1
|
Létourneau V, Gagné MJ, Vyskocil JM, Brochu V, Robitaille K, Gauthier M, Brassard J, Duchaine C. Hunting for a viral proxy in bioaerosols of swine buildings using molecular detection and metagenomics. J Environ Sci (China) 2025; 148:69-78. [PMID: 39095200 DOI: 10.1016/j.jes.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/04/2024]
Abstract
There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine. The effectiveness of dust mitigation strategies such as oil sprinkling, to decrease risk of airborne virus transmission are unknown. Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents. Air particles were collected from swine buildings using high-volume air samplers. Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by high-throughput sequencing. Porcine astroviruses group 2 were common (from 102 to 105 genomic copies per cubic meter of air or gc/m3, 93% positivity) while no norovirus genogroup II was recovered from air samples. Porcine torque teno sus virus were detected by qPCR in low concentrations (from 101 to 102 gc/m3, 47% positivity). Among the identified viral families by metagenomics analysis, Herelleviridae, Microviridae, Myoviridae, Podoviridae, and Siphoviridae were dominant. The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m3 among the samples taken for the present study (97% positivity) and banked samples from 5- and 15-year old studies (89% positivity). According to the present study, both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.
Collapse
Affiliation(s)
- Valérie Létourneau
- Quebec Heart and Lung Institute Research Centre - Université Laval, 2725 Chemin Sainte-Foy, Quebec, G1V 4G5, Canada
| | - Marie-Josée Gagné
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, Canada
| | - Jonathan M Vyskocil
- Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada
| | - Vincent Brochu
- Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada
| | - Kim Robitaille
- Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada
| | - Martin Gauthier
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, Canada; The Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine of Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, J2S 2M2, Canada
| | - Caroline Duchaine
- Quebec Heart and Lung Institute Research Centre - Université Laval, 2725 Chemin Sainte-Foy, Quebec, G1V 4G5, Canada; Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada.
| |
Collapse
|
2
|
Peer A, Samuelson DR. The Role of the Microbiome in Allergy, Asthma, and Occupational Lung Disease. Curr Allergy Asthma Rep 2024; 24:415-423. [PMID: 38904934 PMCID: PMC11297072 DOI: 10.1007/s11882-024-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE OF REVIEW The human commensal microbiota is now widely accepted as a key regulator of human health and disease. The composition of the mucosal associated microbiota has been shown to play a critical role in the lung health. The role of the mucosal microbiota in the development and severity of allergy, asthma, and occupational lung disease is only beginning to take shape. However, advances in our understanding of these links have tremendous potential to led to new clinical interventions to reduce allergy, asthma, and occupational lung disease morbidity. RECENT FINDINGS We review recent work describing the relationship and role of the commensal microbiota in the development of allergy, asthma, and occupational lung disease. Our review primarily focuses on occupational exposures and the effects of the microbiome, both in composition and function. Data generated from these studies may lead to the development of interventions targeted at establishing and maintaining a healthy microbiota. We also highlight the role of environmental exposures and the effects on the commensal microbial community and their potential association with occupational lung disease. This review explores the current research describing the role of the human microbiome in the regulation of pulmonary health and disease, with a specific focus on the role of the mucosal microbiota in the development of allergy, asthma, and occupational lung disease.
Collapse
Affiliation(s)
- Ashley Peer
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Derrick R Samuelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, USA.
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
3
|
Yadav A, Yadav R, Khare P. Impact of cultivating different Ocimum species on bioaerosol bacterial communities and functional genome at an agricultural site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124289. [PMID: 38825219 DOI: 10.1016/j.envpol.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The effects of the surrounding environment on the bacterial composition of bioaerosol were well documented for polluted and contaminated sites. However, there is limited data on the impact of plant species, especially those that produce aromas, on bioaerosol composition at agricultural sites. Hence, the aim of this study is to evaluate the variability in bacterial communities present in bioaerosol samples collected from agricultural sites with aroma-producing crops. For this, PM2.5, PM10, and bioaerosol samples were collected from agricultural fields growing Ocimum [two varieties of O. sanctum (CIM-Aayu and CIM-Angana)] and O. kilimandscharicum (Kapoor), nearby traffic junctions and suburban areas. PM2.5 and PM10 concentrations at the agricultural site were in between the other two polluted sites. However, bioaerosol concentration was lower at agricultural sites than at other sites. The culturable bacteria Bacillus subtilis, Bacillus tequilensis, and Staphylococcus saprophyticus were more prevalent in agricultural sites than in other areas. However, the composition of non-culturable bacteria varied between sites and differed in three fields where Ocimum was cultivated. The CIM-Aayu cultivated area showed a high bacterial richness, lower Simpson and Shannon indices, and a distinctive metabolic profile. The sites CIM-Angana and CIM-Kapoor had a higher abundance of Aeromonas, while Pantoea and Pseudomonas were present at CIM-Aayu. Acinetobacter, Staphylococcus, and Bacillus were the dominant genera at the other two sites. Metabolic profiling showed that the CIM-Aayu site had a higher prevalence of pathways related to amino acid and carbohydrate metabolism and environmental information processing compared to other sites. The composition of bioaerosol among the three different Ocimum sites could be due to variations in the plant volatile and cross-feeding nature of bacterial isolates, which further needs to be explored.
