1
|
Elahmer NR, Wong SK, Mohamed N, Alias E, Chin KY, Muhammad N. Mechanistic Insights and Therapeutic Strategies in Osteoporosis: A Comprehensive Review. Biomedicines 2024; 12:1635. [PMID: 39200100 PMCID: PMC11351389 DOI: 10.3390/biomedicines12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis, a metabolic bone disorder characterized by decreased bone mass per unit volume, poses a significant global health burden due to its association with heightened fracture risk and adverse impacts on patients' quality of life. This review synthesizes the current understanding of the pathophysiological mechanisms underlying osteoporosis, with a focus on key regulatory pathways governing osteoblast and osteoclast activities. These pathways include RANK/RANKL/OPG, Wingless-int (Wnt)/β-catenin, and Jagged1/Notch1 signaling, alongside the involvement of parathyroid hormone (PTH) signaling, cytokine networks, and kynurenine in bone remodeling. Pharmacotherapeutic interventions targeting these pathways play a pivotal role in osteoporosis management. Anti-resorptive agents, such as bisphosphonates, estrogen replacement therapy/hormone replacement therapy (ERT/HRT), selective estrogen receptor modulators (SERMs), calcitonin, anti-RANKL antibodies, and cathepsin K inhibitors, aim to mitigate bone resorption. Conversely, anabolic agents, including PTH and anti-sclerostin drugs, stimulate bone formation. In addition to pharmacotherapy, nutritional supplementation with calcium, vitamin D, and vitamin K2 holds promise for osteoporosis prevention. However, despite the availability of therapeutic options, a substantial proportion of osteoporotic patients remain untreated, highlighting the need for improved clinical management strategies. This comprehensive review aims to provide clinicians and researchers with a mechanistic understanding of osteoporosis pathogenesis and the therapeutic mechanisms of existing medications. By elucidating these insights, this review seeks to inform evidence-based decision-making and optimize therapeutic outcomes for patients with osteoporosis.
Collapse
Affiliation(s)
- Nyruz Ramadan Elahmer
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
- Department of Pharmacology, Pharmacy Faculty, Elmergib University, Al Khums 40414, Libya
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| |
Collapse
|
2
|
Chin KY. Updates in the skeletal and joint protective effects of tocotrienol: a mini review. Front Endocrinol (Lausanne) 2024; 15:1417191. [PMID: 38974581 PMCID: PMC11224474 DOI: 10.3389/fendo.2024.1417191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Osteoporosis and osteoarthritis continue to pose significant challenges to the aging population, with limited preventive options and pharmacological treatments often accompanied by side effects. Amidst ongoing efforts to discover new therapeutic agents, tocotrienols (TTs) have emerged as potential candidates. Derived from annatto bean and palm oil, TTs have demonstrated efficacy in improving skeletal and joint health in numerous animal models of bone loss and osteoarthritis. Mechanistic studies suggest that TTs exert their effects through antioxidant, anti-inflammatory, Wnt-suppressive, and mevalonate-modulating mechanisms in bone, as well as through self-repair mechanisms in chondrocytes. However, human clinical trials in this field remain scarce. In conclusion, TTs hold promise as agents for preventing osteoporosis and osteoarthritis, pending further evidence from human clinical trials.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
3
|
Wong SK. Glycogen Synthase Kinase-3 Beta (GSK3β) as a Potential Drug Target in Regulating Osteoclastogenesis: An Updated Review on Current Evidence. Biomolecules 2024; 14:502. [PMID: 38672518 PMCID: PMC11047881 DOI: 10.3390/biom14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3β enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3β is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (β)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3β has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3β may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3β inhibitors as bone-protecting agents. Some studies demonstrated that GSK3β inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3β silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3β on osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Ekeuku SO, Nor Muhamad ML, Aminuddin AA, Ahmad F, Wong SK, Mark-Lee WF, Chin KY. Effects of emulsified and non-emulsified palm tocotrienol on bone and joint health in ovariectomised rats with monosodium iodoacetate-induced osteoarthritis. Biomed Pharmacother 2024; 170:115998. [PMID: 38091638 DOI: 10.1016/j.biopha.2023.115998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Postmenopausal women are susceptible to osteoporosis and osteoarthritis. Tocotrienol, a bone-protective nutraceutical, is reported to prevent osteoarthritis in male rats. However, its efficacy on joint health in oestrogen deficiency has not been validated. Besides, data on the use of emulsification systems in enhancing bioavailability and protective effects of tocotrienol are limited. Ovariectomised adult female Sprague-Dawley rats (3 months old) were treated with refined