information for the design of effective vector-borne viral disease control and prevention strategies.IMPORTANCEIn this study, we employed a metagenomic approach to characterize the virome of Aedes aegypti mosquitoes, with and without natural DENV infection, in several regions of Colombia. Our findings indicate that the mosquito virome is predominantly composed of insect-specific viruses (ISVs) and that infection with different DENV serotypes (DENV-1 and DENV-2) could lead to alterations in the relative abundance of viral families and species constituting the core virome in Aedes spp. The study also sheds light on the identification of the genome and evolutionary relationships of the Phasi Charoen-like phasivirus in Ae. aegypti in Colombia, a widespread ISV in areas with high DENV incidence.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Grupo de Investigación en Ciencias Básicas (NÚCLEO), Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martínez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Nicolás Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Angie Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Ramiro Bohórquez Melo
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luis Alejandro Suarez
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Mónica Palma-Cuero
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | - Luz Mila Murcia
- Grupo de Estudios en Salud Pública de la Amazonía, Laboratorio de Salud Pública de Amazonas, Leticia, Colombia
| | | | | | | | | | | | | | | | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogota, Colombia
- Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Peña-García VH, Luvall JC, Christofferson RC. Arbovirus Transmission Predictions Are Affected by Both Temperature Data Source and Modeling Methodologies across Cities in Colombia. Microorganisms 2023; 11:1249. [PMID: 37317223 PMCID: PMC10223750 DOI: 10.3390/microorganisms11051249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Weather variables has been described as major drivers of vector proliferation and arbovirus transmission. Among them, temperature has consistently been found to be impactful in transmission dynamics, and models that incorporate temperature have been widely used to evaluate and forecast transmission or arboviruses like dengue, zika, or chikungunya virus. Further, there is growing evidence of the importance of micro-environmental temperatures in driving transmission of Aedes aegypti-borne viruses, as these mosquitoes tend to live within domiciles. Yet there is still a considerable gap in our understanding of how accounting for micro-environmental temperatures in models varies from the use of other widely-used, macro-level temperature measures. This effort combines field-collected data of both indoor and outdoor household associated temperatures and weather station temperature data from three Colombian cities to describe the relationship between the measures representing temperature at the micro- and macro-levels. These data indicate that weather station data may not accurately capture the temperature profiles of indoor micro-environments. However, using these data sources, the basic reproductive number for arboviruses was calculated by means of three modeling efforts to investigate whether temperature measure differences translated to differential transmission predictions. Across all three cities, it was determined that the modeling method was more often impactful rather than the temperature data-source, though no consistent pattern was immediately clear. This suggests that temperature data sources and modeling methods are important for precision in arbovirus transmission predictions, and more studies are needed to parse out this complex interaction.
Collapse
Affiliation(s)
- Víctor Hugo Peña-García
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia, Medellín 50010, Colombia
| | - Jeffrey C. Luvall
- Marshall Space Flight Center, National Aeronautics Space Administration (NASA), Huntsville, AL 35824, USA
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Catano-Lopez A, Rojas-Diaz D, Vélez CM. The Influence of Anthropogenic and Environmental Disturbances on Parameter Estimation of a Dengue Transmission Model. Trop Med Infect Dis 2022; 8:5. [PMID: 36668912 PMCID: PMC9861738 DOI: 10.3390/tropicalmed8010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Some deterministic models deal with environmental conditions and use parameter estimations to obtain experimental parameters, but they do not consider anthropogenic or environmental disturbances, e.g., chemical control or climatic conditions. Even more, they usually use theoretical or measured in-lab parameters without worrying about uncertainties in initial conditions, parameters, or changes in control inputs. Thus, in this study, we estimate parameters (including chemical control parameters) and confidence contours under uncertainty conditions using data from the municipality of Bello (Colombia) during 2010-2014, which includes two epidemic outbreaks. Our study shows that introducing non-periodic pulse inputs into the mathematical model allows us to: (i) perform parameter estimation by fitting real data of consecutive dengue outbreaks, (ii) highlight the importance of chemical control as a method of vector control, and (iii) reproduce the endemic behavior of dengue. We described a methodology for parameter and sub-contour box estimation under uncertainties and performed reliable simulations showing the behavior of dengue spread in different scenarios.
Collapse
|
5
|
Mantilla-Granados JS, Sarmiento-Senior D, Manzano J, Calderón-Peláez MA, Velandia-Romero ML, Buitrago LS, Castellanos JE, Olano VA. Multidisciplinary approach for surveillance and risk identification of yellow fever and other arboviruses in Colombia. One Health 2022; 15:100438. [PMID: 36277089 PMCID: PMC9582556 DOI: 10.1016/j.onehlt.2022.100438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Juan S. Mantilla-Granados
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
- Corresponding author.