Collapse
Affiliation(s)
- Anisha Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India
| | - Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Cornu Hewitt B, Smit LAM, van Kersen W, Wouters IM, Heederik DJJ, Kerckhoffs J, Hoek G, de Rooij MMT. Residential exposure to microbial emissions from livestock farms: Implementation and evaluation of land use regression and random forest spatial models. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123590. [PMID: 38387543 DOI: 10.1016/j.envpol.2024.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest (RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 (±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in future epidemiological studies. Consequently, this will provide valuable insights into the public health implications of exposure to specific microbial agents.
Collapse
Affiliation(s)
- Beatrice Cornu Hewitt
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands.
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Warner van Kersen
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Jules Kerckhoffs
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
5
|
Bai Y, Sun X, Guo Y, Qiu T, Xin H, Yu A, Wang X, Gao M. Particle-size stratification of airborne antibiotic resistant genes, mobile genetic elements, and bacterial pathogens within layer and broiler farms in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112799-112812. [PMID: 37843709 DOI: 10.1007/s11356-023-29975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
The particle-size distribution of antimicrobial resistant (AMR) elements is crucial in evaluating their environmental behavior and health risks, and exposure to the fecal microbiome via particle mass (PM) is an important route of transmission of AMR from livestock to humans. However, few studies have explored the association between air and fecal AMR in farm environments from the perspective of particle-size stratification. We collected feces and PMs of different sizes from layer and broiler farms, quantified antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and human pathogenic bacteria (HPB) using Droplet digital PCR (ddPCR), and analyzed the bacterial communities based on 16S rRNA sequencing. The particle-size distributions of 16S rRNA and AMR elements were similar and generally increased with larger particle sizes in chicken farms. In broiler farms, we observed a bimodal distribution with two peaks at 5.8-9.0 μm and 3.3-4.7 μm. The dominant airborne bacterial phyla were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The dominant phyla in the feces were the same as those in the air, but the order of relative abundance varied. The particle-size distributions of specific bacterial genera differed between the animal-farm types. Overall, the degree of association between feces and different particulates increased with increasing particle size. The microbial communities in the coarse particles were similar to those in fecal samples. Escherichia coli, Staphylococcus spp., Campylobacter spp., and sul 2 (sulfonamide ARGs) tended to attach to small particles. We highlight the particle size-specific relationship between fecal and air microbes involving ARGs, MGEs, and HPB and provide valuable information for comprehensively assessing the transmission of fecal microorganisms through the airpath and its environmental and occupational health risks.
Collapse
Affiliation(s)
- Yuqiao Bai
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China
| | - Huibo Xin
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China
| | - Aoyuan Yu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, No. 9 Shuguang Middle Road, Haidian District, Beijing, 100097, China.
| |
Collapse
|
6
|
Peltoniemi O, Tanskanen T, Kareskoski M. One Health challenges for pig reproduction. Mol Reprod Dev 2023; 90:420-435. [PMID: 36638261 DOI: 10.1002/mrd.23666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
The current state of the world challenges pig reproduction as an important part of One Health, which involves interrelationships between animal, human and environmental health. The One Health concept underlines a comparative aspect in reproductive physiology and disease occurrence, bridging knowledge from one species to another. Seasonal changes in the environment affect pig reproduction and climate change may further strengthen those effects. Endocrine-disrupting chemicals (EDCs), and specifically phthalates and heavy metals, interfere with endocrine function, and thereby sexual behavior, fertilization capacity and steroidogenesis. Reproductive infections and extended semen storage are important indications for antimicrobial use. Innovative solutions are needed to explore alternatives to antimicrobials. Efforts to ensure reproductive efficiency have prolonged farrowing as litter size has doubled over the past three decades, compromising immune transfer and welfare. Physiological, metabolic and programming related events around parturition are key areas for future One Health research in pig reproduction. In conclusion, climate change challenges reproductive management and breeding. More resilient pigs that can tolerate harsh environment but maintain high reproductive performance are needed. EDCs continue to grow as an environmental challenge for reproductive management and alternatives to antibiotics will be required.
