1
|
Bao XD, Zu YY, Wang BX, Li MY, Jiang FS, Qian CD, Zhou FM, Ding ZS. Coelonin protects against PM 2 .5 -induced macrophage damage via suppressing TLR4/NF-κB/COX-2 signaling pathway and NLRP3 inflammasome activation in vitro. ENVIRONMENTAL TOXICOLOGY 2023; 38:1196-1210. [PMID: 36880448 DOI: 10.1002/tox.23772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
One of the important monitoring indicators of the air pollution is atmospheric fine particulate matter (PM2.5 ), which can induce lung inflammation after inhalation. Coelonin can alleviate PM2.5 -induced macrophage damage through anti-inflammation. However, its molecular mechanism remains unclear. We hypothesized that macrophage damage may involve the release of inflammatory cytokines, activation of inflammatory pathways, and pyrosis induced by inflammasome. In this study, we evaluated the anti-inflammation activity of coelonin in PM2.5 -induced macrophage and its mechanism of action. Nitric oxide (NO) and reactive oxygen species (ROS) production were measured by NO Assay kit and dichlorofluorescein-diacetate (DCFH-DA), and apoptosis were measured by Flow cytometry and TUNEL staining. The concentration of inflammatory cytokines production was measured with cytometric bead arrays and ELISA kits. The activation of NF-κB signaling pathway and NLRP3 inflammasome were measured by immunofluorescence, quantitative reverse transcription-polymerase chain reaction and western blot. As expected, coelonin pretreatment reduced NO production significantly as well as alleviated cell damage by decreasing ROS and apoptosis. It decreased generation of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in PM2.5 -induced RAW264.7 and J774A.1 cells. Moreover, coelonin markedly inhibited upregulating the expression of toll-like receptor (TLR)4 and cyclo-oxygenase (COX)-2, blocked activation of p-nuclear factor-kappa B (NF-κB) signaling pathway, and suppressed expression of NLRP3 inflammasome, ASC, GSDMD, IL-18 and IL-1β. In conclusion, the results showed that coelonin could protect against PM2.5 -induced macrophage damage via suppressing TLR4/NF-κB/COX-2 signaling pathway and NLRP3 inflammasome activation in vitro.
Collapse
Affiliation(s)
- Xiao-Dan Bao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Yao Zu
- Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan, China
| | - Bi-Xu Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mei-Ya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fu-Sheng Jiang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao-Dong Qian
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang-Mei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhi-Shan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Liu C, Cao G, Li J, Lian S, Zhao K, Zhong Y, Xu J, Chen Y, Bai J, Feng H, He G, Dong X, Yang P, Zeng F, Lin Z, Zhu S, Zhong X, Ma W, Liu T. Effect of long-term exposure to PM 2.5 on the risk of type 2 diabetes and arthritis in type 2 diabetes patients: Evidence from a national cohort in China. ENVIRONMENT INTERNATIONAL 2023; 171:107741. [PMID: 36628860 DOI: 10.1016/j.envint.2023.107741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND It remains unclear whether type 2 diabetes and the complication of arthritis are causally related to the PM2.5 pollutant. Therefore, we aimed to investigate the associations of long-term PM2.5 exposure with type 2 diabetes and with arthritis in type 2 diabetes patients. MATERIALS AND METHODS This study used data from the China Health and Retirement Longitudinal Survey (CHARLS) implemented during 2011-2018. The associations were analyzed by Cox proportional hazards regression models, and the population-attributable fraction (PAF) was calculated to assess the burden of type 2 diabetes and arthritis-attributable to PM2.5. RESULTS A total of 21,075 participants were finally included, with 19,121 analyzed for PM2.5 and type 2 diabetes risk and 12,427 analyzed for PM2.5 and arthritis risk, of which 1,382 with newly-diagnosed type 2 diabetes and 1,328 with arthritis during the follow-up. Overall, each 10 μg/m3 increment in PM2.5 concentration was significantly associated with an increase in the risk of type 2 diabetes (HR = 1.26, 95 %CI1.22 to 1.31), and the PAF of type 2 diabetes attributable to PM2.5 was 13.54 %. In type 2 diabetes patients, each 10 μg/m3 increment in PM2.5 exposure was associated with an increase in arthritis (HR = 1.42, 95 %CI: 1.28 to 1.57), and the association was significantly greater than that (H = 1.23, 95 %CI: 1.19 to 1.28) in adults without type 2 diabetes. The PAFs of arthritis-attributable to PM2.5 in participants with and without type 2 diabetes were 18.54 % and 10.69 %, respectively. CONCLUSION Long-term exposure to PM2.5 may increase the risk of type 2 diabetes and make type 2 diabetes patients susceptible to arthritis.
