1
|
Arshad T, Rafique MS, Bashir S, Hayat A, Murtaza MG, Muneeb A, Shahadat I, Nayab N. Abatement of Aerosols by Ionic Wind Extracted From Dielectric Barrier Discharge Plasma. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241262879. [PMID: 39055117 PMCID: PMC11271097 DOI: 10.1177/11786302241262879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024]
Abstract
Lahore (Pakistan), being an industrial city, has high emission of aerosols that affects and contaminates the air quality. Therefore, the abatement/inactivation of aerosols is necessary to restrict their infectious activities. In this project, ionic wind isolated from dielectric barrier discharge plasma (DBD plasma) has been utilized to abate the aerosols trapped in the Surgical Mask and KN95 Respirator. To infer the chemical and elemental detection of ambient aerosols, FTIR and LIBS have been employed. "From the results, it is noteworthy that abatement/removal of aerosols has been successfully carried out by the ionic wind irradiation and highlights the potential of DBD plasma technology in removing the aerosols pollution."
Collapse
Affiliation(s)
- Tehreem Arshad
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | | | - Shazia Bashir
- Department of CASP, Government College University Lahore, Pakistan
| | - Asma Hayat
- Department of CASP, Government College University Lahore, Pakistan
| | | | - Abdul Muneeb
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Imran Shahadat
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| | - Nabiha Nayab
- Department of Physics, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
2
|
Hussain S, Siddique A, Hassan M, Rasool K, Shahzad A, Asad Naqvi SA, Ul Mustafa MR. Characteristics and health implications of fine particulate matter near urban road site in Islamabad, Pakistan. ENVIRONMENTAL RESEARCH 2024; 252:118862. [PMID: 38574984 DOI: 10.1016/j.envres.2024.118862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The escalating issue of air pollution has become a significant concern in urban regions, including Islamabad, Pakistan, due to the rise in air pollutant emissions driven by economic and industrial expansion. To gain a deeper understanding of air pollution, a study was conducted during winter 2022-2023, assessing physical, chemical, and biological factors in Islamabad. The findings revealed that the average concentration of fine particulate matter (PM2.5) was notably greater than the World Health Organization (WHO) guidelines, reaching 133.39 μg/m³. Additionally, the average concentration of bacteria (308.64 CFU/m³) was notably greater than that of fungi (203.55 CFU/m³) throughout the study. Analytical analyses, including SEM-EDS and FTIR, showed that the PM2.5 in Islamabad is composed of various particles such as soot aggregates, coal fly ash, minerals, bio-particles, and some unidentified particles. EF analysis distinguished PM2.5 sources, enhancing understanding of pollutants origin, whereas Spearman's correlation analysis elucidated constituent interactions, further explaining air quality impact. The results from the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-OES) indicated a gradual increase in the total elemental composition of PM2.5 from autumn to winter, maintaining high levels throughout the winter season. Furthermore, a significant variation was found in the mass concentration of PM2.5 when comparing samples collected in the morning and evening. The study also identified the presence of semi-volatile organic compounds (SVOCs) in PM2.5 samples, including polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds, with notable variations in their concentrations. Utilizing health risk assessment models developed by the US EPA, we estimated the potential health risks associated with PM2.5 exposure, highlighting the urgency of addressing air quality issues. These findings provide valuable insights into the sources and composition of PM2.5 in Islamabad, contributing to a comprehensive understanding of air quality and its potential environmental and health implications.
Collapse
Affiliation(s)
- Sabir Hussain
- Department of Space Sciences, Institute of Space Technology, Islamabad, 44000, Pakistan
| | - Azhar Siddique
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar
| | - Mujtaba Hassan
- Department of Space Sciences, Institute of Space Technology, Islamabad, 44000, Pakistan.
