1
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
2
|
Shi Q, He J, Chen G, Xu J, Zeng Z, Zhao X, Zhao B, Gao X, Ye Z, Xiao M, Li H. The chemical composition of Diwu YangGan capsule and its potential inhibitory roles on hepatocellular carcinoma by microarray-based transcriptomics. J Tradit Complement Med 2024; 14:381-390. [PMID: 39035694 PMCID: PMC11259662 DOI: 10.1016/j.jtcme.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 12/24/2023] [Indexed: 07/23/2024] Open
Abstract
The Traditional Chinese Medicine compound preparation known as Diwu Yanggan capsule (DWYG) can effectively hinder the onset and progression of hepatocellular carcinoma (HCC), which is recognized worldwide as a significant contributor to fatalities associated with cancer. Nevertheless, the precise mechanisms implicated have remained ambiguous. In present study, the model of HCC was set up by the 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PH) in rats. To confirm the differentially expressed genes (DEGs) identified in the microarray analysis, real-time quantitative reverse transcription PCR (qRT-PCR) was conducted. In the meantime, the liquid chromatography-quadrupole time of flight mass spectrometry (LC-QTOF-MS/MS) was employed to characterize the component profile of DWYG. Consequently, the DWYG treatment exhibited the ability to reverse 51 variation genes induced by 2-AAF/PH. Additionally, there was an overlap of 54 variation genes between the normal and model groups. Upon conducting RT-qPCR analysis, it was observed that the expression levels of all genes were increased by 2-AAF/PH and subsequently reversed after DWYG treatment. Notably, the fold change of expression levels for all genes was below 0.5, with 3 genes falling below 0.25. Moreover, an investigation was conducted to determine the signaling pathway that was activated/inhibited in the HCC group and subsequently reversed in the DWYG group. Moreover, the component profile of DWYG encompassed a comprehensive compilation of 206 compounds that were identified or characterized. The findings of this study elucidated the potential alleviative mechanisms of DWYG in the context of HCC, thereby holding significant implications for its future clinical utilization and widespread adoption.
Collapse
Affiliation(s)
- Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiangcheng He
- Wuhan Integrated Traditional Chinese and Western Medicine Orthopedic Hospital, Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Guangya Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jinlin Xu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Binbin Zhao
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiang Gao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Zhihua Ye
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Mingzhong Xiao
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Hanmin Li
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
3
|
Ghorai S, Shand H, Patra S, Panda K, Santiago MJ, Rahman MS, Chinnapaiyan S, Unwalla HJ. Nanomedicine for the Treatment of Viral Diseases: Smaller Solution to Bigger Problems. Pharmaceutics 2024; 16:407. [PMID: 38543301 PMCID: PMC10975899 DOI: 10.3390/pharmaceutics16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
The continuous evolution of new viruses poses a danger to world health. Rampant outbreaks may advance to pandemic level, often straining financial and medical resources to breaking point. While vaccination remains the gold standard to prevent viral illnesses, these are mostly prophylactic and offer minimal assistance to those who have already developed viral illnesses. Moreover, the timeline to vaccine development and testing can be extensive, leading to a lapse in controlling the spread of viral infection during pandemics. Antiviral therapeutics can provide a temporary fix to tide over the time lag when vaccines are not available during the commencement of a disease outburst. At times, these medications can have negative side effects that outweigh the benefits, and they are not always effective against newly emerging virus strains. Several limitations with conventional antiviral therapies may be addressed by nanotechnology. By using nano delivery vehicles, for instance, the pharmacokinetic profile of antiviral medications can be significantly improved while decreasing systemic toxicity. The virucidal or virus-neutralizing qualities of other special nanomaterials can be exploited. This review focuses on the recent advancements in nanomedicine against RNA viruses, including nano-vaccines and nano-herbal therapeutics.
Collapse
Affiliation(s)
- Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Harshita Shand
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Soumendu Patra
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| |
Collapse
|
4
|
Shinn J, Park S, Lee S, Park N, Kim S, Hwang S, Moon JJ, Kwon Y, Lee Y. Antioxidative Hyaluronic Acid-Bilirubin Nanomedicine Targeting Activated Hepatic Stellate Cells for Anti-Hepatic-Fibrosis Therapy. ACS NANO 2024; 18:4704-4716. [PMID: 38288705 DOI: 10.1021/acsnano.3c06107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Liver fibrosis is a life-threatening and irreversible disease. The fibrosis process is largely driven by hepatic stellate cells (HSCs), which undergo transdifferentiation from an inactivated state to an activated one during persistent liver damage. This activated state is responsible for collagen deposition in liver tissue and is accompanied by increased CD44 expression on the surfaces of HSCs and amplified intracellular oxidative stress, which contributes to the fibrosis process. To address this problem, we have developed a strategy that combines CD44-targeting of activated HSCs with an antioxidative approach. We developed hyaluronic acid-bilirubin nanoparticles (HABNs), composed of endogenous bilirubin, an antioxidant and anti-inflammatory bile acid, and hyaluronic acid, an endogenous CD44-targeting glycosaminoglycan biopolymer. Our findings demonstrate that intravenously administered HABNs effectively targeted the liver, particularly activated HSCs, in fibrotic mice with choline-deficient l-amino acid-defined high-fat diet (CD-HFD)-induced nonalcoholic steatohepatitis (NASH). HABNs were able to inhibit HSC activation and proliferation and collagen production. Furthermore, in a murine CD-HFD-induced NASH fibrosis model, intravenously administered HABNs showed potent fibrotic modulation activity. Our study suggests that HABNs have the potential to serve as a targeted anti-hepatic-fibrosis therapy by modulating activated HSCs via CD44-targeting and antioxidant strategies. This strategy could also be applied to various ROS-related diseases in which CD44-overexpressing cells play a pivotal role.
Collapse
Affiliation(s)
- Jongyoon Shinn
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seojeong Park
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seonju Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Nayoon Park
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seojeong Kim
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Seohui Hwang
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Youngjoo Kwon
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| | - Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea
| |
Collapse
|
5
|
Chang J, Huang C, Li S, Jiang X, Chang H, Li M. Research Progress Regarding the Effect and Mechanism of Dietary Polyphenols in Liver Fibrosis. Molecules 2023; 29:127. [PMID: 38202710 PMCID: PMC10779665 DOI: 10.3390/molecules29010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The development of liver fibrosis is a result of chronic liver injuries may progress to liver cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the incidence rate and mortality are increasing year by year. However, there are currently no approved treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and inflammation, and are attracting more and more attention as potential drugs for the treatment of liver diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal microbiota and the subsequent production of intestinal microbial metabolites has been observed to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future drug development.
Collapse
Affiliation(s)
- Jiayin Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Congying Huang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Siqi Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Xiaolei Jiang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (J.C.); (C.H.); (S.L.); (X.J.)
- Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou 014040, China
| |
Collapse
|
6
|
Liang Y, Wang J, Xu C, Han W, Wu S, Wu Y, Zhang J, Liu J, Zhang Z, Shi J, Zhang K. Remodeling Collagen Microenvironment in Liver Using a Biomimetic Nano-Regulator for Reversal of Liver Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300127. [PMID: 37088730 PMCID: PMC10288244 DOI: 10.1002/advs.202300127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Liver fibrosis is a progressive histological manifestation that happens in almost all chronic liver diseases. An unabated liver fibrosis may eventually develop into liver cirrhosis or hepatocellular carcinoma. Yet, the strategy for reversal of liver fibrosis is still limited. Herein, a biomimetic nano-regulator (P-ZIF8-cirDNAzyme) is developed to affect both collagen synthesis and degradation in liver to remodel collagen microenvironment. It is found that Zn (II) interference can efficiently inhibit collagen synthesis in activated hepatic stellate cells (aHSC) by inactivating proline 4 hydroxylase and affecting many fibrosis-related signaling pathways. Meanwhile, Zn (II)-dependent circular DNAzymes (cirDNAzymes) are used to efficiently silence tissue inhibitors of metalloproteinase-1, accelerating the degradation of collagen. They act in concert to recover the balance between collagen deposition and degradation. Additionally, ZIF-8-cirDNAzyme is coated by platelet membrane (PM) for precisely targeting aHSC via PM's inflammatory tropism and CD62p-CD44 interaction. In carbon tetrachloride-induced fibrotic mice, P-ZIF-8-cirDNAzyme shows a potent anti-fibrotic effect, greatly reducing the expression of collagen by 73.12% and restoring liver function nearly to normal. This work proposes a prospective platform enabling ion interference and gene silencing, collectively acting in aHSC for reversal of liver fibrosis.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Wang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Chenlu Xu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Wenshuai Han
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Sixuan Wu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Yonghua Wu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Jingge Zhang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Junjie Liu
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesKey Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Collaborative Innovation Center of New Drug Research and Safety EvaluationZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
7
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
8
|
Laurindo LF, de Carvalho GM, de Oliveira Zanuso B, Figueira ME, Direito R, de Alvares Goulart R, Buglio DS, Barbalho SM. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023; 15:pharmaceutics15010229. [PMID: 36678859 PMCID: PMC9861982 DOI: 10.3390/pharmaceutics15010229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR's numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to improve CUR's solubility and bioavailability and potentialize its health effects. This review investigated the effects of different CUR-based nanomedicines on inflammatory and immunomodulated diseases. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR databases were searched, and the Scale for Assessment of Narrative Review Articles (SANRA) was used for quality assessment and PRISMA guidelines. Overall, 66 studies were included comprising atherosclerosis, rheumatoid arthritis (RA), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), inflammatory bowel diseases (IBD), psoriasis, liver fibrosis, epilepsy, and COVID-19. The available scientific studies show that there are many known nanoformulations with curcumin. They can be found in nanosuspensions, nanoparticles, nanoemulsions, solid lipid particles, nanocapsules, nanospheres, and liposomes. These formulations can improve CUR bioavailability and can effectively be used as adjuvants in several inflammatory and immune-mediated diseases such as atheroma plaque formation, RA, dementia, AD, PD, MS, IBD, psoriasis, epilepsy, COVID-19, and can be used as potent anti-fibrotic adjuvants in fibrotic liver disease.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Daiene Santos Buglio
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
- Correspondence: ; Tel.: +55-14-99655-3190
| |
Collapse
|
9
|
Gong L, Zhou H, Zhang S, Wang C, Fu K, Ma C, Zhang Y, Peng C, Li Y. CD44-Targeting Drug Delivery System of Exosomes Loading Forsythiaside A Combats Liver Fibrosis via Regulating NLRP3-Mediated Pyroptosis. Adv Healthc Mater 2023; 12:e2202228. [PMID: 36603210 DOI: 10.1002/adhm.202202228] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/26/2022] [Indexed: 01/06/2023]
Abstract
Liver fibrosis is a progressive pathological process induced by various stimuli and may progress to liver cirrhosis and cancer. Forsythiaside A (FA) is an active ingredient extracted from traditional Chinese medicine Forsythiae Fructus and has prominent hepatoprotective activities. However, the unsatisfactory pharmacokinetic properties restrict its clinical application. In this study, the nanocarrier of CD44-specific ligand Hyaluronic acid (HA)-modified milk-derived exosomes (mExo) encapsulated with FA (HA-mExo-FA) is developed. As a result, HA modification could deliver drug-loaded exosomes to the target cells and form a specific ligand-receptor interaction with CD44, thus improving the anti-liver fibrosis effect of FA. In vitro findings indicate that HA-mExo-FA could inhibit TGF-β1-induced LX2 cell proliferation, reduce α-SMA and collagen gene and protein levels, and promote the apoptosis of activated LX2 cells. In vivo results demonstrate that HA-mExo-FA could improve liver morphology and function changes in zebrafish larvae. The anti-liver fibrosis mechanism of HA-mExo-FA may be attributed to the inhibition of NLRP3-mediated pyroptosis. In addition, the effect of HA-mExo-FA on TAA-induced increase in NLRP3 production is attenuated by NLRP3 inhibitor MCC950. Collectively, this study demonstrates the promising application of HA-mExo-FA in drug delivery with high specificity and provides a powerful and novel delivery platform for liver fibrosis therapy.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
10
|
Epidemiological characteristics of severe fever with thrombocytopenia syndrome and its relationship with meteorological factors in Liaoning Province, China. Parasit Vectors 2022; 15:283. [PMID: 35933453 PMCID: PMC9357322 DOI: 10.1186/s13071-022-05395-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS), one kind of tick-borne acute infectious disease, is caused by a novel bunyavirus. The relationship between meteorological factors and infectious diseases is a hot topic of current research. Liaoning Province has reported a high incidence of SFTS in recent years. However, the epidemiological characteristics of SFTS and its relationship with meteorological factors in the province remain largely unexplored. Methods Data on reported SFTS cases were collected from 2011 to 2019. Epidemiological characteristics of SFTS were analyzed. Spearman’s correlation test and generalized linear models (GLM) were used to identify the relationship between meteorological factors and the number of SFTS cases. Results From 2011 to 2019, the incidence showed an overall upward trend in Liaoning Province, with the highest incidence in 2019 (0.35/100,000). The incidence was slightly higher in males (55.9%, 438/783), and there were more SFTS patients in the 60–69 age group (31.29%, 245/783). Dalian City and Dandong City had the largest number of cases of SFTS (87.99%, 689/783). The median duration from the date of illness onset to the date of diagnosis was 8 days [interquartile range (IQR): 4–13 days]. Spearman correlation analysis and GLM showed that the number of SFTS cases was positively correlated with monthly average rainfall (rs = 0.750, P < 0.001; β = 0.285, P < 0.001), monthly average relative humidity (rs = 0.683, P < 0.001; β = 0.096, P < 0.001), monthly average temperature (rs = 0.822, P < 0.001; β = 0.154, P < 0.001), and monthly average ground temperature (rs = 0.810, P < 0.001; β = 0.134, P < 0.001), while negatively correlated with monthly average air pressure (rs = −0.728, P < 0.001; β = −0.145, P < 0.001), and monthly average wind speed (rs = −0.272, P < 0.05; β = −1.048, P < 0.001). By comparing both correlation coefficients and regression coefficients between the number of SFTS cases (dependent variable) and meteorological factors (independent variables), no significant differences were observed when considering immediate cases and cases with lags of 1 to 5 weeks for dependent variables. Based on the forward and backward stepwise GLM regression, the monthly average air pressure, monthly average temperature, monthly average wind speed, and time sequence were selected as relevant influences on the number of SFTS cases. Conclusion The annual incidence of SFTS increased year on year in Liaoning Province. Incidence of SFTS was affected by several meteorological factors, including monthly average air pressure, monthly average temperature, and monthly average wind speed. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05395-4.