| | - Diana Sarmiento-Senior
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
| | - Jaime Manzano
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
| | | | | | - Luz Stella Buitrago
- Secretaría de Salud del Meta, Laboratorio de Salud Pública, Laboratorio de Entomología, Villavicencio, Colombia
| | - Jaime E. Castellanos
- Universidad El Bosque, Vicerrectoría de Investigación, Grupo de Virología, Bogotá, Colombia
| | - Víctor Alberto Olano
- Universidad El Bosque, Vicerrectoría de Investigación, Saneamiento Ecológico, Salud y Medio Ambiente, Bogotá, Colombia
| |
Collapse
|
6
|
Delai RM, Leandro ADS, Martins CA, Fitz AFR, Rivas AV, Batista ACCA, Santos ICD, Fruehwirth M, Ferreira L, Rampazzo RDCP, Ferreira LRDP, Gonçalves DD. Adaptation of a Human Diagnostic Kit to Detect Dengue, Zika, and Chikungunya Viruses in Mosquito Samples ( Aedes aegypti and Aedes albopictus): A Contribution to Public Health in the International Triple Border (Brazil, Paraguay, and Argentina). Vector Borne Zoonotic Dis 2022; 22:520-526. [PMID: 36255416 DOI: 10.1089/vbz.2022.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Objective: The objective of this work was to adapt a diagnostic kit developed for humans to identify Dengue (DENV1, DENV2, DENV3, DENV4), Zika (ZIKV) and Chikungunya virus (CHIKV) in females of Aedes aegypti and Aedes albopictus and to verify if the occurrence of mosquitoes infected with these three arboviruses are being found in regions with high occurrence of these diseases in humans. Materials and Methods: For this purpose, live mosquitoes were captured between January and June 2020 using 3,476 traps permanently installed in the field were used. After capture, the species were identified, then the females were placed in a pool of 2 to 10 specimens and sent to the laboratory for detection of DENV1, DENV2, DENV3, DENV4, ZIKV and CHIKV by RT-PCR using a commercial human kit for arboviruses. Results: Of the 76 mosquito pools collected, six (7.9%) pools tested positive for the DENV2 virus. The DENV-positive mosquitoes were collected in regions with a high incidence of reported cases of Dengue or in adjacent areas. Conclusion: The absence of kits for the detection of these arboviruses in Aedes is a limiting factor and the adequacy of commercial kits, already used for the diagnosis of arboviruses in humans, the results presented demonstrate that it is possible to identify the presence of DENV2 in mosquitoes with the respective kit, reinforcing the use of RT-qPCR as a robust diagnostic tool for epidemiological surveillance allowing managers to receive timely results for decision-making regarding prevention and control actions.
Collapse
Affiliation(s)
- Robson Michael Delai
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - André de Souza Leandro
- Zoonoses Surveillance Unit, Municipal Secretary of Health, Foz do Iguaçu, Brazil
- Laboratory of Hematozoan Transmitters, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | - Andressa Faria Rahyn Fitz
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
| | - Açucena Veleh Rivas
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
- Postgraduate Program in Experimental Pathology, Department of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Aline Cristiane Cechinel Assing Batista
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Isabela Carvalho Dos Santos
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| | - Marcelo Fruehwirth
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
| | - Leonardo Ferreira
- One Health Laboratory, Three-Border Tropical Medicine Center, Institute of Teaching and Research, Itaiguapy Foundation, Foz do Iguaçu, Brazil
| | | | | | - Daniela Dib Gonçalves
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama, Brazil
| |
Collapse
|
7
|
Catano-Lopez A, Rojas-Diaz D, Lizarralde-Bejarano DP, Puerta Yepes ME. Discrete Models in Epidemiology: New Contagion Probability Functions Based on Real Data Behavior. Bull Math Biol 2022; 84:127. [PMID: 36138179 PMCID: PMC9510274 DOI: 10.1007/s11538-022-01076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
Abstract
Mathematical modeling is a tool used for understanding diseases dynamics. The discrete-time model is an especial case in modeling that satisfactorily describes the epidemiological dynamics because of the discrete nature of the real data. However, discrete models reduce their descriptive and fitting potential because of assuming a homogeneous population. Thus, in this paper, we proposed contagion probability functions according to two infection paradigms that consider factors associated with transmission dynamics. For example, we introduced probabilities of establishing an infectious interaction, the number of contacts with infectious and the level of connectivity or social distance within populations. Through the probabilities design, we overcame the homogeneity assumption. Also, we evaluated the proposed probabilities through their introduction into discrete-time models for two diseases and different study zones with real data, COVID-19 for Germany and South Korea, and dengue for Colombia. Also, we described the oscillatory dynamics for the last one using the contagion probabilities alongside parameters with a biological sense. Finally, we highlight the implementation of the proposed probabilities would improve the simulation of the public policy effect of control strategies over an infectious disease outbreak.
Collapse
Affiliation(s)
- Alexandra Catano-Lopez
- School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia Colombia
| | - Daniel Rojas-Diaz
- School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia Colombia
| | | | | |
Collapse
|
8
|
Gómez M, Martínez D, Hernández C, Luna N, Patiño LH, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Arbovirus infection in Aedes aegypti from different departments of Colombia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of precise and timely knowledge about the molecular epidemiology of arboviruses of public health importance, particularly in the vector, has limited the comprehensive control of arboviruses. In Colombia and the Americas, entomovirological studies are scarce. Therefore, this study aimed to describe the frequency of natural infection and/or co-infection by Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) in Aedes spp. circulating in different departments of Colombia (Amazonas, Boyacá, Magdalena, and Vichada) and identifying vector species by barcoding. Aedes mosquitoes were collected in departments with reported prevalence or incidence of arbovirus cases during 2020–2021, located in different biogeographic zones of the country: Amazonas, Boyacá, Magdalena, and Vichada. The insects were processed individually for RNA extraction, cDNA synthesis, and subsequent detection of DENV (serotypes DENV1-4 by multiplex PCR), CHIKV, and ZIKV (qRT-PCR). The positive mosquitoes for arboviruses were sequenced (Sanger method) using the subunit I of the cytochrome oxidase (COI) gene for species-level identification. In total, 558 Aedes mosquitoes were captured, 28.1% (n = 157) predominantly infected by DENV in all departments. The serotypes with the highest frequency of infection were DENV-1 and DENV-2 with 10.7% (n = 58) and 14.5% (n = 81), respectively. Coinfections between serotypes represented 3.9% (n = 22). CHIKV infection was detected in one individual (0.2%), and ZIKV infections were not detected. All infected samples were identified as A. aegypti (100%). From the COI dataset (593 bp), high levels of haplotype diversity (H = 0.948 ± 0.012) and moderate nucleotide diversity (π = 0.0225 ± 0.003) were identified, suggesting recent population expansions. Constructed phylogenetic analyses showed our COI sequences’ association with lineage I, which was reported widespread and related to a West African conspecific. We conclude that natural infection in A. aegypti by arbovirus might reflect the country’s epidemiological behavior, with a higher incidence of serotypes DENV-1 and DENV-2, which may be associated with high seroprevalence and asymptomatic infections in humans. This study demonstrates the high susceptibility of this species to arbovirus infection and confirms that A. aegypti is the main vector in Colombia. The importance of including entomovirological surveillance strategy within public health systems to understand transmission dynamics and the potential risk to the population is highlighted herein.