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar.
| | - Asif Shahzad
- School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Syed Ali Asad Naqvi
- Department of Geography, Government College University Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Raza Ul Mustafa
- Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak, Malaysia
| |
Collapse
|
3
|
Shankar S, Gadi R, Bajar S, Yadav N, Mandal TK, Sharma SK. Insights into seasonal-variability of SVOCs, morpho-elemental and spectral characteristics of PM2.5 collected at a dense industrial site: Faridabad, Haryana, India. CHEMOSPHERE 2023; 323:138204. [PMID: 36828107 DOI: 10.1016/j.chemosphere.2023.138204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The development-oriented anthropogenic activities have led to intensive increase in emission of various organic pollutants, which contribute considerably to human health risk. In the present study, chemical, physical and spectral characterisation of fine particulate matter (PM2.5), collected at Faridabad city, in northern India, were examined. Seasonal variation of organic compounds [n-alkanes, polyaromatic hydrocarbons (PAHs) and phthalic acid esters (PAEs)], and potential health risk of Polyaromatic hydrocarbons (PAHs) exposure using toxic equivalency potential (TEQ) approach had been assessed. These showed seasonal average values ranging from 156.4 ± 57.0 ng/m3 to 217.6 ± 72.9 ng/m3, 98.0 ± 21.4 ng/m3 to 177.8 ± 72.8 ng/m3, and 30.9 ± 11.9 ng/m3 to 82.5 ± 29.2 ng/m3, respectively, with the highest value for winter. It is noteworthy that unlike, n-alkanes and PAEs, PAHs were least during spring. The high molecular weight PAHs (BaP, BkF, DahA and IcdP) were found to exhibit higher TEQ values (ranging from 0.7 to 9.7) despite of their lower concentrations. The PAH diagnostic ratio, carbon preference index and total index revealed the enhanced impact of biogenic sources of emissions in comparison to diesel emission sources during winter.
Collapse
Affiliation(s)
- Shobhna Shankar
- Indira Gandhi Delhi Technical University for Women, New Delhi, 110006, India
| | - Ranu Gadi
- Indira Gandhi Delhi Technical University for Women, New Delhi, 110006, India.
| | - Somvir Bajar
- J.C. Bose University of Science and Technology, YMCA, Haryana, 121006, India
| | - Neha Yadav
- J.C. Bose University of Science and Technology, YMCA, Haryana, 121006, India
| | - Tuhin K Mandal
- Council of Scientific and Industrial Research-National Physical Laboratory of India, New Delhi, 110012, India
| | - Sudhir K Sharma
- Council of Scientific and Industrial Research-National Physical Laboratory of India, New Delhi, 110012, India
| |
Collapse
|
4
|
Dirienzo N, Mitchell K, Forde M, Rainham D, Villeneuve PJ. Temporal trends in ambient fine particulate matter and the impacts of COVID-19 on this pollutant in Grenada, West Indies. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:97-108. [PMID: 36149875 DOI: 10.1080/10962247.2022.2126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Most Caribbean islands do not have air pollution surveillance programs. Those who live in these countries are exposed to ambient air pollution from a variety of sources including motor vehicles, ocean-going vessels, and Saharan dust. We conducted an air sampling exposure study in Grenada to describe daily changes in fine particulate matter (PM2.5) pollution, and during Saharan dust episodes. Further, we assessed the impacts of COVID-19 public health interventions on PM2.5 concentrations in 2020. Four fixed-site PurpleAir monitors were installed throughout Grenada, and one on the neighboring island of Carriacou. PM2.5 was measured between January 6 and December 31, 2020. We classified each of these days based on whether COVID-19 public health mitigation measures were in place or not. Descriptive analyses were performed to characterize fluctuations in PM2.5, and we assessed the impacts of public health restrictions on PM2.5 using multivariate regression. The mean daily PM2.5 concentration in 2020 was 4.4 μg/m3. During the study period, the minimum daily PM2.5 concentration was 0.7 μg/m3, and the maximum was 20.4 μg/m3. Daily mean PM2.5 concentrations more than doubled on Saharan dust days (8.5 vs 3.6 μg/m3; p < 0.05). The daily mean PM2.5 concentrations were estimated to be 1.2 μg/m3 lower when COVID-19 restrictions were in effect. Ambient PM2.5 concentrations in Grenada are relatively low compared to other countries; however, Saharan dust episodes represent an important source of exposure. Low-cost sensors provide an opportunity to increase surveillance of air pollution in the Caribbean, however their value could be enhanced with the development of correction algorithms that more closely approximate values from reference-grade monitors.Implications: This study describes daily fluctuations in ambient PM2.5 concentrations in Grenada in 2020. Overall, concentrations of PM2.5 were low; however, we found that Saharan dust events cause daily exceedances in PM2.5 above the current 24-hr limits of the World Health Organization. Moreover, the constructed models suggest that public health interventions to reduce the spread of COVID-19 reduced PM2.5 concentrations by 27%.