Collapse
Affiliation(s)
- Chaoqun Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ganxiang Cao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510080, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jieying Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Shaoyan Lian
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ke Zhao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Zhong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jiahong Xu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yumeng Chen
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510080, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jun Bai
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan 528000, China
| | - Hao Feng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaomei Dong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Fangfang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Ziqiang Lin
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Sui Zhu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xinqi Zhong
- Department of Neonatology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, Guangdong, China
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510080, China; China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Kim DH, Lee H, Hwangbo H, Kim SY, Ji SY, Kim MY, Park SK, Park SH, Kim MY, Kim GY, Cheong J, Nam SW, Choi YH. Particulate matter 2.5 promotes inflammation and cellular dysfunction via reactive oxygen species/p38 MAPK pathway in primary rat corneal epithelial cells. Cutan Ocul Toxicol 2022; 41:273-284. [PMID: 36097682 DOI: 10.1080/15569527.2022.2122489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Numerous studies have linked particulate matter 2.5 (PM2.5) to ocular surface diseases, but few studies have been conducted on the biological effect of PM2.5 on the cornea. The objective of the present study was to evaluate the harmful effect of PM2.5 on primary rat corneal epithelial cells (RCECs) in vitro and identify the toxic mechanism involved. MATERIALS AND METHODS Primary cultured RCECs were characterized by pan-cytokeratin (CK) staining. In PM2.5-exposed RCECs, cell viability, microarray gene expression, inflammatory cytokine levels, mitochondrial damage, DNA double-strand break and signaling pathway were investigated. RESULTS Exposure to PM2.5 induced cytotoxicity and morphological changes in RCECs. In addition, PM2.5 markedly up-regulated pro-inflammatory mediators but down-regulated the wound healing-related transforming growth factor-β. Furthermore, PM2.5 promoted mitochondrial reactive oxygen species (ROS) production and mediated cellular damage to mitochondria and DNA, whereas these cellular alterations induced by PM2.5 were markedly suppressed by a potential ROS scavenger. Noteworthy, removal of ROS selectively down-regulated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the activation of the nuclear factor-κB (NF-κB) p65 in PM2.5-stimulated cells. Additionally, SB203580, a p38 MAPK inhibitor, markedly suppressed these PM2.5-mediated cellular dysfunctions. CONCLUSIONS Taken together, our findings show that PM2.5 can promote the ROS/p38 MAPK/NF-κB signaling pathway and lead to mitochondrial damage and DNA double-strand break, which is ultimately caused inflammation and cytotoxicity in RCECs. These findings indicate that the ROS/p38 MAPK/NF-κB signaling pathway is one mechanism involved in PM2.5-induced ocular surface disorders.
Collapse
Affiliation(s)
- Da Hye Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Molecular Biology, xxxx, Busan 46241, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Convergence Medicine, xxxx, Yangsan 50612, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - So Young Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea
| | - Seh-Kwang Park
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Sung-Ho Park
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Mi-Young Kim
- Research and Development Department, xxxx., Busan 47195, Republic of Korea.,xxxx, Seoul 05551, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, xxxx, Jeju 63243, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, xxxx, Busan 46241, Republic of Korea
| | - Soo-Wan Nam
- Department of Smart Bio-Health, xxxx, Busan 47340, Republic of Korea.,Department of Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, College of Engineering, xxxx, Busan 47340, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, xxxx, Busan 47340, Republic of Korea.,Department of Biochemistry, xxxx, Busan 47227, Republic of Korea.,Department of Smart Bio-Health, xxxx, Busan 47340, Republic of Korea.,Core-Facility Center for Tissue Regeneration, xxxx, Busan 47340, Republic of Korea
| |
Collapse
|
4
|
Lyu Y, Zhou J, Li J, Li J, Hu G, Wang L, Wang L, Han J, Wang D. Alterations of IL-1beta and TNF-alpha expression in RAW264.7 cell damage induced by two samples of PM 2.5 with different compositions. Sci Prog 2022; 105:368504221113709. [PMID: 35833342 PMCID: PMC10450461 DOI: 10.1177/00368504221113709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fine particulate matter 2.5 (PM2.5) has been demonstrated by previous studies to be associated with cell damage. To explore the impact of the composition of PM2.5 on PM2.5-mediated inflammation, this study investigated the composition of PM2.5 collected during the wintertime indoor heating season and observed its inflammatory effect. Samples were collected during the heating season from December 5, 2017, to January 8, 2018, in Xi'an. Compositions of organic carbon (OC), elemental carbon (EC), and water-soluble ions were analysed. Two representative samples (sample 1 and 2) were selected with significant differences in compositions. They were configured into four concentrations (0.1 μg/mL, 1 μg/mL, 10 μg/mL, 20 μg/mL) and used as interventions on RAW264.7 cells for 4 h and 24 h separately. Cell viability was detected by CCK-8. Tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) gene and protein expression levels were detected by real-time quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. The results showed that the cell viability of sample 1 intervened cells at 4 h and 24 h was lower than that of sample 2. IL-1β gene in most PM2.5 intervention groups was lower than in the control group. Protein expression was higher at 4 h than at 24 h. In conclusion, PM2.5 components influence cell viability and expression of IL-1β and TNF-α, while high concentrations of NO3-, Cl-, Na+, K+, Mg2+, Ca2+, and others in the PM2.5 composition have a significant harmful effect.