Collapse
|
11
|
Hamdi M, Elmowafy E, Abdel-Bar HM, ElKashlan AM, Al-Jamal KT, Awad GAS. Hyaluronic acid-entecavir conjugates-core/lipid-shell nanohybrids for efficient macrophage uptake and hepatotropic prospects. Int J Biol Macromol 2022; 217:731-747. [PMID: 35841964 DOI: 10.1016/j.ijbiomac.2022.07.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Drug covalently bound to polymers had formed, lately, platforms with great promise in drug delivery. These drug polymer conjugates (DPC) boosted drug loading and controlled medicine release with targeting ability. Herein, the ability of entecavir (E) conjugated to hyaluronic acid (HA) forming the core of vitamin E coated lipid nanohybrids (EE-HA LPH), to target Kupffer cells and hepatocyte had been proved. The drug was associated to HA with efficiency of 93.48 ± 3.14 % and nanohybrids loading of 22.02 ± 2.3 %. DiI labelled lipidic nanohybrids improved the macrophage uptake in J774 cells with a 21 day hepatocytes retention post intramuscular injection. Finally, in vivo biocompatibility and safety with respect to body weight, organs indices and histopathological alterations were demonstrated. Coating with vitamin E and conjugation of E to HA (a CD44 ligand), could give grounds for prospective application for vectored nano-platform in hepatitis B.
Collapse
Affiliation(s)
- Mohamed Hamdi
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Egypt; Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom.
| | - Akram M ElKashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Egypt
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, United Kingdom
| | - Gehanne A S Awad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt
| |
Collapse
|
12
|
Obeid MA, Alsaadi M, Aljabali AA. Recent updates in curcumin delivery. J Liposome Res 2022; 33:53-64. [PMID: 35699160 DOI: 10.1080/08982104.2022.2086567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Curcumin is a natural component extracted from the rhizomes of turmeric (Curcuma longa), a natural plat with known medicinal uses for more than 4000 years. Most turmeric therapeutic effects are attributed to curcumin, a yellow-coloured extract. Curcumin has received considerable attention due to its biological activities, such as its use in arthritis, liver and neurodegenerative diseases, obesity, and several types of cancers. Most of these curcumin therapeutic activities are related to its antioxidant and anti-inflammatory effects. However, the clinical application of curcumin is hampered by some limitations that prevent its extensive clinical application. Curcumin high hydrophobicity of curcumin and limited water solubility are among the most important limitations. This poor solubility will result in low bioavailability due to its poor absorption into plasma and the target tissues. Curcumin also has rapid metabolism, which will significantly lower its bioavailability and shorten its half-life. Moreover, curcumin is photosensitive with limited chemical stability during manufacturing and storage. These limitations have been overcome by applying nanotechnology using several types of nanoparticles (NPs). This includes using NPs such as liposomes, niosomes, gold nanoparticles, and many others to improve the curcumin solubility and bioavailability. This review focuses on the different types of NPs investigated and the outcomes generated by their use in the most recent studies in this field. To follow the latest advances in the field of site-specific drug delivery using nanomaterials, an electronic databases search was conducted using PubMed, Google scholar and Scopus using the following keywords: lipid-based nanoparticles, curcumin delivery, niosomes, and liposomes.
Collapse
Affiliation(s)
- Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Manal Alsaadi
- Department of Industrial Pharmacy, Faculty of Pharmacy, University of Tripoli, Tripoli, Libya
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
13
|
Vang M, Østberg M, Steinmetz J, Rasmussen LS. Shock index as a predictor for mortality in trauma patients: a systematic review and meta-analysis. Eur J Trauma Emerg Surg 2022; 48:2559-2566. [PMID: 35258641 DOI: 10.1007/s00068-022-01932-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE The primary aim was to determine whether a shock index (SI) ≥ 1 in adult trauma patients was associated with increased in-hospital mortality compared to an SI < 1. METHODS This systematic review including a meta-analysis was performed in accordance with the PRISMA guidelines. EMBASE, MEDLINE, and Cochrane Library were searched, and two authors independently screened articles, performed the data extraction, and assessed risk of bias. Studies were included if they reported in-hospital, 30-day, or 48-h mortality, length of stay, massive blood transfusion or ICU admission in trauma patients with SI recorded at arrival in the emergency department or trauma center. Risk of bias was assessed using the Newcastle-Ottawa Scale, and the strength and quality of the body of evidence according to GRADE. Data were pooled using a random effects model. Inter-rater reliability was assessed with Cohen's kappa. RESULTS We screened 1350 citations with an inter-rater reliability of 0.90. Thirty-eight cohort studies were included of which 14 reported the primary outcome. All studies reported a significant higher in-hospital mortality in adult trauma patients with an SI ≥ 1 compared to those having an SI < 1. Twelve studies involving a total of 348,687 participants were included in the meta-analysis. The pooled risk ratio (RR) of in-hospital mortality was 4.15 (95% CI 2.96-5.83). The overall quality of evidence was low. CONCLUSIONS This systematic review found a fourfold increased risk of in-hospital mortality in adult trauma patients with an initial SI ≥ 1 in the emergency department or trauma center.