Collapse
Affiliation(s)
- Nicholas Dirienzo
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Kerry Mitchell
- Department of Public Health and Preventive Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Martin Forde
- Department of Public Health and Preventive Medicine, St. George's University, St. George's, Grenada, West Indies
| | - Daniel Rainham
- School of Health and Human Performance, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Paul J Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
- CHAIM Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Varrica D, Alaimo MG. Determination of Water-Soluble Trace Elements in the PM 10 and PM 2.5 of Palermo Town (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:724. [PMID: 36613045 PMCID: PMC9819477 DOI: 10.3390/ijerph20010724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
This study contributes to the current knowledge on the solubility of trace elements in the atmospheric particulate matter of the urban area of Palermo. Daily sample filters of PM10 and PM2.5 were collected in monitoring stations within and outside the urban area, characterized by variable traffic density. The bulk of compositions in PM10 and PM2.5 were determined by ICP-MS. The water-soluble trace elements (WSTE) and major ion components of particulate matter were determined by ICP-MS and ion chromatography, respectively. A significant difference in the metals content was observed between the samples taken in urban areas and those from suburban areas. The calculated enrichment factor highlights the high values for Cu, Mo, Sb, V, and Zn, confirming the contribution of human activities. The leaching test was applied to PM10 and PM2.5 filters and showed different behaviors and transport of metals and metalloids. The calculated leaching coefficient highlights the metals typically produced by anthropic activities, compared to those of geogenic origin, are much more soluble in water and have greater mobility. The factor analysis was used to identify the sources of water-soluble ions. The main sources are anthropic, geogenic, and sea spray. The final objective of this study is to obtain, with the aid of leaching experiments on PM2.5 and PM10 filter samples, information about the bioavailability and mobility of the different metals and metalloids that could be used as the scientific basis for public health intervention and to raise the prevention and control of heavy metal pollution in the urban environment, especially in densely populated areas.
Collapse
|
6
|
Identification of Carbonaceous Species and FTIR Profiling of PM2.5 Aerosols for Source Estimation in Old Delhi Region of India. MAPAN 2022. [PMCID: PMC9616402 DOI: 10.1007/s12647-022-00575-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, PM2.5 samples from a traffic-influenced site in old Delhi were collected from January 2021 to June 2021 (January–March, 2021: months with regular activities; April–June, 2021: partially restricted months due to second wave of pandemic) and analysed to assess noteworthy effect on their infrared (IR) spectral features and carbonaceous content viz., organic carbon (OC) and elemental carbon (EC) and their sub-fractions with their link to major sources in the vicinity of the sampling site of Delhi. Absorbance peaks for the structural and functional groups for previously identified compounds associated with vehicular/combustion/biogenic emissions at the site were notable. Intensive peaks for C=C, C–H, O–H and NH4NO3 were observed on certain days pointing towards enhanced emission of the related compounds. Lower spectral peaks were observed for March and first half of April probably due to transitioning meteorological variables and imposed restrictions. Monthly variation in ratios, such as OC/EC, EC/TC and OM/OC, revealed about the probable emission sources. Comparatively higher peaks/values were observed during January, February and June. The overall results followed a general pattern of variation for regular days.