Collapse
Affiliation(s)
- Yizhen Lyu
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Jieting Zhou
- Shaanxi Provincial Academy of Environmental Science, Xi’an, Shaanxi, P. R. China
| | - Jianjun Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi, P. R. China
| | - Jin Li
- State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, Shaanxi, P. R. China
| | - Guocheng Hu
- Ministry of Environmental Protection, South China Institute of Environmental Science, Guangzhou, Guangdong, P. R. China
| | - Liyun Wang
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Liang Wang
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Jing Han
- School of Public Health, Xi’an Jiaotong University, Xi’an, Shaanxi, P. R. China
| | - Dong Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, Hainan, P. R. China
| |
Collapse
|
5
|
Almeida-Silva M, Cardoso J, Alemão C, Santos S, Monteiro A, Manteigas V, Marques-Ramos A. Impact of Particles on Pulmonary Endothelial Cells. TOXICS 2022; 10:toxics10060312. [PMID: 35736920 PMCID: PMC9227819 DOI: 10.3390/toxics10060312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
According to the WHO, air quality affects around 40 million people, contributing to around 21,000 premature deaths per year. Severe respiratory diseases, such as asthma and chronic obstructive pulmonary disorder, can be promoted by air pollution, which has already been documented; this is one of the reasons why air quality is a very relevant factor for human health and well-being. Aerosols are an aggregation of solid or liquid particles dispersed in the air and can be found in the form of dust or fumes. Aerosols can be easily inhaled or absorbed by the skin, which can lead to adverse health effects according to their sizes that range from the nanometre to the millimetre scale. Based on the PRISMA methodology and using the Rayyan QCRI platform, it was possible to assess more than four hundred research articles. This systematic review study aimed to understand the impact of particles on pulmonary endothelial cells, namely particulate matter in different sizes, cigarette smoke, diesel exhaust particles and carbon black. The main conclusions were that particles induce multiple health effects on endothelial cells, namely endothelial dysfunction, which can lead to apoptosis and necrosis, and it may also cause necroptosis in lung structure.
Collapse
Affiliation(s)
- Marina Almeida-Silva
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Jéssica Cardoso
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Catarina Alemão
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Sara Santos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
| | - Ana Monteiro
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Vítor Manteigas
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, ao Km 139.7, 2695-066 Bobadela-Loures, Portugal
| | - Ana Marques-Ramos
- HTRC-Health & Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (M.A.-S.); (J.C.); (C.A.); (S.S.); (A.M.); (V.M.)