Collapse
Affiliation(s)
- Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Veterinary Medicine, Helsinki One Health, University of Helsinki, Helsinki, Finland
| | - Topi Tanskanen
- Faculty of Veterinary Medicine, Helsinki One Health, University of Helsinki, Helsinki, Finland
| | - Maria Kareskoski
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Cui H, Zhang C, Zhao K, Liu J, Pu J, Kong Y, Dong S, Chen L, Zhao Y, Chen Y, Chen Z, Zhang L, Wang Z, Guo Z. Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Int J Hyg Environ Health 2023; 251:114173. [PMID: 37119673 DOI: 10.1016/j.ijheh.2023.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Poultry farms are a complex environment for close contact between humans and animals. Accumulating evidence has indicated that pathogens and drug resistance genes in chicken houses may pose a serious threat to public health and economic concerns. However, insufficient knowledge of the indoor aerosol microbiome and resistome profiles of layer hen houses hampers the understanding of their health effects. Environmental surveillance of antibiotic resistance may contribute to a better understanding and management of the human exposure risk of bioaerosols under the environmental conditions of chicken houses. In addition, the chicken house has a long operation cycle, and the bacterial diversity and antibiotic resistance genes of aerosols in different periods may be different. In this study, air samples were collected from 18 chicken houses on three farms, including the early laying period (EL), peak laying period (PL), and late laying period (LL). 16S rRNA gene sequencing and metagenomics were used to study the composition of the bacteria and resistome in aerosols of layer hen houses and the results showed that they varied with laying period. The highest alpha diversity of bacteria was observed in PL bioaerosols. The dominant bacterial phyla included Firmicutes, Bacteroidetes and Proteobacteria. Three potential pathogenic bacterial genera (Bacteroides, Corynebacterium and Fusobacterium) were found. The most abundant ARG type was aminoglycosides in all laying periods. In total, 22 possible ARG host genera were detected. ARG subtypes and abundance were both higher in LL. Network analysis also showed higher co-occurrence patterns between the bacteria and resistome in bioaerosols. The laying period plays an important role in the bacterial community and resistome in layer house aerosols.
Collapse
Affiliation(s)
- Huan Cui
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China; College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Kui Zhao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Avenue, Changchun, 130062, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yunyi Kong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Yanbin Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Yanyan Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhaoliang Chen
- College of Veterinary Medicine, Hebei Agricultural University, 2596 Lucky South Street, Baoding, 071000, Hebei, China
| | - Lei Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China
| | - Zhongyi Wang
- Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 573 Tulip Street, Changchun, 130122, Jilin, China.
| |
Collapse
|
8
|
Kontro MH, Kirsi M, Laitinen SK. Exposure to bacterial and fungal bioaerosols in facilities processing biodegradable waste. Front Public Health 2022; 10:789861. [PMID: 36466510 PMCID: PMC9708704 DOI: 10.3389/fpubh.2022.789861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to determine the exposure of workers within biodegradable waste processing facilities to bacteria and fungi to identify any exposures of potential concern to health. Occupational measurements were performed in six composting and three bioenergy (bioethanol or methane/biogas) producing facilities. Bioaerosols were measured from breathing zones with Button aerosol or open face cassette filter samplers, and swab specimens were taken from the nasal mucous membranes of the workers. Aspergillus fumigatus, Bacillus cereus group, Campylobacter spp., Salmonella spp., Streptomyces spp., and Yersinia spp. were determined by real-time polymerase chain reaction (qPCR). A. fumigatus, and mesophilic and thermophilic actinobacteria were also cultivated from filters. Bacterial airborne endotoxins collected by IOM samplers were analyzed using a Limulus assay. Bioaerosol levels were high, especially in composting compared to bioenergy producing facilities. Endotoxin concentrations in composting often exceeded the occupational exposure value of 90 EU/m3, which may be harmful to the health. In addition to endotoxins, the concentrations of A. fumigatus (up to 2.4 × 105 copies/m3) and actinobacteria/Streptomyces spp. (up to 1.6 × 106 copies/m3) in the air of composting facilities were often high. Microbial and endotoxin concentrations were typically highest in waste reception and pre-treatment, equal or decreased during processing and handling of treated waste, and lowest in wheel loader cabins and control rooms/outdoors. Still, the parameters measured in wheel loader cabins were often higher than in the control sites, which suggests that the use of preventive measures could be improved. B. cereus group, Salmonella spp., and Yersinia spp. were rarely detected in bioaerosols or nasal swabs. Although Campylobacter spp. DNA was rarely detected in air, as a new finding, Campylobacter ureolyticus DNA was frequently detected in the nasal mucous membranes of workers, based on partial 16S rDNA sequencing. Moreover, especially A. fumigatus and C. ureolyticus spp. DNA concentrations in swabs after the work shift were significantly higher than before the shift, which indicates their inhalation or growth during the work shift. Microbial qPCR analysis of bioaerosols and swab samples of nasal mucosa allowed measuring exposure in various work operations and during the work shift, identifying problems for health risk assessment to improve working conditions, and evaluating the effectiveness of preventive measures and personal protection of workers.