olive oil, emulsified (EPT, 100 mg/kg/day with 25% vitamin E content), non-emulsified palm tocotrienol (NEPT, 100 mg/kg/day with 50% vitamin E content) and calcium carbonate (1% w/v in drinking water) plus glucosamine sulphate (250 mg/kg/day) for 10 weeks. Osteoarthritis was induced with monosodium iodoacetate four weeks after ovariectomy. Baseline control was sacrificed upon receipt, while the sham group was not ovariectomised and treated with refined olive oil. EPT and NEPT prevented femoral metaphyseal and subchondral bone volume decline caused by ovariectomy. EPT decreased subchondral trabecular separation compared to the negative control. EPT preserved stiffness and Young's Modulus at the femoral mid-shaft of the rats. Circulating RANKL was reduced post-treatment in the EPT group. Joint width was reduced in all the treatment groups vs the negative control. The EPT group's grip strength was significantly improved over the negative control and NEPT group. EPT also preserved cartilage histology based on several Mankin's subscores. EPT performed as effectively as NEPT in preventing osteoporosis and osteoarthritis in ovariectomised rats despite containing less vitamin E content. This study justifies clinical trials for the use of EPT in postmenopausal women with both conditions.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Muhamed Lahtif Nor Muhamad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Alya Aqilah Aminuddin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Wun Fui Mark-Lee
- Department of Chemistry, Faculty of Science, University Teknologi Malaysia, 81310 UTM Johor Bahru, Malaysia; Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chang JS, Chao JC, Li C, Tinkov AA. Role of vitamins beyond vitamin D 3 in bone health and osteoporosis (Review). Int J Mol Med 2024; 53:9. [PMID: 38063255 PMCID: PMC10712697 DOI: 10.3892/ijmm.2023.5333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Joao B.T. Rocha
- Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Abel Santamaria
- Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Tatiana V. Korobeinikova
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jung-Su Chang
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Jane C.J. Chao
- College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Alexey A. Tinkov
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119146, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
6
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Mark-Lee WF, Chong YY, Qian J, Zhang Y, Qu H, Syed Hashim SA, Ekeuku SO. Effects of E'Jiao on Skeletal Mineralisation, Osteocyte and WNT Signalling Inhibitors in Ovariectomised Rats. Life (Basel) 2023; 13:life13020570. [PMID: 36836927 PMCID: PMC9961805 DOI: 10.3390/life13020570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
E'Jiao is a traditional Chinese medicine derived from donkey skin. E'Jiao is reported to suppress elevated bone remodelling in ovariectomised rats but its mechanism of action is not known. To bridge this research gap, the current study aims to investigate the effects of E'Jiao on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. Female Sprague-Dawley rats (3 months old) were ovariectomised and supplemented with E'Jiao at 0.26 g/kg, 0.53 g/kg and 1.06 g/kg, or 1% calcium carbonate (w/v) in drinking water. The rats were euthanised after two months of supplementation and their bones were collected for Fourier-transform infrared spectroscopy, histomorphometry and protein analysis. Neither ovariectomy nor treatment affected the skeletal mineral/matrix ratio, osteocyte number, empty lacunar number, and Dickkopf-1 and sclerostin protein levels (p > 0.05). Rats treated with calcium carbonate had a higher Dickkopf-1 level than baseline (p = 0.002) and E'Jiao at 0.53 g/kg (p = 0.002). In conclusion, E'Jiao has no significant effect on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. The skeletal effect of E'Jiao might not be mediated through osteocytes.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-9573
| | - Ben Nett Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Muhd Khairik Imran Rostam
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Nur Farah Dhaniyah Muhammad Fadzil
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Vaishnavi Raman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Farzana Mohamed Yunus
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Wun Fui Mark-Lee
- Department of Chemistry, Faculty of Science, University Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
- Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Yan Yi Chong
- School of Pre-University Studies, Taylor’s College, Subang Jaya 47500, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| |
Collapse
|
7
|