- Correspondence: ; Tel.: +351-966087971
| |
Collapse
|
6
|
Yang L, Zhang Y, Qi W, Zhao T, Zhang L, Zhou L, Ye L. Adverse effects of PM 2.5 on cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:71-80. [PMID: 33793141 DOI: 10.1515/reveh-2020-0155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
As an air pollutant, fine particulate matter with a diameter ≤ 2.5 μm (PM2.5) can enter the body through the respiratory tract and cause adverse cardiovascular effects. Here, the effects of PM2.5 on atherosclerosis, hypertension, arrhythmia, myocardial infarction are summarized from the perspective researches of human epidemiology, animal, cell and molecule. The results of this review should be proved useful as a scientific basis for the prevention and treatment of cardiovascular disease caused by PM2.5.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lele Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
7
|
Particulate Matter-Induced Acute Coronary Syndrome: MicroRNAs as Microregulators for Inflammatory Factors. Mediators Inflamm 2021; 2021:6609143. [PMID: 34931116 PMCID: PMC8684514 DOI: 10.1155/2021/6609143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
The most prevalent cause of mortality and morbidity worldwide is acute coronary syndrome (ACS) and its consequences. Exposure to particulate matter (PM) from air pollution has been shown to impair both. Various plausible pathogenic mechanisms have been identified, including microRNAs (miRNAs), an epigenetic regulator for gene expression. Endogenous miRNAs, average 22-nucleotide RNAs (ribonucleic acid), regulate gene expression through mRNA cleavage or translation repression and can influence proinflammatory gene expression posttranscriptionally. However, little is known about miRNA responses to fine PM (PM2.5, PM10, ultrafine particles, black carbon, and polycyclic aromatic hydrocarbon) from air pollution and their potential contribution to cardiovascular consequences, including systemic inflammation regulation. For the past decades, microRNAs (miRNAs) have emerged as novel, prospective diagnostic and prognostic biomarkers in various illnesses, including ACS. We wanted to outline some of the most important studies in the field and address the possible utility of miRNAs in regulating particulate matter-induced ACS (PMIA) on inflammatory factors in this review.
Collapse
|
8
|
Liao F, Tan Y, Wang Y, Zhou C, Wang Q, Li J, He L, Peng X. lncRNA AABR07005593.1 potentiates PM 2.5-induced interleukin-6 expression by targeting MCCC1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112834. [PMID: 34619471 DOI: 10.1016/j.ecoenv.2021.112834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fine particle pollution, specifically pollution by fine particulate matter (PM2.5), remains a significant concern in developing countries and plays an important role in the development and progression of respiratory diseases. Increasing evidences have demonstrated that long non-coding RNAs (lncRNAs) may act as vital molecules by binding to specific RNA-binding protein (RBP); however, their relationship with PM2.5 pollution is largely unexplored. OBJECTIVE We investigated the association between lncRNA and respiratory system inflammation caused by PM2.5. METHODS PM2.5 components were detected by gas chromatography-mass spectrometry (GC-MS), inductively coupled plasma-mass spectrometry (ICP-MS), and ionic chromatography. We established an inflammation model of PM2.5-induced toxicity in vivo (male and female SD rats, 0, 25, 50 and 100 mg/k PM2.5, 1, 7 and 14 days, single non-invasive tracheal instillation) and in vitro (rat alveolar macrophage cell line (NR8383), 0, 50, 100, 200, 400 μM PM2.5 for 24, 48, and 72 h). lncRNA high-throughput sequencing (lncRNA-seq) was used to investigate lncRNA profiles in PM2.5-treated NR8383 cells, and RNA interference (RNAi) was applied to explore the function of the target lncRNA. The mechanisms associated with specific lncRNAs were explored using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) and western blot. RESULTS PM2.5-treated NR8383 cells and SD rats exhibited respiratory inflammation. lncRNA AABR07005593.1 was a pro-inflammatory factor that regulated IL-6 levels. Mechanistically, ChIRP-MS and western blot analyses revealed that highly expressed lncRNA AABR07005593.1 interacted with MCCC1 to involve in the activation of NF-κB pathway, and ultimately promoted the expression of IL-6. CONCLUSION This study demonstrated that PM2.5 induced inflammation in vivo and in vitro. Furthermore, lncRNA AABR07005593.1 bound to MCCC1 to potentiated IL-6 expression. Therefore, lncRNA AABR07005593.1 may act as a potential biomarker for PM2.5 inflammation.