Collapse
Affiliation(s)
- Malene Vang
- Department of Anesthesia and Trauma Centre, Centre of Head and Orthopaedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Maria Østberg
- Department of Anesthesia and Trauma Centre, Centre of Head and Orthopaedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Steinmetz
- Department of Anesthesia and Trauma Centre, Centre of Head and Orthopaedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Danish Air Ambulance, Aarhus, Denmark
| | - Lars S Rasmussen
- Department of Anesthesia and Trauma Centre, Centre of Head and Orthopaedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Hafez DA, Abdelmonsif DA, Aly RG, Samy WM, Elkhodairy KA, Abo Aasy NK. Role of fennel oil/ quercetin dual nano-phytopharmaceuticals in hampering liver fibrosis: Comprehensive optimization and in vivo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
16
|
Ashour AA, El-Kamel AH, Abdelmonsif DA, Khalifa HM, Ramadan AA. Modified Lipid Nanocapsules for Targeted Tanshinone IIA Delivery in Liver Fibrosis. Int J Nanomedicine 2021; 16:8013-8033. [PMID: 34916792 PMCID: PMC8671377 DOI: 10.2147/ijn.s331690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction Liver fibrosis represents a serious global disease with no approved treatment. Tanshinone IIA (TSIIA) is a phytomedicine with documented activity in treating many hepatic disorders. TSIIA has been reported to have potent anti-inflammatory and antioxidant properties. It can also induce apoptosis for activated hepatic stellate cells, and is thereby considered as a promising herbal remedy for treating fibrotic liver. However, its poor aqueous solubility, short half-life, exposure to the first-pass effect, and low concentration reaching targeted cells constitute the major barriers hindering its effective therapeutic potential. Therefore, this work aimed at enhancing TSIIA systemic bioavailability together with achieving active targeting potential to fibrotic liver via its incorporation into novel modified lipid nanocapsules (LNCs). Methods Blank and TSIIA-loaded LNCs modified with either hyaluronate sodium or phosphatidyl serine were successfully prepared, optimized, and characterized both in vitro and in vivo. Results The developed LNCs showed good colloidal properties (size ≤100 nm and PDI ≤0.2), high drug-entrapment efficiency (>97%) with sustained-release profile for 24 hours, high storage stability up to 6 months, and good in vitro serum stability. After a single intraperitoneal injection, the administered LNCs exhibited a 2.4-fold significant increase in AUC0–∞ compared with the TSIIA suspension (p≤0.01). Biodistribution-study results proved the liver-targeting ability of the prepared modified LNCs, with a significant ~1.5-fold increase in hepatic accumulation compared with the unmodified formulation (p≤0.05). Moreover, the modified formulations had an improved antifibrotic effect compared with both unmodified LNCs and TSIIA suspension, as evidenced by the results of biochemical and histopathological evaluation. Conclusion The modified TSIIA-LNCs could be regarded as promising novel targeted nanomedicines for effective management of liver fibrosis.
Collapse
Affiliation(s)
- Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Hoda M Khalifa
- Department of Histology, Faculty of Medicine, Alexandria University, Alexandria, 21131, Egypt
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
17
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Xue H, Qin L, Zhang L, Li X, Wu F, Wang W, Wang C, Diao W, Jiang B, Lian B, Wu J, Bai J, Sun T, Zhao C, Qu M, Yu W, Wang Y, Gao Z. Preparation of docetaxel-loaded, glycyrrhetinic acid-modified nanoparticles and their liver-targeting and antitumor activity. Exp Ther Med 2021; 22:1144. [PMID: 34471430 PMCID: PMC8404033 DOI: 10.3892/etm.2021.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/25/2021] [Indexed: 01/06/2023] Open
Abstract
Liver cancer is one of the most common malignancies worldwide and poses a serious threat to human health. The most important treatment method, liver cancer chemotherapy, is limited due to its high toxicity and poor specificity. Targeted drug delivery systems have emerged as novel therapeutic strategies that deliver precise, substantial drug doses to target sites via targeting vectors and enhance the therapeutic efficacy. In the present study, glycyrrhetinic acid-modified hyaluronic acid (GA-HA) was used as a carrier for the model drug docetaxel (DTX) to prepare DTX-loaded GA-HA nanoparticles (DTX/GA-HA-NPs). The results indicated that the DTX/GA-HA-NPs exhibited high monodispersity (particle dispersity index, 0.209±0.116) and desirable particle size (208.73±5.0 nm) and zeta potential (-27.83±3.14 mV). The drug loading capacity and encapsulation efficiency of the NPs were 12.59±0.68 and 85.38±4.62%, respectively. Furthermore, it was determined that FITC-GA-HA was taken up by cells and distributed in the cytoplasm. DTX and DTX/GA-HA (just the DTX delivered by the nanoparticle) aggregated and altered the structure of cellular microtubules. Compared with DTX alone, DTX/GA-HA-NPs had a stronger inhibitory effect on HepG2 cell proliferation and promoted apoptosis of HepG2 cells. All experimental results indicated that DTX/GA-HA-NPs were successfully prepared and had liver-targeting and antitumor activities in vitro, which provided a foundation for future in vivo studies of the antitumor effects of DTX/GA-HA-NPs.
Collapse
Affiliation(s)
- Hantao Xue
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Liya Qin
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Longxiang Zhang
- Department of Pharmacology, Laboratory of Applied Pharmacology, College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiaocheng Li
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Fei Wu
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiyu Wang
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chen Wang
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenbin Diao
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bin Jiang
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Bo Lian
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingliang Wu
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jingkun Bai
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Tongyi Sun
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chunling Zhao
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Meihua Qu
- Department of Pharmacology, Laboratory of Applied Pharmacology, College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wenjing Yu
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yubing Wang
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- Shandong Key Laboratory of Medical and Health Sciences, Key Laboratory of Biotechnological Medicine in Universities of Shandong, School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
19
|
Charan TR, Bhutto MA, Bhutto MA, Tunio AA, Khuhro GM, Khaskheli SA, Mughal AA. “Nanomaterials of curcumin-hyaluronic acid”: their various methods of formulations, clinical and therapeutic applications, present gap, and future directions. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00281-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Nanomaterials of curcumin with hyaluronic acid have gained a lot of attention for potential therapeutic applications of curcumin and hyaluronic acid with or without other additional drugs. Overall studies of curcumin and hyaluronic acid show that nanomaterials of curcumin with hyaluronic acid accelerate the efficacy of curcumin in the treatment of various disorders like arthritis, cancer, hepatic fibrosis, neural disorders, wound healing, and skin regeneration, it is largely due to the combined effect of hyaluronic acid and curcumin. However, due to limited clinical trials and experiments on humans and animals, there is a substantial gap in research for the safety and efficacy of nanomaterials of curcumin-hyaluronic acid in the treatment of curcumin and hyaluronic acid targeted diseases and disorders.
Main body of the abstract
In this current review, we have first described various reported synthetic nanomaterials of curcumin-hyaluronic acid, then in the next section, we have described various fields, disorders, and diseases where these are being applied and in the final section of this review, we discussed the research gap, and future research directions needed to propose the fabricated nanocurcumin-hyaluronic acid biomaterials.
Short conclusion
There are substantial gaps in research for the safety and efficacy of nanomaterials of curcumin with hyaluronic acid due to limited available data of clinical trials and experiments of nanocurcumin-hyaluronic acid biomaterials on humans and animals. So, it entirely requires serious and committed efforts through the well-organized system of practical and clinical trials which provide results, data, and detections that lead to the formulation of the best drug from curcumin with hyaluronic acid for the treatment of curcumin and hyaluronic acid targeted diseases and disorders.