Nair AB, Gorain B, Pandey M, Jacob S, Shinu P, Aldhubiab B, Almuqbil RM, Elsewedy HS, Morsy MA. Tocotrienol in the Treatment of Topical Wounds: Recent Updates. Pharmaceutics 2022; 14:pharmaceutics14112479. [PMID: 36432670 PMCID: PMC9699634 DOI: 10.3390/pharmaceutics14112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Healing wounds is an important attempt to keep the internal higher organs safe. Complications in topical wound healing may lead to the formation of scars, which can affect the patient's quality of life. Although several approaches are ongoing in parallel in the exploration of natural compounds via advanced delivery, in this article, an attempt has been made to highlight tocotrienol. Tocotrienol is a natural form of vitamin E and has shown its potential in certain pharmacological activities better than tocopherol. Its antioxidant, anti-inflammatory, cell signal-mediating effects, angiogenic properties, management of scar, and promotion of wound environment with essential factors have shown potential in the management of topical wound healing. Therefore, this review has aimed to focus on recent advances in topical wound healing through the application of tocotrienols. Challenges in delivering tocotrienols to the topical wound due to its large molecular weight and higher logP have also been explored using nanotechnological-based carriers, which has made tocotrienol a potential tool to facilitate the closure of wounds. Exploration of tocotrienol has also been made in human volunteers for biopsy wounds; however, the results are yet to be reported. Overall, based on the current findings in the literature, it could be inferred that tocotrienol would be a viable alternative to the existing wound dressing components for the management of topical wounds.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
- Correspondence: (A.B.N.); (B.G.); Tel.: +966-536219868 (A.B.N.); +91-9088585676 (B.G.)
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Mahendergarh 123031, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
8
|
Wong SK. A Review of Current Evidence on the Relationship between Phosphate Metabolism and Metabolic Syndrome. Nutrients 2022; 14:4525. [PMID: 36364791 PMCID: PMC9656201 DOI: 10.3390/nu14214525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Phosphorus, present as phosphate in biological systems, is an essential mineral for various biological activities and biochemical processes. Numerous studies have indicated that disturbed phosphate balance may contribute to the development of metabolic syndrome (MetS). However, no consistent result was found on the association between phosphorus intake and serum phosphate concentration with MetS. It is believed that both positive and negative impacts of phosphorus/phosphate co-exist in parallel during MetS condition. Reduced phosphate level contributed to the development of obesity and hyperglycaemia. Low phosphate is believed to compromise energy production, reduce exercise capacity, increase food ingestion, and impair glucose metabolism. On the other hand, the effects of phosphorus/phosphate on hypertension are rather complex depending on the source of phosphorus and subjects' health conditions. Phosphorus excess activates sympathetic nervous system, renin-angiotensin-aldosterone system, and induces hormonal changes under pathological conditions, contributing to the blood pressure-rising effects. For lipid metabolism, adequate phosphate content ensures a balanced lipid profile through regulation of fatty acid biosynthesis, oxidation, and bile acid excretion. In conclusion, phosphate metabolism serves as a potential key feature for the development and progression of MetS. Dietary phosphorus and serum phosphate level should be under close monitoring for the management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
9
|
Tocotrienol as a Protecting Agent against Glucocorticoid-Induced Osteoporosis: A Mini Review of Potential Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185862. [PMID: 36144598 PMCID: PMC9506150 DOI: 10.3390/molecules27185862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022]
Abstract
Glucocorticoid-induced osteogenic dysfunction is the main pathologyical mechanism underlying the development of glucocorticoid-induced osteoporosis. Glucocorticoids promote adipogenic differentiation and osteoblast apoptosis through various pathways. Various ongoing studies are exploring the potential of natural products in preventing glucocorticoid-induced osteoporosis. Preclinical studies have consistently shown the bone protective effects of tocotrienol through its antioxidant and anabolic effects. This review aims to summarise the potential mechanisms of tocotrienol in preventing glucocorticoid-induced osteoporosis based on existing in vivo and in vitro evidence. The current literature showed that tocotrienol prevents oxidative damage on osteoblasts exposed to high levels of glucocorticoids. Tocotrienol reduces lipid peroxidation and increases oxidative stress enzyme activities. The reduction in oxidative stress protects the osteoblasts and preserves the bone microstructure and biomechanical strength of glucocorticoid-treated animals. In other animal models, tocotrienol has been shown to activate the Wnt/β-catenin pathway and lower the RANKL/OPG ratio, which are the targets of glucocorticoids. In conclusion, tocotrienol enhances osteogenic differentiation and bone formation in glucocorticoid-treated osteoblasts while improving structural integrity in glucocorticoid-treated rats. This is achieved by preventing oxidative stress and osteoblast apoptosis. However, these preclinical results should be validated in a randomised controlled trial.