Collapse
Affiliation(s)
- FangPing Liao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Yi Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - YuYu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - CaiLan Zhou
- School of Public Health and Management, YouJiang Medical University for Nationalities, Baise 533000, China
| | - QiuLing Wang
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - JingLin Li
- School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - LiMei He
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - XiaoWu Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
9
|
Lee H, Park C, Kwon DH, Hwangbo H, Kim SY, Kim MY, Ji SY, Kim DH, Jeong JW, Kim GY, Hwang HJ, Choi YH. Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway. Nutr Res Pract 2021; 15:686-702. [PMID: 34858548 PMCID: PMC8601940 DOI: 10.4162/nrp.2021.15.6.686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Schisandrae Fructus, the fruit of Schisandra chinensis Baill., has traditionally been used as a medicinal herb for the treatment of various diseases, and has proven its various pharmacological effects, including anti-inflammatory and antioxidant activities. In this study, we investigated the inhibitory effect of Schisandrae Fructus ethanol extract (SF) on inflammatory and oxidative stress in particulate matter 2.5 (PM2.5)-treated RAW 264.7 macrophages. MATERIALS/METHODS To investigate the anti-inflammatory and antioxidant effects of SF in PM2.5-stimulated RAW 264.7 cells, the levels of pro-inflammatory mediator such as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines including interleukin (IL)-6 and IL-1β, and reactive oxygen species (ROS) were measured. To elucidate the mechanism underlying the effect of SF, the expression of genes involved in the generation of inflammatory factors was also investigated. We further evaluated the anti-inflammatory and antioxidant efficacy of SF against PM2.5 in the zebrafish model. RESULTS The results indicated that SF treatment significantly inhibited the PM2.5-induced release of NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. SF also attenuated the PM2.5-induced expression of IL-6 and IL-1β, reducing their extracellular secretion. Moreover, SF suppressed the PM2.5-mediated translocation of nuclear factor-kappa B (NF-κB) from the cytosol into nuclei and the degradation of inhibitor IκB-α, indicating that SF exhibited anti-inflammatory effects by inhibiting the NF-κB signaling pathway. In addition, SF abolished PM2.5-induced generation of ROS, similar to the pretreatment of a ROS scavenger, but not by an inhibitor of NF-κB activity. Furthermore, SF showed strong protective effects against NO and ROS production in PM2.5-treated zebrafish larvae. CONCLUSIONS Our findings suggest that SF exerts anti-inflammatory and antioxidant effects against PM2.5 through ROS-dependent down-regulating the NF-κB signaling pathway, and that SF can be a potential functional substance to prevent PM2.5-mediated inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Hyesook Lee
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea
| | - Da Hye Kwon
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - So Young Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, Dong-Eui University, Busan 47340, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea.,Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
10
|
Zhao T, Qi W, Yang P, Yang L, Shi Y, Zhou L, Ye L. Mechanisms of cardiovascular toxicity induced by PM 2.5: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65033-65051. [PMID: 34617228 DOI: 10.1007/s11356-021-16735-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies have shown that exposure to particulate matter with a diameter ≤ 2.5 μm (PM2.5) could affect the onset and development of cardiovascular diseases. To explore the underlying mechanisms, the studies conducted in vitro investigations using different cell lines. In this review, we examined recently published reports cited by PubMed or Web of Science on the topic of cardiovascular toxicity induced by PM2.5 that carried the term in vitro. Here, we summarized the suggested mechanisms of PM2.5 leading to adverse effects and cardiovascular toxicity including oxidative stress; the increase of vascular endothelial permeability; the injury of vasomotor function and vascular reparative capacity in vascular endothelial cell lines; macrophage polarization and apoptosis in macrophage cell lines; and hypermethylation and apoptosis in the AC16 cell line and the related signaling pathways, which provided a new research direction of cardiovascular toxicity of PM2.5.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| |
Collapse
|
11
|
Tung NT, Ho KF, Niu X, Sun J, Shen Z, Wu F, Cao J, Dung HB, Thuy TPC, Hsiao TC, Liu WT, Chuang HC. Loss of E-cadherin due to road dust PM 2.5 activates the EGFR in human pharyngeal epithelial cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53872-53887. [PMID: 34036507 DOI: 10.1007/s11356-021-14469-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Exposure to road dust particulate matter (PM) causes adverse health impacts on the human airway. However, the effects of road dust on the upper airway epithelium in humans remain unclear. We investigated the involvement of the epidermal growth factor receptor (EGFR) after PM with an aerodynamic diameter of < 2.5 μm (PM2.5)-induced E-cadherin disruption of human pharyngeal epithelial cells. First, we collected road dust PM2.5 from 10 Chinese cities, including Wuhan, Nanjing, Shanghai, Guangzhou, Chengdu, Beijing, Lanzhou, Tianjin, Harbin, and Xi'an. Human pharyngeal FaDu cells were exposed to road dust PM2.5 at 50 μg/mL for 24 h, cytotoxicity (cell viability and lactate dehydrogenase (LDH)) was assessed, and expressions of the proinflammatory interleukin (IL)-6 and high-mobility group box 1 (HMGB1) protein, receptor for advanced glycation end products (RAGE), occludin, E-cadherin, EGFR, and phosphorylated (p)-EGFR were determined. The E-cadherin gene was then knocked down to investigate EGFR activation in FaDu cells. Exposure to road dust PM2.5 resulted in a decrease in cell viability and increases in LDH and IL-6. Our data suggested that PM2.5 could decrease expressions of occludin and E-cadherin and increase expressions of EGFR and p-EGFR, which was confirmed by E-cadherin-knockdown. Our results showed a negative association between the alterations in E-cadherin and total elemental components in correlation analysis, especially S, Cl, K, Ti, Mn, Fe, Cu, Zn, and Pb. Exposure to metals in PM2.5 from road dust may lead to loss of the barrier function of the upper airway epithelium and activation of the EGFR. Our study showed the adverse effects of road dust PM2.5 on pharyngeal epithelial cells of the human upper airway.