Collapse
|
20
|
Fleischmann D, Goepferich A. General sites of nanoparticle biodistribution as a novel opportunity for nanomedicine. Eur J Pharm Biopharm 2021; 166:44-60. [PMID: 34087354 DOI: 10.1016/j.ejpb.2021.05.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomedical devices has led to a considerable number of clinically applied nanotherapeutics. Yet, the overall poor translation of nanoparticular concepts into marketable systems has not met the initial expectations and led to increasing criticism in recent years. Most novel nano approaches thereby use highly refined formulations including a plethora of active targeting sequences, but ultimately fail to reach their target due to a generally high off-target deposition in organs such as the liver or kidney. In this context, we argue that initial nanoparticle (NP) development should not entirely become set on conventional formulation aspects. In contrast, we propose a change of focus towards a prior analysis of general sites of NP in vivo deposition and an assessment of how accumulation in these organs or tissues can be harnessed to develop therapies for site-related pathologies. We therefore give a comprehensive overview of existing nanotherapeutic targeting strategies for specific cell types within three of the usual suspects, i.e. the liver, kidney and the vascular system. We discuss the physiological surroundings and relevant pathologies of described tissues as well as the implications for NP-mediated drug delivery. Additionally, successful cell-selective NP concepts using active targeting strategies are assessed. By bringing together both (patho)physiological aspects and concepts for cell-selective NP formulations, we hope to show a novel opportunity for the development of more promising nanotherapeutic devices.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
21
|
Khan MA, Moghul NB, Butt MA, Kiyani MM, Zafar I, Bukhari AI. Assessment of antibacterial and antifungal potential of Curcuma longa and synthesized nanoparticles: A comparative study. J Basic Microbiol 2021; 61:603-611. [PMID: 33983661 DOI: 10.1002/jobm.202100010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 11/06/2022]
Abstract
Curcumin nanoparticles were most recently considered in medical research because of their antibacterial properties. The main objective of the study was to develop the green synthesis and antibacterial activity of curcumin nanoparticles using Curcuma longa. The processing of curcumin nanoparticles was carried out after the collection, identification, and extraction of curcumin. The effect of a sample on the synthesis of nanoparticles, such as curcumin aqueous concentrations (5, 10, and 20 mg/ml) and curcumin nanoparticles (5, 10, and 20 mg/ml), and the antibacterial effect of these nanoparticles on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and the fungal strain Aspergillus niger. For examining antibacterial and anti-fungal activity disc diffusion method was performed, followed by the zone of inhibition. According to X-ray diffraction and scanning electron microscope analysis, nanoparticles have spherical shapes and size of 42.64 nm. Results showed that a high dose of 20 mg/ml curcumin nanoparticles have more antibacterial activity than curcumin extracts in E. coli as it showed the largest diameter of zone of inhibition as compared to other doses. Other bacterial and fungal strains also showed significant results but E. coli was most prominent. The biosynthesis of curcumin nanoparticles using an aqueous extract of C. longa is a clean, inexpensive, and safe method that has not been used any toxic substance and consequently does not have side effects. Since several pathogenic species have acquired antibiotic resistance, the combination of curcumin with various nanoparticles would be beneficial in the cure of pathogenic diseases.
Collapse
Affiliation(s)
- Mansoor Ahmed Khan
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Nurain Baig Moghul
- Department of Biochemistry, Rawal Institute of Health Sciences, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Maisra Azhar Butt
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Mubin Mustafa Kiyani
- Shifa College of Medical Technology, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ibraheem Zafar
- Department of Rehabilitation Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Ali Imran Bukhari
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| |
Collapse
|
22
|
Khanam A, Saleeb PG, Kottilil S. Pathophysiology and Treatment Options for Hepatic Fibrosis: Can It Be Completely Cured? Cells 2021; 10:cells10051097. [PMID: 34064375 PMCID: PMC8147843 DOI: 10.3390/cells10051097] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a dynamic process that occurs as a wound healing response against liver injury. During fibrosis, crosstalk between parenchymal and non-parenchymal cells, activation of different immune cells and signaling pathways, as well as a release of several inflammatory mediators take place, resulting in inflammation. Excessive inflammation drives hepatic stellate cell (HSC) activation, which then encounters various morphological and functional changes before transforming into proliferative and extracellular matrix (ECM)-producing myofibroblasts. Finally, enormous ECM accumulation interferes with hepatic function and leads to liver failure. To overcome this condition, several therapeutic approaches have been developed to inhibit inflammatory responses, HSC proliferation and activation. Preclinical studies also suggest several targets for the development of anti-fibrotic therapies; however, very few advanced to clinical trials. The pathophysiology of hepatic fibrosis is extremely complex and requires comprehensive understanding to identify effective therapeutic targets; therefore, in this review, we focus on the various cellular and molecular mechanisms associated with the pathophysiology of hepatic fibrosis and discuss potential strategies to control or reverse the fibrosis.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Paul G. Saleeb
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: ; Tel.: +1-410-706-4872
| |
Collapse
|
23
|
Peng W, Cheng S, Bao Z, Wang Y, Zhou W, Wang J, Yang Q, Chen C, Wang W. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis. Biomed Pharmacother 2021; 137:111342. [DOI: 10.1016/j.biopha.2021.111342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
|
24
|
Ribera J, Vilches C, Sanz V, de Miguel I, Portolés I, Córdoba-Jover B, Prat E, Nunes V, Jiménez W, Quidant R, Morales-Ruiz M. Treatment of Hepatic Fibrosis in Mice Based on Targeted Plasmonic Hyperthermia. ACS NANO 2021; 15:7547-7562. [PMID: 33720693 DOI: 10.1021/acsnano.1c00988] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Liver fibrosis is a major health problem with multiple associated complications, which, to date, has no effective treatment. Hepatic stellate cells are the main responsible cells for fibrosis formation; upon their activation, excess accumulation of extracellular matrix and collagen deposits occurs. The mitogen platelet-derived growth factor (PDGF) and its receptor β (PDGFRβ) play a major role in hepatic stellate cells activation and are, therefore, promising targets for antifibrotic therapies. Gold nanorods hold great potential for diseased liver treatments, since their passive hepatic accumulation enhances active targeting strategies, hence increasing therapeutic efficiency. In addition, gold nanorods have photothermal properties that, combined with specific cell delivery, can be exploited to induce localized near-infrared light-mediated thermal ablation. Here, we demonstrate that gold nanorods coated with anti-PDGFRβ specifically target activated hepatic stellate cells in vivo. Additionally, gold nanorods-PDGFRβ-mediated photothermal therapy decreases fibrosis, hepatic inflammation, and hepatocyte injury in the experimental model of CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Clara Vilches
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Vanesa Sanz
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ignacio de Miguel
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
| | - Esther Prat
- Molecular Genetics Laboratory, Genes, Disease and Therapy Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Physiology, Health Science and Medicine Faculty, University of Barcelona (UB), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virginia Nunes