Collapse
Affiliation(s)
- Merja H. Kontro
- Ecosystems and Environment Research Programme, University of Helsinki, Helsinki, Finland
| | - Maija Kirsi
- Work Environment Laboratories, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sirpa K. Laitinen
- Department of Occupational Safety, Finnish Institute of Occupational Health, Helsinki, Finland,*Correspondence: Sirpa K. Laitinen
| |
Collapse
|
9
|
Lou C, Bai Y, Chai T, Yu H, Lin T, Hu G, Guan Y, Wu B. Research progress on distribution and exposure risk of microbial aerosols in animal houses. Front Vet Sci 2022; 9:1015238. [PMID: 36439349 PMCID: PMC9684608 DOI: 10.3389/fvets.2022.1015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Environmental aerosols in animal houses are closely related to the productive performance and health level of animals living in the houses. Preferable housing environments can improve animal welfare and production efficiency, so it is necessary to monitor and study these environments. In recent years, there have been many large-scale outbreaks of respiratory diseases related to biological aerosols, especially the novel coronavirus that has been sweeping the world. This has attracted much attention to the mode of aerosol transmission. With the rapid development of large-scale and intensive breeding, microbial aerosols have gradually become the main factor of environmental pollution in animal houses. They not only lead to a large-scale outbreak of infectious diseases, but they also have a certain impact on the health of animals and employees in the houses and increase the difficulty of prevention and control of animal-borne diseases. This paper reviews the distribution, harm, and control measures of microbial aerosols in animal house environments in order to improve people's understanding of them.
Collapse
Affiliation(s)
- Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongjie Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Tai'an, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Tai'an, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tuorong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangming Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Bo Wu
| |
Collapse
|
10
|
George PBL, Leclerc S, Turgeon N, Veillette M, Duchaine C. Conifer Needle Phyllosphere as a Potential Passive Monitor of Bioaerosolised Antibiotic Resistance Genes. Antibiotics (Basel) 2022; 11:907. [PMID: 35884161 PMCID: PMC9312085 DOI: 10.3390/antibiotics11070907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/29/2023] Open
Abstract
Monitoring antibiotic resistance genes (ARGs) is vital to the One Health approach to tackling the antibiotic resistance crisis. It has been suggested that conifer needles can be used as passive bioaerosol samplers. Here, the use of conifer needles as biomonitors of ARGs in bioaerosols was assessed as a proof-of-concept. Needles were collected from trees surrounding pig farms, villages, and forest sites in Québec, Canada. Needles were homogenised and DNA was extracted. Results of qPCR analyses showed biomass estimates were consistent across samples. Number and quantity of ARGs was significantly lower in forest sites when compared to the farm and village, comprising a distinct resistome. Consistent with previous findings, the most common ARGs were tetracyclines and sulfonamides, which were found close to agricultural activities. Although results were limited, there is great potential for using the conifer phyllosphere as a passive bioaerosol sampler. This method represents an accessible way to promote ARG surveillance over long distances from point sources.
Collapse
Affiliation(s)
- Paul B. L. George
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (S.L.); (C.D.)
| | - Samantha Leclerc
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (S.L.); (C.D.)
| | - Nathalie Turgeon
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (N.T.); (M.V.)
| | - Marc Veillette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (N.T.); (M.V.)
| | - Caroline Duchaine
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (S.L.); (C.D.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (N.T.); (M.V.)