Collapse
|
10
|
Wong SK, Fikri NIA, Munesveran K, Hisham NSN, Lau SHJ, Chin KY, Fahami NAM, Saad QHM, Kamisah Y, Abdullah A, Masbah N, Ima-Nirwana S. Effects of tocotrienol on osteocyte-mediated phosphate metabolism in high-carbohydrate high-fat diet-induced osteoporotic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
11
|
Wu K, Han L, Zhao Y, Xiao Q, Zhang Z, Lin X. Deciphering the molecular mechanism underlying the effects of epimedium on osteoporosis through system bioinformatic approach. Medicine (Baltimore) 2022; 101:e29844. [PMID: 35960074 PMCID: PMC9371495 DOI: 10.1097/md.0000000000029844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Epimedium has gained widespread clinical application in Traditional Chinese Medicine, with the functions of promoting bone reproduction, regulating cell cycle and inhibiting osteoclastic activity. However, its precise cellular pharmacological therapeutic mechanism on osteoporosis (OP) remains elusive. This study aims to elucidate the molecular mechanism of epimedium in the treatment of OP based on system bioinformatic approach. Predicted targets of epimedium were collected from TCMSP, BATMAN-TCM and ETCM databases. Differentially expressed mRNAs of OP patients were obtained from Gene Expression Omnibus database by performing Limma package of R software. Epimedium-OP common targets were obtained by Venn diagram package for further analysis. The protein-protein interaction network was constructed using Cytoscape software. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out by using clusterProfiler package. Molecular docking analysis was conducted by AutoDock 4.2 software to validate the binding affinity between epimedium and top 3 proteins based on the result of protein-protein interaction. A total of 241 unique identified epimedium targets were screened from databases, of which 62 overlapped with the targets of OP and were considered potential therapeutic targets. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that these targets were positive regulation of cell cycle, cellular response to oxidative stress and positive regulation of cell cycle process as well as cellular senescence, FoxO, PI3K-Akt, and NF-kappa B signaling pathways. Molecular docking showed that epimedium have a good binding activity with key targets. Our study demonstrated the multitarget and multi-pathway characteristics of epimedium on OP, which elucidates the potential mechanisms of epimedium against OP and provides theoretical basis for further drug development.
Collapse
Affiliation(s)
- Keliang Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong Province, China
| | - Linjing Han
- Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Ying Zhao
- Guangzhou University of Chinese Medicine, Baiyun District, Guangzhou, Guangdong Province, China
| | - Qinghua Xiao
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
| | - Zhen Zhang
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
| | - Xiaosheng Lin
- Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, Bao’an District, Shenzhen, Guangdong Province, China
- *Correspondence: Xiaosheng Lin, Integrated Traditional Chinese and Western Medicine Hospital of Shenzhen, 3rd Shajin Road, Bao’an District, Shenzhen, Guangdong Province, 518104, China (e-mail: )
| |
Collapse
|
12
|
Zainal Z, Khaza'ai H, Kutty Radhakrishnan A, Chang SK. Therapeutic potential of palm oil vitamin E-derived tocotrienols in inflammation and chronic diseases: Evidence from preclinical and clinical studies. Food Res Int 2022; 156:111175. [DOI: 10.1016/j.foodres.2022.111175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
|
13
|
Tocotrienol in Pre-Eclampsia Prevention: A Mechanistic Analysis in Relation to the Pathophysiological Framework. Cells 2022; 11:cells11040614. [PMID: 35203265 PMCID: PMC8870475 DOI: 10.3390/cells11040614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of pre-eclampsia involves two major pathways, namely systemic oxidative stress and subsequent generalised inflammatory response, which eventually culminates in endothelial cell injury and the syndrome of pre-eclampsia with multi-organ dysfunction. Aspirin has been used to reduce the risk of pre-eclampsia, but it only possesses anti-inflammatory properties without any antioxidant effect. Hence, it can only partially alleviate the problem. Tocotrienols are a unique form of vitamin E with strong antioxidant and anti-inflammatory properties that can be exploited as a preventive agent for pre-eclampsia. Many preclinical models showed that tocotrienol can also prevent hypertension and ischaemic/reperfusion injury, which are the two main features in pre-eclampsia. This review explores the mechanism of action of tocotrienol in relation to the pathophysiology of pre-eclampsia. In conclusion, the study provides sufficient justification for the establishment of a large clinical trial to thoroughly assess the capability of tocotrienol in preventing pre-eclampsia.