- Molecular Genetics Laboratory, Genes, Disease and Therapy Programme, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Physiology, Health Science and Medicine Faculty, University of Barcelona (UB), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona (UB), 08008 Barcelona, Spain
| | - Romain Quidant
- Institut de Ciències Fotòniques (ICFO), The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08008 Barcelona, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine, University of Barcelona (UB), 08008 Barcelona, Spain
| |
Collapse
|
25
|
Zhang T, Li Y, Song Y, Chen X, Li J, Peng Q, He J, Fei X. Curcumin- and Cyclopamine-Loaded Liposomes to Enhance Therapeutic Efficacy Against Hepatic Fibrosis. Drug Des Devel Ther 2020; 14:5667-5678. [PMID: 33380787 PMCID: PMC7767702 DOI: 10.2147/dddt.s287442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Hepatic fibrosis is a public health problem characterized by activation of hepatic stellate cells (HSCs), which triggers excessive production of extracellular matrix (ECM). Inhibition of HSC activation may be an effective treatment. Since various pathways control HSC activation, a combination of drugs with different mechanisms may be more effective than monotherapy. METHODS Here, we prepared liposomes loaded with curcumin and cyclopamine to inhibit HSC activation. We systematically analyzed the physicochemical characteristics of liposomes loaded with the two drugs, as well as their effects on HSC proliferation, activation and collagen production on gene, protein and cellular levels. RESULTS The prepared liposomes helped solubilize both drugs, contributing to their uptake by cells. Liposomes loaded with both drugs inhibited cell proliferation, migration and invasion, as well as induced more apoptosis and perturbed the cell cycle more than the free combination of both drugs in solution or liposomes loaded with either drug alone. Liposomes loaded with both drugs strongly suppressed HSC activation and collagen secretion. CONCLUSION Our results suggest that liposome encapsulation can increase the uptake of curcumin and cyclopamine as well as the synergism between them in anti-fibrosis. This approach shows potential for treating hepatic fibrosis.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Yi Song
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Xiaoshuang Chen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jing Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jinhan He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Xiaofan Fei
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| |
Collapse
|
26
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
27
|
Mahdinloo S, Kiaie SH, Amiri A, Hemmati S, Valizadeh H, Zakeri-Milani P. Efficient drug and gene delivery to liver fibrosis: rationale, recent advances, and perspectives. Acta Pharm Sin B 2020; 10:1279-1293. [PMID: 32874828 PMCID: PMC7451940 DOI: 10.1016/j.apsb.2020.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis results from chronic damages together with an accumulation of extracellular matrix, and no specific medical therapy is approved for that until now. Due to liver metabolic capacity for drugs, the fragility of drugs, and the presence of insurmountable physiological obstacles in the way of targeting, the development of efficient drug delivery systems for anti-fibrotics seems vital. We have explored articles with a different perspective on liver fibrosis over the two decades, then collected and summarized the information by providing corresponding in vitro and in vivo cases. We have discussed the mechanism of hepatic fibrogenesis with different ways of fibrosis induction in animals. Furthermore, the critical chemical and herbal anti-fibrotics, biological molecules such as micro-RNAs, siRNAs, and growth factors, which can affect cell division and differentiation, are mentioned. Likewise, drug and gene delivery and therapeutic systems on in vitro and in vivo models are summarized in the data tables. This review article enlightens recent advances in emerging drugs and nanocarriers and represents perspectives on targeting strategies employed in liver fibrosis treatment.
Collapse
Affiliation(s)
- Somayeh Mahdinloo
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
| | - Seyed Hossein Kiaie
- Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz 5166616471, Iran
- Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Ala Amiri
- Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran
| |
Collapse
|
28
|
The effect of nutraceuticals on multiple signaling pathways in cardiac fibrosis injury and repair. Heart Fail Rev 2020; 27:321-336. [PMID: 32495263 DOI: 10.1007/s10741-020-09980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiac fibrosis is one of the most common pathological conditions caused by different heart diseases, including myocardial infarction and diabetic cardiomyopathy. Cardiovascular disease is one of the major causes of mortality worldwide. Cardiac fibrosis is caused by different processes, including inflammatory reactions and oxidative stress. The process of fibrosis begins by changing the balance between production and destruction of extracellular matrix components and stimulating the proliferation and differentiation of cardiac fibroblasts. Many studies have focused on finding drugs with less adverse effects for the treatment of cardiovascular disease. Some studies show that nutraceuticals are effective in preventing and treating diseases, including cardiovascular disease, and that they can reduce the risk. However, big clinical studies to prove the therapeutic properties of all these substances and their adverse effects are lacking so far. Therefore, in this review, we tried to summarize the knowledge on pathways and mechanisms of several nutraceuticals which have shown their usefulness in the prevention of cardiac fibrosis.
Collapse
|
29
|
Targeted delivery of hyaluronic acid nanomicelles to hepatic stellate cells in hepatic fibrosis rats. Acta Pharm Sin B 2020; 10:693-710. [PMID: 32322471 PMCID: PMC7161713 DOI: 10.1016/j.apsb.2019.07.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is one kind of liver diseases with a high mortality rate and incidence. The activation and proliferation of hepatic stellate cells (HSCs) is the most fundamental reason of hepatic fibrosis. There are no specific and effective drug delivery carriers for the treatment of hepatic fibrosis at present. We found that when hepatic fibrosis occurs, the expression of CD44 receptors on the surface of HSCs is significantly increased. Based on this finding, we designed silibinin-loaded hyaluronic acid (SLB-HA) micelles to achieve the treatment of hepatic fibrosis. Meanwhile, we constructed liver fibrosis rat model using Sprague–Dawley rats. We demonstrated that HA micelles had specific uptake to HSCs in vitro while avoiding the distribution in normal liver cells and the phagocytosis of macrophages. Importantly, HA micelles showed a significant liver targeting effect in vivo, especially in fibrotic liver which highly expressed CD44 receptors. In addition, SLB-HA micelles could selectively kill activated HSCs, having an excellent anti-hepatic fibrosis effect in vivo and a significant sustained release effect, and also had a good biological safety and biocompatibility. Overall, HA micelles represented a novel nanomicelle system which showed great potentiality in anti-hepatic fibrosis drugs delivery.
Collapse
|
30
|
Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, Shen Y, Bing Y. Recent advantage of hyaluronic acid for anti-cancer application: a review of "3S" transition approach. Carbohydr Polym 2020; 238:116204. [PMID: 32299556 DOI: 10.1016/j.carbpol.2020.116204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
In recent years, nano drug delivery system has been widely concerned because of its good therapeutic effect. However, the process from blood circulation to cancer cell release of nanodrugs will be eliminated by the human body's own defense trap, thus reducing the therapeutic effect. In recent years, a "3S" transition concept, including stability transition, surface transition and size transition, was proposed to overcome the barriers in delivery process. Hyaluronic (HA) acid has been widely used in delivery of anticancer drugs due to its excellent biocompatibility, biodegradability and specific targeting to cancer cells. In this paper, the strategies and methods of HA-based nanomaterials using "3S" theory are reviewed. The applications and effects of "3S" modified nanomaterials in various fields are also introduced.