Collapse
|
9
|
Ismail S, Fildes R, Ahmad R, Wan Mohamad Ali WN, Omar T. The practicality of Malaysia dengue outbreak forecasting model as an early warning system. Infect Dis Model 2022; 7:510-525. [PMID: 36091345 PMCID: PMC9418377 DOI: 10.1016/j.idm.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/07/2022] [Accepted: 07/30/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a harmful tropical disease that causes death to many people. Currently, the dengue vaccine development is still at an early stage, and only intervention methods exist after dengue cases increase. Thus, previously, two scientific experimental field studies were conducted in producing a dengue outbreak forecasting model as an early warning system. Successfully, an Autoregressive Distributed Lag (ADL) Model was developed using three factors: the epidemiological, entomological, and environmental with an accuracy of 85%; but a higher percentage is required in minimizing the error for the model to be useful. Hence, this study aimed to develop a practical and cost-effective dengue outbreak forecasting model with at least 90% accuracy to be embedded in an early warning computer system using the Internet of Things (IoT) approach. Eighty-one weeks of time series data of the three factors were used in six forecasting models, which were Autoregressive Distributed Lag (ADL), Hierarchical Forecasting (Bottom-up and Optimal combination) and three Machine Learning methods: (Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest). Five error measures were used to evaluate the consistency performance of the models in order to ensure model performance. The findings indicated Random Forest outperformed the other models with an accuracy of 95% when including all three factors. But practically, collecting mosquito related data (the entomological factor) was very costly and time consuming. Thus, it was removed from the model, and the accuracy dropped to 92% but still high enough to be of practical use, i.e., beyond 90%. However, the practical ground operationalization of the early warning system also requires several rain gauges to be located at the dengue hot spots due to localized rainfall. Hence, further analysis was conducted in determining the location of the rain gauges. This has led to the recommendation that the rain gauges should be located about 3–4 km apart at the dengue hot spots to ensure the accuracy of the rainfall data to be included in the dengue outbreak forecasting model so that it can be embedded in the early warning system. Therefore, this early warning system can save lives, and prevention is better than cure.
Collapse
|
10
|
Entomovirological Surveillance in Schools: Are They a Source for Arboviral Diseases Transmission? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18116137. [PMID: 34204166 PMCID: PMC8201003 DOI: 10.3390/ijerph18116137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Surveillance and control activities for virus-transmitting mosquitoes have primarily focused on dwellings. There is little information about viral circulation in heavily trafficked places such as schools. We collected and analyzed data to assess the presence and prevalence of dengue, chikungunya, and Zika viruses in mosquitoes, and measured Aedes indices in schools in Medellín (Colombia) between 2016-2018. In 43.27% of 2632 visits we collected Aedes adults, creating 883 pools analyzed by RT-PCR. 14.27% of pools yielded positive for dengue or Zika (infection rates of 1.75-296.29 for Aedes aegypti). Ae. aegypti was more abundant and had a higher infection rate for all studied diseases. Aedes indices varied over time. There was no association between Aedes abundance and mosquito infection rates, but the latter did correlate with cases of arboviral disease and climate. Results suggest schools are important sources of arbovirus and health agencies should include these sites in surveillance programs; it is essential to know the source for arboviral diseases transmission and the identification of the most population groups exposed to these diseases to research and developing new strategies.
Collapse
|
11
|
Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting the co-circulation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Negl Trop Dis 2021; 15:e0009259. [PMID: 33705409 PMCID: PMC7987142 DOI: 10.1371/journal.pntd.0009259] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/23/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
| | - Clare Strode
- Department of Biology, Edge Hill University, Lancashire, United Kingdom
- * E-mail: (CS); (JES-S)
| | - J. Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail: (CS); (JES-S)
| |
Collapse
|
12
|
Balingit JC, Carvajal TM, Saito-Obata M, Gamboa M, Nicolasora AD, Sy AK, Oshitani H, Watanabe K. Surveillance of dengue virus in individual Aedes aegypti mosquitoes collected concurrently with suspected human cases in Tarlac City, Philippines. Parasit Vectors 2020; 13:594. [PMID: 33239063 PMCID: PMC7687837 DOI: 10.1186/s13071-020-04470-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/05/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Vector control measures are critical for the prevention and reduction of dengue virus (DENV) transmission. Effective vector control is reliant not only on knowledge of mosquito abundance, but also on the timely and accurate detection of mosquito-borne infection. Mosquito-based virus surveillance programs typically rely on pool-based mosquito testing, although whether individual-based mosquito testing is a feasible alternative to this has not been widely studied. Applying an individual-based mosquito testing approach, we conducted a 1-month surveillance study of DENV in adult Aedes aegypti mosquitoes in homes of suspected dengue patients during the 2015 peak dengue season in Tarlac City, Philippines to more accurately assess the mosquito infection rate and identify the DENV serotypes and genotypes concurrently co-circulating in mosquitoes and patients there. METHODS We performed a one-step multiplex real-time reverse transcription-polymerase chain reaction (RT-PCR) assay for the simultaneous detection and serotyping of DENV in patients and individual female Ae. aegypti mosquitoes. Additionally, we performed sequencing and phylogenetic analyses to further characterize the detected DENV serotypes in mosquitoes and patients at the genotype level. RESULTS We collected a total of 583 adult Ae. aegypti mosquitoes, of which we individually tested 359 female mosquitoes for the presence of DENV. Ten (2.8%) of the 359 female mosquitoes were positive for the presence of DENV. We detected DENV-1, DENV-2, and DENV-4 in the field-collected mosquitoes, which was consistent with the serotypes concurrently found in infected patients. Sequencing and phylogenetic analyses of the detected DENV serotypes based on the partial sequence of the evelope (E) gene revealed three genotypes concurrently present in the sampled mosquitoes and patients during the study period, namely DENV-1 genotype IV, DENV-2 Cosmopolitan genotype, and DENV-4 genotype II. CONCLUSIONS We demonstrated the utility of a one-step multiplex real-time RT-PCR assay for the individual-based DENV surveillance of mosquitoes. Our findings reinforce the importance of detecting and monitoring virus activity in local mosquito populations, which are critical for dengue prevention and control.