| |
Collapse
|
11
|
Abstract
Particulate matter (PM) represents an air quality management challenge for confined swine production systems. Due to the limited space and ventilation rate, PM can reach relatively high concentrations in swine barns. PM in swine barns possesses different physical, chemical, and biological characteristics than that in the atmosphere and other indoor environments. As a result, it exerts different environmental and health effects and creates some unique challenges regarding PM measurement and mitigation. Numerous research efforts have been made, generating massive data and information. However, relevant review reports are sporadic. This study aims to provide an updated comprehensive review of swine barn PM, focusing on publications since 1990. It covers various topics including PM characteristics, sources, measurement methods, and in-barn mitigation technologies. As PM in swine barns is primarily of biological origins, bioaerosols are reviewed in great detail. Relevant topics include bacterial/fungal counts, viruses, microbial community composition, antibiotic-resistant bacteria, antibiotic resistance genes, endotoxins, and (1→3)-β-D-glucans. For each topic, existing knowledge is summarized and discussed and knowledge gaps are identified. Overall, PM in swine barns is complicated in chemical and biological composition and highly variable in mass concentrations, size, and microbial abundance. Feed, feces, and skins constitute the major PM sources. Regarding in-barn PM mitigation, four technologies (oil/water sprinkling, ionization, alternation of feed and feeders, and recirculating air filtration) are dominant. However, none of them have been widely used in commercial barns. A collective discussion of major knowledge gaps and future research needs is offered at the end of the report.
Collapse
|
12
|
Mucci N, Tommasi E, Chiarelli A, Lulli LG, Traversini V, Galea RP, Arcangeli G. WORKbiota: A Systematic Review about the Effects of Occupational Exposure on Microbiota and Workers' Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1043. [PMID: 35162072 PMCID: PMC8834335 DOI: 10.3390/ijerph19031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022]
Abstract
The characterization of human microbiota and the impact of its modifications on the health of individuals represent a current topic of great interest for the world scientific community. Scientific evidence is emerging regarding the role that microbiota has in the onset of important chronic illnesses. Since individuals spend most of their life at work, occupational exposures may have an impact on the organism's microbiota. The purpose of this review is to explore the influence that different occupational exposures have on human microbiota in order to set a new basis for workers' health protection and disease prevention. The literature search was performed in PubMed, Cochrane, and Scopus. A total of 5818 references emerged from the online search, and 31 articles were included in the systematic review (26 original articles and 5 reviews). Exposure to biological agents (in particular direct contact with animals) was the most occupational risk factor studied, and it was found involved in modifications of the microbiota of workers. Changes in microbiota were also found in workers exposed to chemical agents or subjected to work-related stress and altered dietary habits caused by specific microclimate characteristics or long trips. Two studies evaluated the role of microbiota changes on the development of occupational lung diseases. Occupational factors can interface with the biological rhythms of the bacteria of the microbiota and can contribute to its modifications and to the possible development of diseases. Future studies are needed to better understand the role of the microbiota and its connection with occupational exposure to promote projects for the prevention and protection of global health.
Collapse
Affiliation(s)
- Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Eleonora Tommasi
- Postgraduate Medical Training Programme in Cardiology, University of Perugia, 1 Piazza dell’Università, 06123 Perugia, Italy;
| | - Annarita Chiarelli
- Occupational Medicine Unit, Careggi University Hospital, 50134 Florence, Italy;
| | | | - Veronica Traversini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| | - Raymond Paul Galea
- Faculty of Medicine & Surgery, University of Malta, MSD 2090 Msida, Malta;
- The Malta Postgraduate Medical Training Programme, Mater Dei Hospital Msida, MSD 2090 Msida, Malta
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (N.M.); (V.T.); (G.A.)
| |
Collapse
|
13
|
Bai H, He LY, Wu DL, Gao FZ, Zhang M, Zou HY, Yao MS, Ying GG. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. ENVIRONMENT INTERNATIONAL 2022; 158:106927. [PMID: 34673316 DOI: 10.1016/j.envint.2021.106927] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 05/05/2023]
Abstract
Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health.
Collapse
Affiliation(s)
- Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Mao-Sheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
14
|
Antibiotic Resistance: From Pig to Meat. Antibiotics (Basel) 2021; 10:antibiotics10101209. [PMID: 34680790 PMCID: PMC8532907 DOI: 10.3390/antibiotics10101209] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Pork meat is in high demand worldwide and this is expected to increase. Pork is often raised in intensive conditions, which is conducive to the spread of infectious diseases. Vaccines, antibiotics, and other biosafety measures help mitigate the impact of infectious diseases. However, bacterial strains resistant to antibiotics are more and more frequently found in pig farms, animals, and the environment. It is now recognized that a holistic perspective is needed to sustainably fight antibiotic resistance, and that an integrated One Health approach is essential. With this in mind, this review tackles antibiotic resistance throughout the pork raising process, including their microbiome; many factors of their environment (agricultural workers, farms, rivers, etc.); and an overview of the impact of antibiotic resistance on pork meat, which is the end product available to consumers. Antibiotic resistance, while a natural process, is a public health concern. If we react, and act, collectively, it is expected to be, at least partially, reversible with judicious antibiotic usage and the development of innovative strategies and tools to foster animal health.