Collapse
Affiliation(s)
- Wei Zhong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Haohui Feng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yu Bing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
31
|
Pandolfi L, Frangipane V, Bocca C, Marengo A, Tarro Genta E, Bozzini S, Morosini M, D'Amato M, Vitulo S, Monti M, Comolli G, Scupoli MT, Fattal E, Arpicco S, Meloni F. Hyaluronic Acid-Decorated Liposomes as Innovative Targeted Delivery System for Lung Fibrotic Cells. Molecules 2019; 24:molecules24183291. [PMID: 31509965 PMCID: PMC6766933 DOI: 10.3390/molecules24183291] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.
Collapse
Affiliation(s)
- Laura Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Vanessa Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy.
| | - Alessandro Marengo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Erika Tarro Genta
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Sara Bozzini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Monica Morosini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maura D'Amato
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Simone Vitulo
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Manuela Monti
- Laboratory of Biotechnology, Center of Regenerative Medicine Research, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
| | - Giuditta Comolli
- Experimental Research Laboratories, Biotechnology Area, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maria Teresa Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy.
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 922996 Châtenay-Malabry, France.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Federica Meloni
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
32
|
Hasan MT, Campbell E, Sizova O, Lyle V, Akkaraju G, Kirkpatrick DL, Naumov AV. Multi-Drug/Gene NASH Therapy Delivery and Selective Hyperspectral NIR Imaging Using Chirality-Sorted Single-Walled Carbon Nanotubes. Cancers (Basel) 2019; 11:E1175. [PMID: 31416250 PMCID: PMC6721580 DOI: 10.3390/cancers11081175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 01/21/2023] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) can serve as drug delivery/biological imaging agents, as they exhibit intrinsic fluorescence in the near-infrared, allowing for deeper tissue imaging while providing therapeutic transport. In this work, CoMoCAT (Cobalt Molybdenum Catalyst) SWCNTs, chirality-sorted by aqueous two-phase extraction, are utilized for the first time to deliver a drug/gene combination therapy and image each therapeutic component separately via chirality-specific SWCNT fluorescence. Each of (7,5) and (7,6) sorted SWCNTs were non-covalently loaded with their specific payload: the PI3 kinase inhibitor targeting liver fibrosis or CCR5 siRNA targeting inflammatory pathways with the goal of addressing these processes in nonalcoholic steatohepatitis (NASH), ultimately to prevent its progression to hepatocellular carcinoma. PX-866-(7,5) SWCNTs and siRNA-(7,6) SWCNTs were each imaged via characteristic SWCNT emission at 1024/1120 nm in HepG2 and HeLa cells by hyperspectral fluorescence microscopy. Wavelength-resolved imaging verified the intracellular transport of each SWCNT chirality and drug release. The therapeutic efficacy of each formulation was further demonstrated by the dose-dependent cytotoxicity of SWCNT-bound PX-866 and >90% knockdown of CCR5 expression with SWCNT/siRNA transfection. This study verifies the feasibility of utilizing chirality-sorted SWCNTs for the delivery and component-specific imaging of combination therapies, also suggesting a novel nanotherapeutic approach for addressing the progressions of NASH to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Elizabeth Campbell
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Olga Sizova
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Veronica Lyle
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, 2955 South University Drive, Fort Worth, TX 76129, USA
| | | | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA.
| |
Collapse
|
33
|
Ma Z, Zhang B, Fan Y, Wang M, Kebebe D, Li J, Liu Z. Traditional Chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117:109128. [PMID: 31234023 DOI: 10.1016/j.biopha.2019.109128] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Liver diseases are clinically common and present a substantial public health issue. Many of the currently available drugs for the treatment of liver diseases suffer from limitations that include low hepatic distribution, lack of target effects, poor in vivo stability and adverse effects on other organs. Consequently, conventional treatment of hepatic diseases is ineffective. TCM is commonly used in the treatment of liver diseases worldwide, particularly in China, and has advantages over conventional therapy. HTDDS can be designed to enhance clinical efficacy in the treatment of liver diseases. We have conducted an extensive review of 335 studies reported since 1964. These included about 166 references involving the treatment of liver diseases with TCM (covering active components of TCM, single TCM and Chinese medicine formulas), 169 reports on HTDDS and background studies on liver-related diseases. Here we review the long history of TCM in the treatment of liver diseases.We have also reviewed the status of studies on active components of TCM using nanotechnology-based targeted delivery systems to provide support for further research and development of TCM-based targeted preparations for the treatment of liver disease.
Collapse
Affiliation(s)
- Zhe Ma
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Bing Zhang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuqi Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Meng Wang
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Dereje Kebebe
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Jiawei Li
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Zhidong Liu
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
34
|
Abd Ellah NH, Tawfeek HM, John J, Hetta HF. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine (Lond) 2019; 14:1471-1491. [PMID: 31166139 DOI: 10.2217/nnm-2018-0348] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) is not easily cleared from the human body and in most cases turned into chronic infection. This chronicity is a major cause of liver damage, cirrhosis and hepatocellular carcinoma. Therefore, immediate detection and treatment of HCV guarantees eradication of the virus and prevention of chronicity complications. Since discovery of HCV in 1989, several emerging treatments were developed such as polyethylene glycol(PEG)-ylated interferon/ribavirin, direct acting antivirals and host targeting antivirals. Despite the progress in anti-HCV therapy, there is still a pressing need of new approaches for affordable and effective drug delivery systems using nanomedicine. In this review, the contribution of nanoparticles as a promising delivery system for HCV immunizing, diagnostic and therapeutic agents are discussed.
Collapse
Affiliation(s)
- Noura H Abd Ellah
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, Medical Sciences Building, University of Cincinnati, Cincinnati, OH 45267, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.,Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Karak, Jordan
| | - James John
- Central Research Facilities, Sri Ramachandra institute of higher education & research, Sri Ramachandra University, Chennai, India
| | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| |
Collapse
|
35
|
Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00439-x] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Curcumin Attenuates Asthmatic Airway Inflammation and Mucus Hypersecretion Involving a PPAR γ-Dependent NF- κB Signaling Pathway In Vivo and In Vitro. Mediators Inflamm 2019; 2019:4927430. [PMID: 31073274 PMCID: PMC6470457 DOI: 10.1155/2019/4927430] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
Asthma is characterized by airway inflammation and mucus hypersecretion. Curcumin possessed a potent anti-inflammatory property involved in the PPARγ-dependent NF-κB signaling pathway. Then, the aim of the current study was to explore the value of curcumin in asthmatic airway inflammation and mucus secretion and its underlying mechanism. In vivo, mice were sensitized and challenged by ovalbumin (OVA) to induce chronic asthma. Airway inflammation and mucus secretion were analyzed. In vitro, BEAS-2B cells were obtained. MCP-1, MUC5AC, and PPARγ expression and the phosphorylation of NF-κB p65 and NF-κB p65 DNA-binding activity were measured in both the lungs and BEAS-2B cells. shRNA-PPARγ was used to knock down PPARγ expression. We found that OVA-induced airway inflammation and mucus hypersecretion in mice, OVA and IL-4-induced upregulation of MCP-1 and MUC5AC, suppression of PPARγ, and activation and translocation of NF-κB p65 were notably improved by curcumin both in vivo and in vitro. Our data also showed that these effects of curcumin were significantly abrogated by shRNA-PPARγ. Taken together, our results indicate that curcumin attenuated OVA-induced airway inflammation and mucus hypersecretion in mice and suppressed OVA- and IL-4-induced upregulation of MCP-1 and MUC5AC both in vivo and in vitro, most likely through a PPARγ-dependent NF-κB signaling pathway.