Collapse
Affiliation(s)
- Nguyen Thanh Tung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Kin-Fai Ho
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feng Wu
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Hoang Ba Dung
- Otorhinolaryngology Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Tran Phan Chung Thuy
- Otorhinolaryngology Department, Faculty of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Te Liu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 110, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Sun Z, Ji N, Jiang J, Tao Y, Zhang E, Yang X, Wang Z, Chen Z, Huang M, Zhang M. Fine Particulate Matter (PM 2. 5) Promotes CD146 Expression in Alveolar Epithelial Cells and Cryptococcus neoformans Pulmonary Infection. Front Microbiol 2021; 11:525976. [PMID: 33537006 PMCID: PMC7848894 DOI: 10.3389/fmicb.2020.525976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Air pollution is a leading cause of increasing infectious lung diseases. Pulmonary cryptococcosis is a fatal fungal pneumonia in acquired immunodeficiency syndrome patients. In some cases, the pathogen Cryptococcus neoformans also develops dormant nodules in immunocompetent individuals. In the present study, we demonstrated that fine particulate matter (PM2.5) increased CD146 expression in alveolar epithelial cells and promoted C. neoformans pulmonary infection. Aryl hydrocarbon receptor (AhR) signaling was required for increased expression of CD146 in epithelial cells treated with PM2.5. In a murine model of pulmonary infection, PM2.5 promoted fungal infection, and CD146 deficiency decreased the fugal burden of C. neoformans. Our study may highlight the importance of air pollution to lung mycosis and CD146 as a target for preventing infectious lung diseases.
Collapse
Affiliation(s)
- Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Tao
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Enrui Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Xiaofan Yang
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Merid SK, Bustamante M, Standl M, Sunyer J, Heinrich J, Lemonnier N, Aguilar D, Antó JM, Bousquet J, Santa-Marina L, Lertxundi A, Bergström A, Kull I, Wheelock ÅM, Koppelman GH, Melén E, Gruzieva O. Integration of gene expression and DNA methylation identifies epigenetically controlled modules related to PM 2.5 exposure. ENVIRONMENT INTERNATIONAL 2021; 146:106248. [PMID: 33212358 DOI: 10.1016/j.envint.2020.106248] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Accepted: 10/25/2020] [Indexed: 05/28/2023]
Abstract
Air pollution has been associated with adverse health effects across the life-course. Although underlying mechanisms are unclear, several studies suggested pollutant-induced changes in transcriptomic profiles. In this meta-analysis of transcriptome-wide association studies of 656 children and adolescents from three European cohorts participating in the MeDALL Consortium, we found two differentially expressed transcript clusters (FDR p < 0.05) associated with exposure to particulate matter < 2.5 µm in diameter (PM2.5) at birth, one of them mapping to the MIR1296 gene. Further, by integrating gene expression with DNA methylation using Functional Epigenetic Modules algorithms, we identified 9 and 6 modules in relation to PM2.5 exposure at birth and at current address, respectively (including NR1I2, MAPK6, TAF8 and SCARA3). In conclusion, PM2.5 exposure at birth was linked to differential gene expression in children and adolescents. Importantly, we identified several significant interactome hotspots of gene modules of relevance for complex diseases in relation to PM2.5 exposure.
Collapse
Affiliation(s)
- Simon Kebede Merid
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Mariona Bustamante
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Jordi Sunyer
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Nathanaël Lemonnier
- Institute for Advanced Biosciences, UGA-INSERM U1209-CNRS UMR5309, Allée des Alpes, France
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Barcelona, Spain
| | - Josep Maria Antó
- ISGlobal, Institute for Global Health, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Jean Bousquet
- Charité, Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Berlin, Germany; University Hospital, Montpellier, France; MACVIA-France, Montpellier, France
| | - Loreto Santa-Marina
- Health Research Institute-BIODONOSTIA, Basque Country, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Health Department of Basque Government, Sub-directorate of Public Health of Gipuzkoa, 20013 San Sebastian, Spain
| | - Aitana Lertxundi
- Health Research Institute-BIODONOSTIA, Basque Country, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain; Preventive Medicine and Public Health Department, University of Basque Country (UPV/EHU), Spain
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs Children's Hospital, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs Children's Hospital, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Sweden.