Collapse
|
7
|
Fringu I, Lascu A, Macsim AM, Fratilescu I, Epuran C, Birdeanu M, Fagadar-Cosma E. Pt(II)-A2B2 metalloporphyrin-AuNPS hybrid material suitable for optical detection of 1-anthraquinonsulfonic acid. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02047-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Shan X, Liu L, Li G, Xu K, Liu B, Jiang W. PM 2.5 and the typical components cause organelle damage, apoptosis and necrosis: Role of reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146785. [PMID: 33838376 DOI: 10.1016/j.scitotenv.2021.146785] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
In this research, the organelle damage, apoptosis and necrosis induced by PM2.5, BC and Kaolin were studied using human bronchial epithelial (16HBE) cells. PM2.5, BC and Kaolin all induce cell death, LDH release and excess intracellular ROS generation. For the organelle injuries, Kaolin and high-dose PM2.5 (240 μg/mL) cause lysosomal acidification, but BC causes lysosomal alkalization (lysosomal membrane permeabilization, LMP). BC and Kaolin cause the loss of mitochondrial membrane potential (MMP), while PM2.5 does not. For the cell death mode, PM2.5 causes both apoptosis and necrosis. However only necrosis has been detected in the BC and Kaolin treated groups, indicating the more severe cellular insult. Excess ROS generation is involved in the organelle damage and cell death. ROS contributes to the BC-induced LMP and necrosis, but does not significantly affect the Kaolin-induced MMP loss and necrosis. Therefore, the BC component in PM2.5 may cause cytotoxicity via ROS-dependent pathways, the Kaolin component may damage cells via ROS-independent mechanisms such as strong interaction. The PM2.5-induced apoptosis and necrosis can be partially mitigated after the removal of ROS, indicating the existence of both the ROS-dependent and ROS-independent mechanisms due to the complicated PM2.5 components. BC represents the anthropogenic source component in PM2.5, while Kaolin represents the natural source component. Our results provide knowledge on the toxic mechanisms of typical PM2.5 components at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Xifeng Shan
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Gang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kexin Xu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Bingyan Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Wei Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Yilbas BS, Hassan G, Yilbas AE, Abubakar AA, Al-Qahtani H. On the Mechanism of Human Saliva Interaction with Environmental Dust in Relation to Spreading of Viruses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4714-4726. [PMID: 33835806 DOI: 10.1021/acs.langmuir.1c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Environmental effects such as dust mitigation can amplify the spread of viruses via inhaling infected dust particles. Infusion and the spreading rate of human saliva over the dust particles can play a critical role in contiguous virus spread. In the present study, mechanical and chemical interactions of human saliva with environmental dust particles are considered. The saliva droplet impact on dust particles is examined while mimicking saliva droplet spreading during coughing in a dusty ambience. The mechanisms of saliva infusion and cloaking on the dust particles are explored. The characteristics of saliva droplet normal and oblique impacts on a dust particle are examined experimentally and numerically to evaluate the amount of saliva residues on the impacted particle surface. The findings reveal that the saliva liquid infuses and cloaks the dust particle surfaces. The saliva droplet impact on the dust particles leaves a considerable amount of saliva residues on the impacted surfaces, which remain undried for a prolonged period in indoor environments. Weak adhesion of the saliva-infected dust particles on surfaces, such as glass surfaces, enables saliva-infected dust particles to rejoin neighboring ambient air while possessing a high potential for virus spreading.