Collapse
|
14
|
Xu W, Li Y, Feng R, He P, Zhang Y. γ-Tocotrienol induced the proliferation and differentiation of MC3T3-E1 cells through the stimulation of the Wnt/β-catenin signaling pathway. Food Funct 2022; 13:398-410. [PMID: 34908071 DOI: 10.1039/d1fo02583j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-Tocotrienol (γ-T3), an isoprenoid phytochemical, has shown the promotion of osteoblast proliferation and differentiation in our previous study. In this study, its underlying mechanism was investigated through regulating the Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Comparative experiment results showed that γ-T3, not α-tocopherol (α-TOC) increased more significantly the viability and differentiation in MC3T3-E1 cells. After that, the cells were incubated with 10 mM LiCl, or 4 μM γ-T3 with or without 1 μM XAV-939. γ-T3 at 4 μM stimulated the Wnt/β-catenin signaling pathway by increasing the expression and nuclear accumulation of β-catenin, and the expressions of their downstream factors, such as cyclin-D1, c-Myc, BMP2 and BMP-4 in MC3T3-E1 cells. γ-T3 not only upregulated the viability, induced G0/G1 to the S phase, and promoted the expressions of PCNA (Proliferating Cell Nuclear Antigen) and Ki-67, but also increased ALP activity and the expressions of ON, OPN and OCN. Moreover, the effects of γ-T3 on the MC3T3-E1 cells resembled the actions of LiCl, an activator of the Wnt/β-catenin signaling pathway. Notably, all these effects of γ-T3 on the MC3T3-E1 cells were completely blocked by the Wnt/β-catenin signaling pathway inhibitor XAV-939. Our data demonstrated that γ-T3 can target β-catenin to enhance the Wnt/β-catenin signaling pathway, which led to increased expressions of the downstream cell proliferation and cell cycle-associated (cyclin D1 and c-myc), and cell differentiation-associated (BMP-2 and BMP-4) target genes, and ultimately promoted MC3T3-E1 cell proliferation and differentiation. Therefore, γ-T3 may be a potential agent to prevent and reverse osteoporosis due to its safety and powerful abilities of osteogenesis.
Collapse
Affiliation(s)
- Weili Xu
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Yutong Li
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, China
| | - Pan He
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| | - Yuqi Zhang
- Innovation Research Center for Special Food-Medicine and Biochemical Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, China.