Collapse
Affiliation(s)
- Jean Claude Balingit
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime Japan
| | - Thaddeus M. Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime Japan
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Taft Avenue, Manila, Philippines
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
- Tohoku-RITM Collaborative Research Center on Emerging and Reemerging Infectious Diseases, Muntinlupa, Metro Manila Philippines
| | - Maribet Gamboa
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime Japan
| | - Amalea Dulcene Nicolasora
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Metro Manila Philippines
| | - Ava Kristy Sy
- Virology Department, Research Institute for Tropical Medicine, Muntinlupa, Metro Manila Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime Japan
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Taft Avenue, Manila, Philippines
| |
Collapse
|
13
|
Cantillo-Barraza O, Medina M, Granada Y, Muñoz C, Valverde C, Cely F, Gonzalez P, Mendoza Y, Zuluaga S, Triana-Chávez O. Susceptibility to Insecticides and Natural Infection in Aedes aegypti: An Initiative to Improve the Mosquito Control Actions in Boyacá, Colombia. Ann Glob Health 2020; 86:94. [PMID: 32864349 PMCID: PMC7427689 DOI: 10.5334/aogh.2805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Integrated management strategies for dengue prevention and control have been the main way to decrease the transmission of arboviruses transmitted by A. aegypti in Colombia. However, the increase of chikungunya (CHIKV), Zika, and dengue (DENV) fever cases suggests deficiencies in vector control strategies in some regions from this country. Objective This work aimed to establish a baseline susceptibility profile of A. aegypti to insecticides, determine the presence of kdr mutations associated with resistance to pyrethroids, and detect natural arbovirus infection in this vector from Moniquirá - Boyacá, one of the most endemic cities in Colombia. Methods Mosquitos were collected in six neighborhoods, and colonies established in the laboratory. Susceptibility to malathion and lambda-cyhalothrin insecticides was evaluated, and we examined the point mutations present in portions of domains I, II, III, and IV of the sodium channel gene using a simple allele-specific PCR-based assay (AS-PCR). Findings A. aegypti from Moniquirá showed decreased susceptibility to pyrethroid insecticides, and kdr mutations 419L, 1016I, and 1558C with allelic frequencies of 0.39, 0.40 and 0.95, respectively, were observed. The minimal infection rate (MIR) to DENV-1 was 44.1, while to CHIKV was 14.7. Conclusions We establish a baseline insecticide resistance, kdr mutations, and arbovirus circulation, which contain the elements necessary for the consolidation of a local surveillance strategy with an early warning system and rational selection and rotation of insecticides.
Collapse
Affiliation(s)
- Omar Cantillo-Barraza
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Manuel Medina
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Yurany Granada
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Camilo Muñoz
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Cesar Valverde
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Fernando Cely
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Paola Gonzalez
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Yovanny Mendoza
- Programa de control de enfermedades transmitidas por vectores, Secretaria de Salud Departamental, Tunja, Boyacá, CO
| | - Sara Zuluaga
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas, BCEI, Universidad de Antioquia, Medellín, CO
| |
Collapse
|
14
|
Wang JN, Hou J, Zhong JY, Cao GP, Yu ZY, Wu YY, Li TQ, Liu QM, Gong ZY. Relationships between traditional larval indices and meteorological factors with the adult density of Aedes albopictus captured by BG-mosquito trap. PLoS One 2020; 15:e0234555. [PMID: 32525905 PMCID: PMC7289416 DOI: 10.1371/journal.pone.0234555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Objectives Larval indices have been used for Ae. albopictus surveillance for many years, while there is limited use in assessing dengue transmission risk and adult mosquito emergence. This study is aimed to explore the relationships between larval indices and the Ae. albopictus density captured by BG-mosquito trap (BG-trap) method, with considering the meteorological factors. Methods Data on larval density, adult mosquito density and meteorology factors were collected in an entomological survey carried out in Quzhou City, Zhejiang Province of China in 2018. The Spearman’s rank correlation and Pearson correlation were used for the analysis on the correlation of density indices. Generalized additive models were established to analyze the influencing factors of mosquito density. Results Breteau index (BI), House index (HI) and Container index (CI) were highly correlated with each other (r>0.7, p<0.05). The Ae. albopictus density was significantly correlated with CI (rs = 0.260, p<0.05), CI pre one week (rs = 0.259, p<0.05), and CI pre three weeks (rs = 0.329, p<0.05). BI was correlated with female Ae. albopictus density pre 4 weeks (r = -0.299, p<0.05). Female Ae. albopictus density was correlated with CI pre 3 weeks (rs = 0.303, p<0.05). The influencing factors of BI were average wind speed pre 1 week, average temperature and female Ae. albopictus density pre 4 weeks. The influencing factors of CI were average humidity pre 3 weeks and average temperature. The influencing factors of HI were average temperature and precipitation pre 4 weeks. The influencing factor of Ae. albopictus density and female Ae. albopictus density was temperature. Conclusions The adult Ae. albopictus density had low correlation with certain larval indices. Some of the meteorology factors played significant roles in the density of adult Ae. albopictus and larva with or without a time lag.