| |
Collapse
|
14
|
Shahbaz MA, Martikainen MV, Rönkkö TJ, Komppula M, Jalava PI, Roponen M. Urban air PM modifies differently immune defense responses against bacterial and viral infections in vitro. ENVIRONMENTAL RESEARCH 2021; 192:110244. [PMID: 32980306 PMCID: PMC7516585 DOI: 10.1016/j.envres.2020.110244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 05/05/2023]
Abstract
Epidemiological evidence has shown the association between exposure to ambient fine particulate matter (PM) and increased susceptibility to bacterial and viral respiratory infections. However, to date, the underlying mechanisms of immunomodulatory effects of PM remain unclear. Our objective was to explore how exposure to relatively low doses of urban air PM alters innate responses to bacterial and viral stimuli in vitro. We used secondary alveolar epithelial cell line along with monocyte-derived macrophages to replicate innate lung barrier in vitro. Co-cultured cells were first exposed for 24 h to PM2.5-1 (particle aerodynamic diameter between 1 and 2.5 μm) and subsequently for an additional 24 h to lipopolysaccharide (TLR4), polyinosinic-polycytidylic acid (TLR3), and synthetic single-stranded RNA oligoribonucleotides (TLR7/8) to mimic bacterial or viral stimulation. Toxicological endpoints included pro-inflammatory cytokines (IL-8, IL-6, and TNF-α), cellular metabolic activity, and cell cycle phase distribution. We show that cells exposed to PM2.5-1 produced higher levels of pro-inflammatory cytokines following stimulation with bacterial TLR4 ligand than cells exposed to PM2.5-1 or bacterial ligand alone. On the contrary, PM2.5-1 exposure reduced pro-inflammatory responses to viral ligands TLR3 and TLR7/8. Cell cycle analysis indicated that viral ligands induced cell cycle arrest at the G2-M phase. In PM-primed co-cultures, however, they failed to induce the G2-M phase arrest. Contrarily, bacterial stimulation caused a slight increase in cells in the sub-G1 phase but in PM2.5-1 primed co-cultures the effect of bacterial stimulation was masked by PM2.5-1. These findings indicate that PM2.5-1 may alter responses of immune defense differently against bacterial and viral infections. Further studies are required to explain the mechanism of immune modulation caused by PM in altering the susceptibility to respiratory infections.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Maria-Viola Martikainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Teemu J Rönkkö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1F, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi I Jalava
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marjut Roponen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
15
|
Rönkkö TJ, Hirvonen MR, Happo MS, Ihantola T, Hakkarainen H, Martikainen MV, Gu C, Wang Q, Jokiniemi J, Komppula M, Jalava PI. Inflammatory responses of urban air PM modulated by chemical composition and different air quality situations in Nanjing, China. ENVIRONMENTAL RESEARCH 2021; 192:110382. [PMID: 33130172 DOI: 10.1016/j.envres.2020.110382] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/26/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
The health risks of air pollutants and ambient particulate matter (PM) are widely known. PM composition and toxicity have shown substantial spatiotemporal variability. Yet, the connections between PM composition and toxicological and health effects are vaguely understood. This is a crucial gap in knowledge that needs to be addressed in order to establish air quality guidelines and limit values that consider the chemical composition of PM instead of the current assumption of equal toxicity per inhaled dose. Here, we demonstrate further evidence for varying toxicological effects of urban PM at equal mass concentrations, and estimate how PM composition and emission source characteristics influenced this variation. We exposed a co-culture model mimicking alveolar epithelial cells and macrophages with size-segregated urban ambient PM collected before, during, and after the Nanjing Youth Olympic Games 2014. We measured the release of a set of cytokines, cell cycle alterations, and genotoxicity, and assessed the spatiotemporal variations in these responses by factorial multiple regression analysis. Additionally, we investigated how a previously identified set of emission sources and chemical components affected these variations by mixed model analysis. PM-exposure induced cytokine signaling, most notably by inducing dose-dependent increases of macrophage-regulating GM-CSF and proinflammatory TNFα, IL-6, and IL-1β concentrations, modest dose-dependent increase for cytoprotective VEGF-A, but very low to no responses for anti-inflammatory IL-10 and immunoregulatory IFNγ, respectively. We observed substantial differences in proinflammatory cytokine production depending on PM sampling period, location, and time of day. The proinflammatory response correlated positively with cell cycle arrest in G1/G0 phase and loss of cellular metabolic activity. Furthermore, PM0.2 caused dose-dependent increases in sub-G1/G0 cells, suggesting increased DNA degradation and apoptosis. Variations in traffic and oil/fuel combustion emissions contributed substantially to the observed spatiotemporal variations of toxicological responses.