Collapse
Affiliation(s)
- Bekir Sami Yilbas
- Mechanical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
- Center of Research Excellence in Renewable Energy (CoRE-RE), KFUPM, Dhahran 31261, Saudi Arabia
- Senior Researcher at K.A.CARE Energy Research & Innovation Center, DTV, Dhahran 31261, Saudi Arabia
| | - Ghassan Hassan
- Mechanical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
- Researcher at K.A.CARE Energy Research & Innovation Center, DTV, Dhahran 31261, Saudi Arabia
| | - Ayse Elif Yilbas
- University of Ottawa, General Surgery, Ottawa, ON K1N 6N5, Canada
| | - Abba A Abubakar
- Mechanical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
10
|
Ezzuldin M Saber S, Md Jamil SNA, Abdullah LC, Choong TSY, Ming Ting T. Insights into the p-nitrophenol adsorption by amidoxime-modified poly(acrylonitrile- co-acrylic acid): characterization, kinetics, isotherm, thermodynamic, regeneration and mechanism study. RSC Adv 2021; 11:8150-8162. [PMID: 35423311 PMCID: PMC8695099 DOI: 10.1039/d0ra10910j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/29/2021] [Indexed: 11/21/2022] Open
Abstract
This study performs an appraisal of the adsorptive capacity of amidoxime-modified poly(acrylonitrile-co-acrylic acid) or abbreviated as (AO-modified poly(AN-co-AA)) for the p-nitrophenol (PNP) adsorption, from aquatic environments via batch system. The AO-modified poly(AN-co-AA) polymer was developed with redox polymerization, and then altered by using hydroxylamine hydrochloride (HH). Tools used to describe the physicochemical and morphological characteristics of the AO-modified poly(AN-co-AA) were Fourier transform infrared (FTIR) spectroscopy, CHN elemental analysis, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The adsorption kinetics were examined by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion kinetic models. Meanwhile, the isotherms were investigated by Langmuir, Freundlich, Temkin and Redlich-Peterson models. It was found that the adsorption was best fitted with pseudo-second order, and agreed with both Langmuir and Freundlich isotherm models. It was described best with the Freundlich isotherm due to highest R 2 (0.999). The maximum adsorption capacity was 143.06 mg g-1 at 298 K, and thermodynamic functions showed that the adsorption process was exothermic. Also, following five regeneration cycles, the adsorbent recorded 71.7% regeneration efficiency. The finding in this study indicates that the AO-modified poly(AN-co-AA) is an effective adsorbent to remove PNP from an aqueous solution.
Collapse
Affiliation(s)
- Shihab Ezzuldin M Saber
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- North Refineries Company, Ministry of Oil of Iraq Baiji Salahuddin Iraq
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia UPM Serdang 43400 Malaysia
| | - Thomas Shean Yaw Choong
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia UPM Serdang 43400 Selangor Malaysia
- Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia UPM Serdang 43400 Malaysia
| | - Teo Ming Ting
- Radiation Technology Division, Malaysian Nuclear Agency 43000 Kajang Selangor Malaysia
| |
Collapse
|
11
|
Aroskay A, Martin E, Bekki S, Montana G, Randazzo L, Cartigny P, Chabas A, Verney-Carron A. Multi O- and S-isotopes as tracers of black crusts formation under volcanic and non-volcanic atmospheric conditions in Sicily (Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142283. [PMID: 33182218 DOI: 10.1016/j.scitotenv.2020.142283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The deterioration of monument or building stone materials is mostly due to the growth of black crusts that cause blackening and disaggregation of the exposed surface. This study reports on new oxygen (δ17O, δ18O and Δ17O) and sulphur (δ33S, δ34S, δ36S, Δ33S and Δ36S) isotopic analyses of black crust sulphates formed on building stones in Sicily (Southern Italy). The measurements are used to identify the possible influence of volcanic emissions on black crust formation. Black crusts were mostly sampled on carbonate stone substrate in different locations subject to various sulphur emission sources (marine, anthropogenic and volcanic). Unlike atmospheric sulphate aerosols that mostly exhibit Δ33S > 0‰, here most of the analysed black crust sulphates show negative Δ33S. This confirms that black crust sulphates do not result from deposition of sulphate aerosols or of rainwater but mostly from the oxidation of dry deposited SO2 onto the stone substrate. The δ34S and δ18O values indicate that most of black crust sulphate originates from anthropogenic activities. Δ17O values are found to be related to the sampling location. The largest 17O-anomalies (up to ~4‰) are measured in black crust from areas highly influenced by volcanic emissions, which demonstrates the strong involvement of ozone in the formation of black crusts in volcanically influenced environments.