Collapse
Affiliation(s)
- Jin-Na Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Juan Hou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jian-Yue Zhong
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Guo-Ping Cao
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Zhang-You Yu
- Quzhou Center for Disease Control and Prevention, Quzhou, China
| | - Yu-Yan Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tian-Qi Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qin-Mei Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhen-Yu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- * E-mail:
| |
Collapse
|
15
|
Lizarralde-Bejarano DP, Rojas-Díaz D, Arboleda-Sánchez S, Puerta-Yepes ME. Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia. PLoS One 2020; 15:e0229668. [PMID: 32160217 PMCID: PMC7065780 DOI: 10.1371/journal.pone.0229668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
Dengue disease is a major problem for public health surveillance entities in tropical and subtropical regions having a significant impact not only epidemiological but social and economical. There are many factors involved in the dengue transmission process. We can evaluate the importance of these factors through the formulation of mathematical models. However, the majority of the models presented in the literature tend to be overparameterized, with considerable uncertainty levels and excessively complex formulations. We aim to evaluate the structure, complexity, trustworthiness, and suitability of three models, for the transmission of dengue disease, through different strategies. To achieve this goal, we perform structural and practical identifiability, sensitivity and uncertainty analyses to these models. The results showed that the simplest model was the most appropriate and reliable when the only available information to fit them is the cumulative number of reported dengue cases in an endemic municipality of Colombia.
Collapse
Affiliation(s)
| | - Daniel Rojas-Díaz
- Departamento de Ciencias Biológicas, Universidad EAFIT, Medellín, Antioquia, Colombia
- * E-mail: (DPLB); (DRD)
| | - Sair Arboleda-Sánchez
- Grupo de Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | |
Collapse
|
16
|
Monteiro FJC, Mourão FRP, Ribeiro ESD, Rêgo MODS, Frances PADC, Souto RNP, Façanha MDS, Tahmasebi R, Costa ACD. Prevalence of dengue, Zika and chikungunya viruses in Aedes (Stegomyia) aegypti (Diptera: Culicidae) in a medium-sized city, Amazon, Brazil. Rev Inst Med Trop Sao Paulo 2020; 62:e10. [PMID: 32049261 PMCID: PMC7014551 DOI: 10.1590/s1678-9946202062010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/13/2020] [Indexed: 02/17/2023] Open
Abstract
Aedes aegypti is associated with epidemic diseases in Brazil, such as urban yellow fever, dengue, and more recently, chikungunya and Zika viruses infections. More information about Ae. aegypti infestation is fundamental to virological surveillance in order to ensure the effectiveness of control measures in use. Thus, the present study aims to identify and compare infestation and infectivity of Ae. aegypti females in Macapa city, Amapa State (Amazon region), Brazil, between the epidemiological weeks 2017/02 and 2018/20. A total number of 303 Ae. aegypti females were collected at 21 fixed collection points, 171 at the 10 collection points in the Marabaixo neighborhood and 132 at the 11 collection points in the Central neighborhood. Among the collected samples, only two were positive for dengue virus, with a 2.08% (2/96 pools) infectivity rate for Marabaixo. The difference between the medians of Ae. aegypti females captured in Central and Marabaixo sites was not statistically significant. The findings indicate similar mosquito infestation levels between the neighborhoods, and a low-level of mosquito infectivity, although dengue virus was found only in Marabaixo. Virological surveillance of Ae. aegypti was important to identify sites of infection and determine possible routes of transmission to enable health surveillance teams to adopt preventive strategies where infected mosquitoes are present and act faster.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Roozbeh Tahmasebi
- Universidade de São Paulo, Escola Politécnica, Programa de Pós-Graduação em Engenharia Elétrica, São Paulo, São Paulo, Brazil
| | - Antônio Charlys da Costa
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Virologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, Rohr JR, Ryan SJ, Savage V, Shocket MS, Sippy R, Stewart Ibarra AM, Thomas MB, Villena O. Thermal biology of mosquito-borne disease. Ecol Lett 2019; 22:1690-1708. [PMID: 31286630 PMCID: PMC6744319 DOI: 10.1111/ele.13335] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Mosquito-borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait-based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species - including globally important diseases like malaria, dengue, and Zika - synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23-29ºC and declining to zero below 9-23ºC and above 32-38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25-26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.