Collapse
Affiliation(s)
- Teemu J Rönkkö
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Maija-Riitta Hirvonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mikko S Happo
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland; Ramboll Finland Oy, Itsehallintokuja 3, FI-02601, Espoo, Finland
| | - Tuukka Ihantola
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Henri Hakkarainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Maria-Viola Martikainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Cheng Gu
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Qin'geng Wang
- Nanjing University, School of the Environment, Branch 24 Mailbox of Nanjing University Xianlin Campus, No. 163 Xianlin Avenue, Qixia District, 210023, Nanjing, China
| | - Jorma Jokiniemi
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Pasi I Jalava
- University of Eastern Finland, Department of Environmental and Biological Sciences, Yliopistonranta 1, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
16
|
Ma Xing Shi Gan Decoction Protects against PM2.5-Induced Lung Injury through Suppression of Epithelial-to-Mesenchymal Transition (EMT) and Epithelial Barrier Disruption. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7176589. [PMID: 32655666 PMCID: PMC7317335 DOI: 10.1155/2020/7176589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
This research was designed to explore the effect of Ma Xing Shi Gan decoction (MXD) in alleviating particulate matter less than 2.5 μm in diameter (PM2.5) induced lung injury from the perspective of epithelial barrier protection and inhibition of epithelial-to-mesenchymal transition (EMT). Rats were exposed to PM2.5 to establish a lung injury model in vivo, and a PM2.5-stimulated primary cultured type II alveolar epithelial cell model was introduced in vitro. Our results indicated that MXD alleviated the weight loss and pathologic changes and improved the epithelial barrier dysfunction. MXD also significantly inhibited the TGF-β/Smad3 pathway, increased the level of ZO-1 and claudin-5, and reversed the EMT process. Notably, the protection of MXD was abolished by TGF-β in vitro. Our results indicated that MXD has a protection against PM2.5-induced lung injury. The proposed mechanism is reversing PM2.5-induced EMT through inhibiting TGF-β/Smad3 pathway and then upregulating the expression of tight-junction proteins.
Collapse
|
17
|
Liu G, Yan X, Sedykh A, Pan X, Zhao X, Yan B, Zhu H. Analysis of model PM 2.5-induced inflammation and cytotoxicity by the combination of a virtual carbon nanoparticle library and computational modeling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110216. [PMID: 31972454 PMCID: PMC7018436 DOI: 10.1016/j.ecoenv.2020.110216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 05/02/2023]
Abstract
Health risks induced by PM2.5 have become one of the major concerns among living populations, especially in regions facing serious pollution such as China and India. Furthermore, the composition of PM2.5 is complex and it also varies with time and locations. To facilitate our understanding of PM2.5-induced toxicity, a predictive modeling framework was developed in the present study. The core of this study was 1) to construct a virtual carbon nanoparticle library based on the experimental data to simulate the PM2.5 structures; 2) to quantify the nanoparticle structures by novel nanodescriptors; and 3) to perform computational modeling for critical toxicity endpoints. The virtual carbon nanoparticle library was developed to represent the nanostructures of 20 carbon nanoparticles, which were synthesized to simulate PM2.5 structures and tested for potential health risks. Based on the calculated nanodescriptors from virtual carbon nanoparticles, quantitative nanostructure-activity relationship (QNAR) models were developed to predict cytotoxicity and four different inflammatory responses induced by model PM2.5. The high predictability (R2 > 0.65 for leave-one-out validations) of the resulted consensus models indicated that this approach could be a universal tool to predict and analyze the potential toxicity of model PM2.5, ultimately understanding and evaluating the ambient PM2.5-induced toxicity.
Collapse
Affiliation(s)
- Guohong Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiliang Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China; The Rutgers Center for Computational and Integrative Biology, Camden, NJ, 08102, USA
| | - Alexander Sedykh
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, 08102, USA; Sciome, Research Triangle Park, NC, 27709, USA
| | - Xiujiao Pan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaoli Zhao
- Department of Physiological Science, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ, 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ, 08102, USA.
| |
Collapse
|