Collapse
|
37
|
Chen Z, Jain A, Liu H, Zhao Z, Cheng K. Targeted Drug Delivery to Hepatic Stellate Cells for the Treatment of Liver Fibrosis. J Pharmacol Exp Ther 2019; 370:695-702. [PMID: 30886124 PMCID: PMC6806344 DOI: 10.1124/jpet.118.256156] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is caused by excessive accumulation of extracellular matrix during chronic liver injuries. Although clinical evidence suggests that liver fibrosis can be reversed, there is no standard therapy for liver fibrosis. Moreover, there is a lack of diagnostic tools to detect early-stage liver fibrosis. Activation of hepatic stellate cells (HSCs) is the key step during liver fibrogenesis, and its mechanism has been extensively studied by various cell culture and animal models. Targeted delivery of therapeutic agents to activated HSCs is therefore critical for the successful treatment of liver fibrosis. A number of protein markers have been found to be overexpressed in activated HSCs, and their ligands have been used to specifically deliver various antifibrotic agents. In this review, we summarize these HSC-specific protein markers and their ligands for targeted delivery of antifibrotic agents.
Collapse
Affiliation(s)
- Zhijin Chen
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Akshay Jain
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Hao Liu
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Zhen Zhao
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
38
|
Fang G, Chen S, Huang Q, Chen L, Liao D. Curcumin suppresses cardiac fibroblasts activities by regulating the proliferation and cell cycle via the inhibition of the p38 MAPK/ERK signaling pathway. Mol Med Rep 2018; 18:1433-1438. [PMID: 29901190 PMCID: PMC6072161 DOI: 10.3892/mmr.2018.9120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/09/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac fibrosis is a deleterious effect of many cardiovascular diseases. Previous studies have shown that curcumin has exhibited protective effects on cardiovascular diseases. The aim of the present study was to evaluate the effects of curcumin on the activity of human cardiac fibroblasts (CFs) and to elucidate the underlying mechanisms involved. Human CFs were incubated with or without curcumin (20 µmol/l) and transforming growth factor β1 (TGF‑β1; 10 ng/ml), and the expression of α‑smooth muscle actin (α‑SMA), collagen type Iα (COLA)‑1 and COLA3 was evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Cell proliferation was evaluated by Cell Counting Kit‑8 analysis, and phases of the cell cycle were studied by flow cytometry. Western blot analysis was performed to evaluate the expression of cyclin‑dependent kinase 1 (CDK1), Cyclin B, phosphorylation (p)‑mothers against decapentaplegic homolog 2/3 (p‑smad2/3), p‑P38, and p‑extracellular regulated protein kinases (ERK). Curcumin significantly reduced mRNA and protein levels of α‑SMA, COLA1, and COLA3 in CFs stimulated with TGF‑β1. However, in the absence of TGF‑β1, curcumin did not have any effects on CFs, suggesting that curcumin inhibited TGF‑β1‑mediated CF activities, including differentiation and collagen deposition. Additionally, curcumin inhibited the proliferation of TGF‑β1‑treated CFs, and promoted G2/M phase cell cycle arrest. Curcumin reduced cell cycle protein expression by inhibiting smad2/3, p38 mitogen‑activated protein kinase, and ERK phosphorylation in TGF‑β1‑treated CFs. Thus, these results indicated that curcumin may be a potential anti‑fibrotic drug to treat cardiac fibrosis.
Collapse
Affiliation(s)
- Guanhua Fang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Shaoqin Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Qiuyu Huang
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dongshan Liao
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
39
|
Farajzadeh R, Zarghami N, Serati-Nouri H, Momeni-Javid Z, Farajzadeh T, Jalilzadeh-Tabrizi S, Sadeghi-Soureh S, Naseri N, Pilehvar-Soltanahmadi Y. Macrophage repolarization using CD44-targeting hyaluronic acid–polylactide nanoparticles containing curcumin. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:2013-2021. [DOI: 10.1080/21691401.2017.1408116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Farajzadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamed Serati-Nouri
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Momeni-Javid
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Taher Farajzadeh
- Department of Microbiology, Zanjan Basic Sciences and Medicine Branch, Islamic Azad University, Zanjan, Iran
| | - Sepideh Jalilzadeh-Tabrizi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Shima Sadeghi-Soureh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Neda Naseri
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Pilehvar-Soltanahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
40
|
Poilil Surendran S, George Thomas R, Moon MJ, Jeong YY. Nanoparticles for the treatment of liver fibrosis. Int J Nanomedicine 2017; 12:6997-7006. [PMID: 29033567 PMCID: PMC5614791 DOI: 10.2147/ijn.s145951] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic liver diseases represent a global health problem due to their high prevalence worldwide and the limited available curative treatment options. They can result from various causes, both infectious and noninfectious diseases. The application of nanoparticle (NP) systems has emerged as a rapidly evolving area of interest for the safe delivery of various drugs and nucleic acids for chronic liver diseases. This review presents the pathogenesis, diagnosis and the emerging nanoparticulate systems used in the treatment of chronic liver diseases caused by liver fibrosis. Activated hepatic stellate cell (HSC) is considered to be the main mechanism for liver fibrosis. Ultrasonography and magnetic resonance imaging techniques are widely used noninvasive diagnostic methods for hepatic fibrosis. A variety of nanoparticulate systems are mainly focused on targeting HSC in the treatment of hepatic fibrosis. As early liver fibrosis is reversible by current NP therapy, it is being studied in preclinical as well as clinical trials. Among various nanoparticulate systems, inorganic NPs, liposomes and nanomicelles have been widely studied due to their distinct properties to deliver drugs as well as other therapeutic moieties. Liposomal NPs in clinical trials is considered to be a milestone in the treatment of hepatic fibrosis. Currently, NP therapy for liver fibrosis is updating fast, and hopefully, it can be the future remedy for liver fibrosis.
Collapse
Affiliation(s)
- Suchithra Poilil Surendran
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| | - Reju George Thomas
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| | - Myeong Ju Moon
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| | - Yong Yeon Jeong
- Department of Radiology, BioMolecular Theranostics (BiT) Lab, Chonnam National University Medical School, Chonnam National University Hwasun Hospital (CNUHH), South Korea
| |
Collapse
|