Collapse
Affiliation(s)
- A Aroskay
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, Paris, France.
| | - E Martin
- Institut des Sciences de la Terre de Paris (ISTeP), Sorbonne Université, Paris, France
| | - S Bekki
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université, Paris, France
| | - G Montana
- Dipartimento di Scienze della Terra e del Mare (DiSTeM), Università degli Studi di Palermo, Palermo, Italy
| | - L Randazzo
- Department of Biology, Ecology and Earth Sciences (DiBEST), Università della Calabria, Italy
| | - P Cartigny
- Institut de Physique du Globe de Paris (IPGP), Université de Paris, Paris, France
| | - A Chabas
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - A Verney-Carron
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris-Est-Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| |
Collapse
|
12
|
Wang Q, Fang J, Shi W, Dong X. Distribution characteristics and policy-related improvements of PM 2.5 and its components in six Chinese cities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115299. [PMID: 32818727 DOI: 10.1016/j.envpol.2020.115299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 05/21/2023]
Abstract
This study presents the distribution characteristics and possible sources of fine particulate matter (PM2.5) and its components, as well as policy-related pollution reduction in the Chinese cities of Jinan, Shijiazhuang (SJZ), Chengdu, Wuxi, Wuhan, and Harbin (HRB). PM2.5 samples were collected using mid-volume samplers during the autumn of 2017 in all six cities. The samples were analyzed to determine the ambient PM2.5 compositions, including the concentrations of water-soluble inorganic ions (WSIIs), carbonaceous aerosols, and elements concentrations. The chemical ratios of organic carbon to elemental carbon and nitrate to sulfate as well as the enrichment factors of elements were calculated to establish the possible sources of PM2.5 in all six cities. The highest PM2.5 concentration was 152 μg/m3 in SJZ, while the lowest concentration was 47 μg/m3 in HRB. During the sampling period in these six cities, the PM2.5 concentrations exceeded the World Health Organization recommended daily average air quality guidelines by 2.4-6.1 times, and WSIIs, carbonaceous aerosols, and elements accounted for 31.8%-61.6%, 9.8%-35.1%, and 0.9%-2.5% of the PM2.5, respectively. In 2013, the Chinese government formulated the Air Pollution Prevention and Control Action Plan (APPCAP) for controlling air pollution, and effective measures have been implemented since then. Compared with previous studies conducted during 2009-2013 before the implementation of the APPCAP, the concentrations of PM2.5 and most of its components decreased to varying degrees, and large changes in the chemical ratios of PM2.5 components were observed. These results indicate that PM2.5 sources vary among these six cities and that China has improved the ambient air quality in these cities through the implementation of air pollution control policies. The APPCAP have achieved considerable results in continuously reducing pollution concentrations, although the air pollution concentrations observed in this study remain high compared with those of other countries.
Collapse
Affiliation(s)
- Qiong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
13
|
Impact on Air Quality of the COVID-19 Lockdown in the Urban Area of Palermo (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207375. [PMID: 33050278 PMCID: PMC7599871 DOI: 10.3390/ijerph17207375] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
At the end of 2019, the first cases of coronavirus disease (COVID-19) were reported in Wuhan, China. Thereafter, the number of infected people increased rapidly, and the outbreak turned into a national crisis, with infected individuals all over the country. The COVID-19 global pandemic produced extreme changes in human behavior that affected air quality. Human mobility and production activities decreased significantly, and many regions recorded significant reductions in air pollution. The goal of our investigation was to evaluate the impact of the COVID-19 lockdown on the concentrations of the main air pollutants in the urban area of Palermo (Italy). In this study, the trends in the average concentrations of CO, NO2, O3, and PM10 in the air from 1 January 2020 to 31 July 2020 were compared with the corresponding average values detected at the same monitoring stations in Palermo during the previous five years (2015–2019). During the lockdown period (10 March–30 April), we observed a decrease in the concentrations of CO, NO2, and particulate matter (PM)10, calculated to be about 51%, 50%, and 45%, respectively. This confirms that air pollution in an urban area is predominantly linked to vehicular traffic.