Collapse
Affiliation(s)
- Erin A. Mordecai
- Department of BiologyStanford University371 Serra MallStanfordCAUSA
| | | | - Marissa K. Grossman
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA16802USA
| | - Catherine A. Lippi
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Leah R. Johnson
- Department of StatisticsVirginia Polytechnic and State University250 Drillfield DriveBlacksburgVAUSA
| | - Marco Neira
- Center for Research on Health in Latin America (CISeAL)Pontificia Universidad Católica del EcuadorQuitoEcuador
| | - Jason R. Rohr
- Department of Biological SciencesEck Institute of Global HealthEnvironmental Change InitiativeUniversity of Notre Dame, Notre DameINUSA
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Van Savage
- Department of Ecology and Evolutionary Biology and Department of BiomathematicsUniversity of California Los AngelesLos AngelesCA90095USA
- Santa Fe Institute1399 Hyde Park RdSanta FeNM87501USA
| | - Marta S. Shocket
- Department of BiologyStanford University371 Serra MallStanfordCAUSA
| | - Rachel Sippy
- Department of Geography and Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
- Institute for Global Health and Translational SciencesSUNY Upstate Medical UniversitySyracuseNY13210USA
| | - Anna M. Stewart Ibarra
- Institute for Global Health and Translational SciencesSUNY Upstate Medical UniversitySyracuseNY13210USA
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA16802USA
| | - Oswaldo Villena
- Department of StatisticsVirginia Polytechnic and State University250 Drillfield DriveBlacksburgVAUSA
| |
Collapse
|
18
|
Yamana TK, Shaman J. A framework for evaluating the effects of observational type and quality on vector-borne disease forecast. Epidemics 2019; 30:100359. [PMID: 31439454 PMCID: PMC7315892 DOI: 10.1016/j.epidem.2019.100359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 11/03/2022] Open
Abstract
Recent research has advanced infectious disease forecasting from an aspiration to an operational reality. The accuracy of such operational forecasting depends on the quantity and quality of observations available for system optimization. In particular, for forecasting systems that use combined mechanistic model-inference approaches, a broad suite of epidemiological observations could be utilized, if these data were available in near real time. In cases where such data are limited, an in silica, synthetic framework for evaluating the potential benefits of observations on forecasting accuracy can allow researchers and public health officials to more optimally allocate resources for disease surveillance and monitoring. Here, we demonstrate the application of such a framework, using a model-inference system designed to predict dengue, and identify the type and quality of observations that would improve forecasting accuracy.
Collapse
Affiliation(s)
- Teresa K Yamana
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, United States.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, United States
| |
Collapse
|
19
|
Rahayu A, Saraswati U, Supriyati E, Kumalawati DA, Hermantara R, Rovik A, Daniwijaya EW, Fitriana I, Setyawan S, Ahmad RA, Wardana DS, Indriani C, Utarini A, Tantowijoyo W, Arguni E. Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101742. [PMID: 31100967 PMCID: PMC6571630 DOI: 10.3390/ijerph16101742] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Indonesia is one of the countries where dengue infection is prevalent. In this study we measure the prevalence and distribution of dengue virus (DENV) DENV-infected Aedes aegypti in Yogyakarta City, Indonesia, during the wet season when high dengue transmission period occurred, as baseline data before implementation of a Wolbachia-infected Aedes aegypti trial for dengue control. We applied One-Step Multiplex Real Time PCR (RT-PCR) for the type-specific-detection of dengue viruses in field-caught adult Aedes aegypti mosquitoes. In a prospective field study conducted from December 2015 to May 2016, adult female Aedes aegypti were caught from selected areas in Yogyakarta City, and then screened by using RT-PCR. During the survey period, 36 (0.12%) mosquitoes from amongst 29,252 female mosquitoes were positive for a DENV type. In total, 22.20% of dengue-positive mosquitoes were DENV-1, 25% were DENV-2, 17% were DENV-3, but none were positive for DENV-4. This study has provided dengue virus infection prevalence in field-caught Aedes aegypti and its circulating serotype in Yogyakarta City before deployment of Wolbachia-infected Aedes aegypti.
Collapse
Affiliation(s)
- Ayu Rahayu
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Utari Saraswati
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Endah Supriyati
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Dian Aruni Kumalawati
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Rio Hermantara
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Anwar Rovik
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Edwin Widyanto Daniwijaya
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Iva Fitriana
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Sigit Setyawan
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Riris Andono Ahmad
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Epidemiology, Biostatistics and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Dwi Satria Wardana
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Citra Indriani
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Epidemiology, Biostatistics and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Adi Utarini
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Warsito Tantowijoyo
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| | - Eggi Arguni
- Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
| |
Collapse
|
20
|
Estimation of DENV-2 Transmission as a Function of Site-Specific Entomological Parameters from Three Cities in Colombia. Ann Glob Health 2019; 85. [PMID: 30873777 PMCID: PMC6561660 DOI: 10.5334/aogh.2339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Measuring dengue virus transmission in endemic areas is a difficult task as many variables drive transmission, and often are not independent of one another. Objectives: We aimed to determine the utility of vectorial capacity to explain the observed dengue infection rates in three hyperendemic cities in Colombia, and tested hypotheses related to three variables: mosquito density, effective vector competence, and biting rate. Methods: We estimated two of the most influential entomological variables related to cumulative vectorial capacity, which is a modification of the traditional vectorial capacity equation, of three Colombian mosquito populations. Laboratory studies were undertaken to measure vector competence and man biting rate of local mosquito populations. In addition, the assessment of cumulative vectorial capacity also incorporated site-specific estimations of mosquito density and the probability of daily survival from previous studies conducted in those cities. Findings: We found that the biting rates and mosquito infection rates differed among populations of mosquitoes from these three cities, resulting in differences in the site-specific measures of transmission potential. Specifically, we found that using site-specific entomological measures to populate the cumulative vectorial capacity equation was best at recapitulating observed mosquito infection rates when mosquito density was discounted compared to when we incorporated site-specific density measures. Conclusions: Specific mosquito-biting rate is likely sufficient to explain transmission differences in these three cities, confirming that this parameter is a critical parameter when predicting and assessing dengue transmission in three Colombian cities with different field observed transmission patterns.