Collapse
|
15
|
Yang F, Gao Y, Zhao H, Li J, Cheng X, Meng L, Dong P, Yang H, Chen S, Zhu J. Revealing the distribution characteristics of antibiotic resistance genes and bacterial communities in animal-aerosol-human in a chicken farm: From One-Health perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112687. [PMID: 34438267 DOI: 10.1016/j.ecoenv.2021.112687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics in breeding industry can enter the environment through multiple pathways, thus accelerating the emergence and spread of antibiotic resistance genes (ARGs), among which aerosol transmission is easily achieved and often overlooked. To elucidate the role of aerosols in this situation, the present study investigated the distribution characteristics of 107 ARG subtypes (targeting to eight different ARG types) and nine mobile genetic elements (MGEs) and bacterial community in animal (chicken cloaca), environment (aerosols) and human (nasopharynx) of a chicken farm (n = 42) in Henan Province. In total, 116 ARG subtypes and MGEs were identified in the poultry farm. The total bacterial concentration of aerosols inside the chicken house (3.117 × 104 CFU/m3) exceeded the corresponding limit. The microbial communities in the samples of cloaca swab (C) and the workers' nasopharyngeal swab (N) were closer, while the abundance distribution of ARGs/ MGEs in cloacal swab (C) and aerosol (AI) in chicken house were much similar. There were certain consistency of the microbial community structure and the distribution of ARGs among the three groups of chicken cloaca, air aerosol, and workers' nasopharynx. Our results highlighted that animal breeding does have a certain impact on the surrounding environment and human, and aerosols play an important role in this process.
Collapse
Affiliation(s)
- Fan Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanling Gao
- Henan Vocational College of Agriculture, Zhengzhou 450001, Henan, China
| | - Hongcheng Zhao
- Qingpu District Center for Disease Control and Prevention, Shanghai 201799, China
| | - Jinlei Li
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Lei Meng
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Peng Dong
- Henan Institute of Veterinary Drug and Feed Control, Zhengzhou 450001, Henan, China
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shuaiyin Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Jingyuan Zhu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
16
|
Robinson JM, Cando-Dumancela C, Antwis RE, Cameron R, Liddicoat C, Poudel R, Weinstein P, Breed MF. Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Sci Rep 2021; 11:9516. [PMID: 33947905 PMCID: PMC8096821 DOI: 10.1038/s41598-021-89065-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/20/2021] [Indexed: 02/02/2023] Open
Abstract
Exposure to biodiverse aerobiomes supports human health, but it is unclear which ecological factors influence exposure. Few studies have investigated near-surface green space aerobiome dynamics, and no studies have reported aerobiome vertical stratification in different urban green spaces. We used columnar sampling and next generation sequencing of the bacterial 16S rRNA gene, combined with geospatial and network analyses to investigate urban green space aerobiome spatio-compositional dynamics. We show a strong effect of habitat on bacterial diversity and network complexity. We observed aerobiome vertical stratification and network complexity that was contingent on habitat type. Tree density, closer proximity, and canopy coverage associated with greater aerobiome alpha diversity. Grassland aerobiomes exhibited greater proportions of putative pathogens compared to scrub, and also stratified vertically. We provide novel insights into the urban ecosystem with potential importance for public health, whereby the possibility of differential aerobiome exposures appears to depend on habitat type and height in the airspace. This has important implications for managing urban landscapes for the regulation of aerobiome exposure.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape Architecture, The University of Sheffield, Sheffield, S10 2TN, UK.
- inVIVO Planetary Health of the Worldwide Universities Network, NJ, 10704, USA.