Collapse
|
14
|
Tomassetti L, Torre M, Tratzi P, Paolini V, Rizza V, Segreto M, Petracchini F. Evaluation of air quality and mobility policies in 14 large Italian cities from 2006 to 2016. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:886-902. [PMID: 32295485 DOI: 10.1080/10934529.2020.1752070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Despite a connection between road traffic and air pollution has been clearly identified, few integrated analyses on air quality and mobility policies are currently available worldwide. Aim of this work is to build a framework for the evaluation of the impact of mobility policies on air quality in 14 major Italian cities, on a long-time scale (2006-2016). Air quality data was collected from all PM10, PM2.5, and NO2 monitoring stations, installed in compliance with the European directive 2008/50/EC. A large dataset was collected, including public transport, environmental, and fuel categorization of the private vehicular fleet, low emissions zones and modal split. In the analyzed time period, both public transportation use and private motorization decreased. Considering the environmental classification standards of vehicles, Northern cities are more readily switching to newer and less polluting cars (e.g. Euro 5 and Euro 6). There has been a general reduction in PM and NO2 concentration. Nevertheless, exceedances are still above the targeted limit value, mainly in some Northern cities who made major investments in sustainable and shared mobility: this highlights a strong influence of climatic conditions and other sources. Dramatic variations in the CO/NO ratio were observed in Turin, while smaller changes are observed in Milan, Rome and Palermo.
Collapse
Affiliation(s)
- Laura Tomassetti
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| | - Marco Torre
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| | - Patrizio Tratzi
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| | - Valerio Paolini
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| | - Valeria Rizza
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| | - Marco Segreto
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| | - Francesco Petracchini
- National Research Council of Italy, Institute of Atmospheric Pollution Research, Monterotondo, Rome, Italy
| |
Collapse
|
15
|
Alaimo MG, Varrica D. Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030881. [PMID: 32023827 PMCID: PMC7038082 DOI: 10.3390/ijerph17030881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/16/2022]
Abstract
Urban areas are characterized by numerous pollutants emitted by anthropic sources both in the form of solid and gaseous particulates. Biomonitoring is an easy, economical, and accessible approach for the determination of atmospheric pollutants. In this study, we used the leaves of Ficus macrophylla Desf. ex Pers., collected in the city of Palermo (Italy), to determine major and trace elements. Geogenic elements exhibited the highest concentrations, making up 99% of the weight of the analyzed elements (Ca, K, Mg, P, S, Na, Fe, and Al); they range 21,400 (Ca) to 122 µg g−1 (Al). The remaining elements showed median concentrations in the range 47.5–0.05 µg g−1 in the following order of abundance: Sr > Cu > Mn > Zn > Br > Rb > Ba > Pb > Cr > Sb > As > Mo = Sc. Cluster analysis, with Spearman’s coefficient to measure sample similarity, identified five main groups, namely, three clusters related to the geogenic background and marine spray; one cluster linked to elements essential to plants, and a final group attributed to the influence of traffic emissions. Calculated enrichment factors (EF) showed that the enrichments found for P and K were linked to plant metabolism; Na and Mg confirmed the role of sea spray; Cu and Zn underlined the contribution linked to anthropic processes and the role of micronutrients in plants.. As, Cr, and Mo had EF values ranging from 10 and 20, and Sb had EF > 90. From geochemical distribution maps of As, Cr, Mo, and Sb it was observed that metal and metalloid concentrations were higher in urban areas and immediately decreased as one moved away from these areas. Local pollution sources play a great role in trace element concentrations in airborne particulate matter. The present study confirms that Ficus macrophylla leaves are suitable for screening an urban environment to identify concentrations of inorganic chemicals, since they have high tolerance to pollution.
Collapse
|