Collapse
|
21
|
Pérez-Restrepo LS, Triana-Chávez O, Mejía-Jaramillo AM, Arboleda-Sánchez SO. Vector competence analysis of two Aedes aegypti lineages from Bello, Colombia, reveals that they are affected similarly by dengue-2 virus infection. Arch Virol 2018; 164:149-158. [PMID: 30298277 DOI: 10.1007/s00705-018-4049-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 09/20/2018] [Indexed: 11/27/2022]
Abstract
Dengue is the second most prevalent vector-borne disease after malaria in Colombia. It is caused by dengue virus, an arbovirus that exhibits high epidemic power, which is evidenced by its occurrence in more than 80% of the country, largely because of the extensive dispersion of the mosquito vector Aedes aegypti. The existence of two lineages of Ae. aegypti has been proposed based on genetic differences at the mitochondrial level, and they have been reported to circulate in similar proportions in the municipality of Bello (Colombia). It has been suggested that the differentiation of these lineages could influence features such as vector competence (VC) and life table. With the aim of testing this hypothesis, female mosquitoes from both lineages collected from Bello were orally challenged with dengue virus serotype 2 (strain D2-HAN) to measure infection, dissemination, survival and fecundity. Analysis of VC showed an increase in viral titer over time; however, no significant differences were observed between the lineages. The survival rate was not different between the infected lineages, but comparing lineages, it was lower in infected mosquitoes, which may affect the intensity of transmission. Finally, we conclude that the genetic differentiation of Ae. aegypti into lineages did not confer differences in epidemiological status when the mosquitoes were infected with this D2 serotype strain.
Collapse
Affiliation(s)
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia UdeA, Medellín, Colombia
| | | |
Collapse
|
22
|
Ahmad R, Suzilah I, Wan Najdah WMA, Topek O, Mustafakamal I, Lee HL. Factors determining dengue outbreak in Malaysia. PLoS One 2018; 13:e0193326. [PMID: 29474401 PMCID: PMC5825112 DOI: 10.1371/journal.pone.0193326] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/08/2018] [Indexed: 11/24/2022] Open
Abstract
A large scale study was conducted to elucidate the true relationship among entomological, epidemiological and environmental factors that contributed to dengue outbreak in Malaysia. Two large areas (Selayang and Bandar Baru Bangi) were selected in this study based on five consecutive years of high dengue cases. Entomological data were collected using ovitraps where the number of larvae was used to reflect Aedes mosquito population size; followed by RT-PCR screening to detect and serotype dengue virus in mosquitoes. Notified cases, date of disease onset, and number and type of the interventions were used as epidemiological endpoint, while rainfall, temperature, relative humidity and air pollution index (API) were indicators for environmental data. The field study was conducted during 81 weeks of data collection. Correlation and Autoregressive Distributed Lag Model were used to determine the relationship. The study showed that, notified cases were indirectly related with the environmental data, but shifted one week, i.e. last 3 weeks positive PCR; last 4 weeks rainfall; last 3 weeks maximum relative humidity; last 3 weeks minimum and maximum temperature; and last 4 weeks air pollution index (API), respectively. Notified cases were also related with next week intervention, while conventional intervention only happened 4 weeks after larvae were found, indicating ample time for dengue transmission. Based on a significant relationship among the three factors (epidemiological, entomological and environmental), estimated Autoregressive Distributed Lag (ADL) model for both locations produced high accuracy 84.9% for Selayang and 84.1% for Bandar Baru Bangi in predicting the actual notified cases. Hence, such model can be used in forestalling dengue outbreak and acts as an early warning system. The existence of relationships among the entomological, epidemiological and environmental factors can be used to build an early warning system for the prediction of dengue outbreak so that preventive interventions can be taken early to avert the outbreaks.
Collapse
Affiliation(s)
- Rohani Ahmad
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
- * E-mail:
| | - Ismail Suzilah
- School of Quantitative Sciences, Universiti Utara Malaysia, Sintok, Kedah, Malaysia
| | - Wan Mohamad Ali Wan Najdah
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Omar Topek
- Disease Control Division, Ministry of Health, Putrajaya, Malaysia
| | | | - Han Lim Lee
- Medical Entomology Unit & WHO Collaborating Centre for Vectors, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Variants in the TNFA, IL6 and IFNG genes are associated with the dengue severity in a sample from Colombian population. BIOMEDICA 2017; 37:486-497. [DOI: 10.7705/biomedica.v37i4.3305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 12/09/2016] [Indexed: 01/26/2023]
Abstract
Introducción. La composición genética del huésped determina, entre otros aspectos, el perfil clínico del dengue, lo cual se debería al efecto de variantes en los genes que codifican citocinas proinflamatorias.Objetivo. Evaluar la asociación entre las variantes de tres polimorfismos en los genes candidatos TNFA, IL6 e IFNG con la gravedad del dengue en una población colombiana.Materiales y métodos. Se evaluaron los polimorfismos rs1800750, rs2069843 y rs2069705 de los genes TNFA, IL6 e IFNG, respectivamente, en 226 pacientes con dengue. Los genotipos se tipificaron usando la reacción en cadena de la polimerasa (PCR) y los polimorfismos de la longitud de los fragmentos de restricción (Restriction Fragment Length Polymorphism, RFLP). Para determinar el riesgo de diferentes fenotipos del dengue, se compararon las frecuencias alélicas con la prueba de ji al cuadrado, y los genotipos y los haplotipos, con regresión logística. Por último, los análisis se ajustaron utilizando datos de autoidentificación o del componente genético ancestral.Resultados. El alelo A del rs2069843, ajustado por autoidentificación, se asoció con casos de dengue hemorrágico en afrocolombianos. En la muestra completa, dicho polimorfismo, ajustado por componente genético ancestral, fue reproducible. Además, hubo asociaciones significativas entre las combinaciones alélicas GGT y GAC de los rs1800750, rs2069843 y rs2069705 en pacientes con dengue hemorrágico, con ajuste por componente genético ancestral y sin él. Además, la combinación alélica AGC produjo 58,03 pg/ml más de interleucina 6 que la GGC, independientemente de los componentes genéticos europeo, amerindio y africano.Conclusión. Las variantes de los polimorfismos GGT y GAC de los rs1800750, rs2069843 y rs2069705 en los genes TNFA, IL6 e IFNG, respectivamente, se correlacionaron con la gravedad del dengue en esta muestra de población colombiana.