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia.
| | - Christian Cando-Dumancela
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
| | - Rachael E Antwis
- School of Science, Engineering and Environment, University of Salford, Salford, M5 4WX, UK
| | - Ross Cameron
- Department of Landscape Architecture, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
- School of Public Health and the Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Ravin Poudel
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Philip Weinstein
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
- School of Public Health and the Environment Institute, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
| |
Collapse
|
17
|
Relationships among Fecal, Air, Oral, and Tracheal Microbial Communities in Pigs in a Respiratory Infection Disease Model. Microorganisms 2021; 9:microorganisms9020252. [PMID: 33513772 PMCID: PMC7912642 DOI: 10.3390/microorganisms9020252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The association of the lower respiratory tract microbiome in pigs with that of other tissues and environment is still unclear. This study aimed to describe the microbiome of tracheal and oral fluids, air, and feces in the late stage of Mycoplasma hyopneumoniae infection in pigs, and assess the association between the tracheal microbiome and those from air, feces, and oral fluids. Tracheal fluids (n = 73), feces (n = 71), oropharyngeal fluids (n = 8), and air (n = 12) were collected in seeder pigs (inoculated with M. hyopneumoniae) and contact pigs (113 days post exposure to seeder pigs). After DNA extraction, the V4 region from 16S rRNA gene was sequenced and reads were processed using Divisive Amplicon Denoising Algorithm (DADA2). Clostridium and Streptococcus were among the top five genera identified in all sample types. Mycoplasma hyopneumoniae in tracheal fluids was associated with a reduction of diversity and increment of M. hyorhinis, Glaesserella parasuis, and Pasteurella multocida in tracheal fluids, as well as a reduction of Ruminiclostridium, Barnesiella, and Lactobacillus in feces. Air contributed in a greater proportion to bacteria in the trachea compared with feces and oral fluids. In conclusion, evidence suggests the existence of complex interactions between bacterial communities from distant and distinct niches.
Collapse
|
18
|
Robinson JM, Cando-Dumancela C, Liddicoat C, Weinstein P, Cameron R, Breed MF. Vertical Stratification in Urban Green Space Aerobiomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:117008. [PMID: 33236934 PMCID: PMC7687659 DOI: 10.1289/ehp7807] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to a diverse environmental microbiome is thought to play an important role in "educating" the immune system and facilitating competitive exclusion of pathogens to maintain human health. Vegetation and soil are key sources of airborne microbiota--the aerobiome. A limited number of studies have attempted to characterize the dynamics of near surface green space aerobiomes, and no studies to date have investigated these dynamics from a vertical perspective. Vertical stratification in the aerobiome could have important implications for public health and for the design, engineering, and management of urban green spaces. OBJECTIVES The primary objectives of this study were to: a) assess whether significant vertical stratification in bacterial species richness and evenness (alpha diversity) of the aerobiome occurred in a parkland habitat in Adelaide, South Australia; b) assess whether significant compositional differences (beta diversity) between sampling heights occurred; and c) to preliminarily assess whether there were significant altitudinal differences in potentially pathogenic and beneficial bacterial taxa. METHODS We combined an innovative columnar sampling method at soil level, 0.0, 0.5, 1.0, and 2.0 m , using passive petri dish sampling to collect airborne bacteria. We used a geographic information system (GIS) to select study sites, and we used high-throughput sequencing of the bacterial 16S rRNA gene to assess whether significant vertical stratification of the aerobiome occurred. RESULTS Our results provide evidence of vertical stratification in both alpha and beta (compositional) diversity of airborne bacterial communities, with diversity decreasing roughly with height. We also found significant vertical stratification in potentially pathogenic and beneficial bacterial taxa. DISCUSSION Although additional research is needed, our preliminary findings point to potentially different exposure attributes that may be contingent on human height and activity type. Our results lay the foundations for further research into the vertical characteristics of urban green space aerobiomes and their implications for public health and urban planning. https://doi.org/10.1289/EHP7807.
Collapse
Affiliation(s)
- Jake M Robinson
- Department of Landscape, The University of Sheffield, Sheffield, UK
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, New Jersey, USA
- College of Science and Engineering, Flinders University, Bedford Park, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
| | - Christian Cando-Dumancela
- College of Science and Engineering, Flinders University, Bedford Park, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
| | - Craig Liddicoat
- College of Science and Engineering, Flinders University, Bedford Park, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
- School of Public Health and the Environment Institute, University of Adelaide, Adelaide, Australia
| | - Philip Weinstein
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
- School of Public Health and the Environment Institute, University of Adelaide, Adelaide, Australia
| | - Ross Cameron
- Department of Landscape, The University of Sheffield, Sheffield, UK
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, Australia
- The Healthy Urban Microbiome Initiative (HUMI), Adelaide, Australia
| |
Collapse
|
19
|
Luiken REC, Van Gompel L, Bossers A, Munk P, Joosten P, Hansen RB, Knudsen BE, García-Cobos S, Dewulf J, Aarestrup FM, Wagenaar JA, Smit LAM, Mevius DJ, Heederik DJJ, Schmitt H. Farm dust resistomes and bacterial microbiomes in European poultry and pig farms. ENVIRONMENT INTERNATIONAL 2020; 143:105971. [PMID: 32738764 DOI: 10.1016/j.envint.2020.105971] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Livestock farms are a reservoir of antimicrobial resistant bacteria from feces. Airborne dust-bound bacteria can spread across the barn and to the outdoor environment. Therefore, exposure to farm dust may be of concern for animals, farmers and neighboring residents. Although dust is a potential route of transmission, little is known about the resistome and bacterial microbiome of farm dust. OBJECTIVES We describe the resistome and bacterial microbiome of pig and poultry farm dust and their relation with animal feces resistomes and bacterial microbiomes, and on-farm antimicrobial usage (AMU). In addition, the relation between dust and farmers' stool resistomes was explored. METHODS In the EFFORT-study, resistomes and bacterial microbiomes of indoor farm dust collected on Electrostatic Dust fall Collectors (EDCs), and animal feces of 35 conventional broiler and 44 farrow-to-finish pig farms from nine European countries were determined by shotgun metagenomic analysis. The analysis also included 79 stool samples from farmers working or living at 12 broiler and 19 pig farms and 46 human controls. Relative abundance of and variation in resistome and bacterial composition of farm dust was described and compared to animal feces and farmers' stool. RESULTS The farm dust resistome contained a large variety of antimicrobial resistance genes (ARGs); more than the animal fecal resistome. For both poultry and pigs, composition of dust resistomes finds (partly) its origin in animal feces as dust resistomes correlated significantly with fecal resistomes. The dust bacterial microbiome also correlated significantly with the dust resistome composition. A positive association between AMU in animals on the farm and the total abundance of the dust resistome was found. Occupational exposure to pig farm dust or animal feces may contribute to farmers' resistomes, however no major shifts in farmers resistome towards feces or dust resistomes were found in this study. CONCLUSION Poultry and pig farm dust resistomes are rich and abundant and associated with the fecal resistome of the animals and the dust bacterial microbiome.
Collapse
Affiliation(s)
- Roosmarijn E C Luiken
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands.
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands
| | - Patrick Munk
- Section for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Philip Joosten
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | | | - Berith E Knudsen
- Section for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, PO Box 30.001, 9700 RB Groningen, the Netherlands
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Frank M Aarestrup
- Section for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kemitorvet 204, 2800 Kongens Lyngby, Denmark
| | - Jaap A Wagenaar
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands; Dept. Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Dik J Mevius
- Wageningen Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, the Netherlands; Dept. Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 2, 3584 CM Utrecht, the Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721MA Bilthoven, the Netherlands
| |
Collapse
|
20
|
An Overview of Bioinformatics Tools for DNA Meta-Barcoding Analysis of Microbial Communities of Bioaerosols: Digest for Microbiologists. Life (Basel) 2020; 10:life10090185. [PMID: 32911871 PMCID: PMC7555798 DOI: 10.3390/life10090185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
High-throughput DNA sequencing (HTS) has changed our understanding of the microbial composition present in a wide range of environments. Applying HTS methods to air samples from different environments allows the identification and quantification (relative abundance) of the microorganisms present and gives a better understanding of human exposure to indoor and outdoor bioaerosols. To make full use of the avalanche of information made available by these sequences, repeated measurements must be taken, community composition described, error estimates made, correlations of microbiota with covariates (variables) must be examined, and increasingly sophisticated statistical tests must be conducted, all by using bioinformatics tools. Knowing which analysis to conduct and which tools to apply remains confusing for bioaerosol scientists, as a litany of tools and data resources are now available for characterizing microbial communities. The goal of this review paper is to offer a guided tour through the bioinformatics tools that are useful in studying the microbial ecology of bioaerosols. This work explains microbial ecology features like alpha and beta diversity, multivariate analyses, differential abundances, taxonomic analyses, visualization tools and statistical tests using bioinformatics tools for bioaerosol scientists new to the field. It illustrates and promotes the use of selected bioinformatic tools in the study of bioaerosols and serves as a good source for learning the “dos and don’ts” involved in conducting a precise microbial ecology study.
Collapse
|
21
|
Pardon B, Buczinski S. Bovine Respiratory Disease Diagnosis: What Progress Has Been Made in Infectious Diagnosis? Vet Clin North Am Food Anim Pract 2020; 36:425-444. [PMID: 32451034 PMCID: PMC7244442 DOI: 10.1016/j.cvfa.2020.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Bart Pardon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium.
| | - Sébastien Buczinski
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec J2S 2M2, Canada
| |
Collapse
|