Collapse
|
24
|
Dos Santos TP, Cruz OG, da Silva KAB, de Castro MG, de Brito AF, Maspero RC, de Alcântra R, Dos Santos FB, Honorio NA, Lourenço-de-Oliveira R. Dengue serotype circulation in natural populations of Aedes aegypti. Acta Trop 2017; 176:140-143. [PMID: 28743449 DOI: 10.1016/j.actatropica.2017.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/24/2023]
Abstract
Ae. aegypti is the main vector of dengue (DENV), Zika (ZIKV), and chikungunya (CHIKV) viruses. The transmission dynamics of these arboviruses, especially the arboviral circulation in the mosquito population during low and high transmission seasons in endemic areas are still poorly understood. We conducted an entomological survey to determine dengue infection rates in Ae. aegypti and Aedes albopictus. These collections were performed in 2012-2013 during a Rio de Janeiro epidemic, just before the introduction and spread of ZIKV and CHIKV in the city. MosquiTrap© and BG-Sentinel traps were installed in three fixed and seven itinerant neighborhoods each month over ten months. Mosquitoes were in supernatants pools tested and individually confirmed for DENV infection using RT-PCR. A total of 3053 Aedes mosquitos were captured and Ae. aegypti was much more frequent (92.9%) than Ae. albopictus (6.8%). Ae. aegypti females accounted for 71.8% of captured mosquitoes by MosquitTrap© and were the only species found naturally infected with DENV (infection rate=0.81%). Only one Ae. aegypti male, collected by BG-sentinel, was also tested positive for DENV. The peak of DENV-positive mosquitoes coincided the season of the highest incidence of human cases. The most common serotypes detected in mosquitoes were DENV-3 (24%) and DENV-1 (24%), followed by DENV-4 (20%), DENV-2 (8%) and DENV-1 plus DENV4 (4%), while 95% of laboratory-confirmed human infections in the period were due to DENV-4. These contrasting results suggest silent maintenance of DENV serotypes during the epidemics, reinforcing the importance of entomological and viral surveillance in endemic areas.
Collapse
Affiliation(s)
- Taissa Pereira Dos Santos
- Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Oswaldo Gonsalvez Cruz
- Programa de Computação Cientifica-PROCC, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Prefeitura Municipal do Rio de Janeiro, Secretaria Municipal de Saude, Rio de Janeiro, RJ, Brazil
| | - Keli Antunes Barbosa da Silva
- Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Márcia Gonçalves de Castro
- Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Anielly Ferreira de Brito
- Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Renato Cesar Maspero
- Prefeitura Municipal do Rio de Janeiro, Secretaria Municipal de Saude, Rio de Janeiro, RJ, Brazil
| | - Rosilene de Alcântra
- Prefeitura Municipal do Rio de Janeiro, Secretaria Municipal de Saude, Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto Dos Santos
- Instituto Oswaldo Cruz, Laboratório de Biologia Molecular de Flavivírus, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Nildimar A Honorio
- Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Núcleo Operacional Sentinela de Mosquitos Vetores - Nosmove/Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Ricardo Lourenço-de-Oliveira
- Instituto Oswaldo Cruz, Laboratório de Mosquitos Transmissores de Hematozoários, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Peña-García VH, Triana-Chávez O, Arboleda-Sánchez S. Estimating Effects of Temperature on Dengue Transmission in Colombian Cities. Ann Glob Health 2017; 83:509-518. [PMID: 29221523 DOI: 10.1016/j.aogh.2017.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/07/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dengue fever is a viral disease that affects tropical and subtropical regions of the world. It is well known that processes related to virus transmission by mosquitoes are highly influenced by weather. Temperature has been described as one of the climatic variables that largely governs the development and survival of mosquito eggs as well as the survival of all insect stages. Previously, we noted that high temperatures in the Colombian city of Riohacha negatively affect the establishment of dengue virus (DENV) infection in mosquitoes; in Bello and Villavicencio cities, which have lower average temperatures, DENV infection rates in mosquitoes are positively associated with a gradual increase in temperature. Here, we test the hypothesis that a similar effect of temperature can be detected in the incidence in the human population inhabiting dengue-endemic cities in Colombia. OBJECTIVE Our objective was to evaluate the effect of climate variables related to temperature on DENV incidence in human populations living in DENV-endemic cities in Colombia. METHODS Epidemiologic data from the Instituto Nacional de Salud from 2012-2015 and 7 variables related to temperature were used to perform Spearman rank sum test analyses on 20 Colombian cities. Additionally, locally estimated scatterplot smoothing analyses were performed to describe the relationship among temperatures and incidence. FINDINGS Results indicated that Colombian cities with average and maximum temperatures greater than 28°C and 32°C, respectively, had an inversely related relationship to DENV incidence, which is in accordance with areas where higher temperatures are recorded in Colombia. CONCLUSION Climatic variables related to temperature affect dengue epidemiology in different way. According to the temperature of each city, transmission might be positively or negatively affected.
Collapse
Affiliation(s)
- Víctor Hugo Peña-García
- Grupo de Biología y Control de Enfermedades Infecciosas, Departamento de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Omar Triana-Chávez
- Grupo de Biología y Control de Enfermedades Infecciosas, Departamento de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Sair Arboleda-Sánchez
- Grupo de Biología y Control de Enfermedades Infecciosas, Departamento de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|