| |
Collapse
|
15
|
Yu X, Xia Y, Jia J, Yuan G. The Role of Fibroblast Growth Factor 19 Subfamily in Different Populations Suffering From Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:830022. [PMID: 35574015 PMCID: PMC9097273 DOI: 10.3389/fendo.2022.830022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor (FGF) 19 subfamily, also known as endocrine fibroblast growth factors (FGFs), is a newly discovered metabolic regulator, including FGF19, FGF21 and FGF23. They play significant roles in maintaining systemic homeostasis, regulating the balance of bile acid and glucolipid metabolism in humans. Osteoporosis is a chronic disease, especially in the current status of aging population, osteoporosis is the most prominent chronic bone disease, leading to multiple complications and a significant economic burden that requires long-term or even lifelong management. Members of the FGF family have been shown to be associated with bone mineral density (BMD), fracture repair and cartilage regeneration. Studies of the FGF19 subfamily in different populations with osteoporosis have been increasing in recent years. This review summarizes the role of the FGF19 subfamily in bone metabolism, and provides new options for the treatment of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
| | | | - Jue Jia
- *Correspondence: Jue Jia, ; Guoyue Yuan,
| | | |
Collapse
|
16
|
Pereira ACM, de Oliveira Carvalho H, Gonçalves DES, Picanço KRT, de Lima Teixeira dos Santos AVT, da Silva HR, Braga FS, Bezerra RM, de Sousa Nunes A, Nazima MTST, Cerqueira JG, Taglialegna T, Teixeira JM, Carvalho JCT. Co-Treatment of Purified Annatto Oil ( Bixa orellana L.) and Its Granules (Chronic ®) Improves the Blood Lipid Profile and Bone Protective Effects of Testosterone in the Orchiectomy-Induced Osteoporosis in Wistar Rats. Molecules 2021; 26:4720. [PMID: 34443306 PMCID: PMC8399955 DOI: 10.3390/molecules26164720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
This study aimed to evaluate and compare the effects of co-treatment with purified annatto oil (PAO) or its granules (GRA, Chronic®) with that of testosterone on the orchiectomy-induced osteoporosis in Wistar rats. After surgery, rats were treated from day 7 until day 45 with testosterone only (TES, 7 mg/kg, IM) or TES + PAO or GRA (200 mg/kg, p.o.). The following parameters were evaluated: food/water intake, weight, HDL, LDL, glucose, triglycerides (TG), total cholesterol (TC), alkaline phosphatase levels, blood phosphorus and calcium contents, femur weight, structure (through scanning electron microscopy), and calcium content (through atomic absorption spectrophotometry). Our results show that orchiectomy could significantly change the blood lipid profile and decrease bone integrity parameters. Testosterone reposition alone could improve some endpoints, including LDL, TC, bone weight, and bone calcium concentration. However, other parameters were not significantly improved. Co-treatment with PAO or GRA improved the blood lipid profile and bone integrity more significantly and improved some endpoints not affected by testosterone reposition alone (such as TG levels and trabeculae sizes). The results suggest that co-treatment with annatto products improved the blood lipid profile and the anti-osteoporosis effects of testosterone. Overall, GRA had better results than PAO.
Collapse
Affiliation(s)
- Arlindo César Matias Pereira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Helison de Oliveira Carvalho
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
- Programa de Pós-Graduação em Inovação Farmacêutica, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil
| | - Danna Emanuelle Santos Gonçalves
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Karyny Roberta Tavares Picanço
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Heitor Ribeiro da Silva
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Francinaldo Sarges Braga
- Laboratório de Absorção Atômica e Bioprospecção, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (F.S.B.); (R.M.B.)
| | - Roberto Messias Bezerra
- Laboratório de Absorção Atômica e Bioprospecção, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (F.S.B.); (R.M.B.)
| | - Alessandro de Sousa Nunes
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Maira Tiyomi Sacata Tongo Nazima
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - Júlia Gomes Cerqueira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.G.C.); (T.T.)
| | - Talisson Taglialegna
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.G.C.); (T.T.)
| | - Janayra Maris Teixeira
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
| | - José Carlos Tavares Carvalho
- Laboratório de Pesquisa em Fármacos, Departamento de Ciências Biológicas e da Saúde, Colegiado de Farmácia, Universidade Federal do Amapá, Macapá 68902-280, AP, Brazil; (A.C.M.P.); (H.d.O.C.); (D.E.S.G.); (K.R.T.P.); (A.V.T.d.L.T.d.S.); (H.R.d.S.); (A.d.S.N.); (M.T.S.T.N.); (J.M.T.)
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (J.G.C.); (T.T.)
| |
Collapse
|
17
|
Hao YM, He DW, Gao Y, Fang LN, Zhang PP, Lu K, Lu RZ, Li C. Association of Hydrogen Sulfide with Femoral Bone Mineral Density in Osteoporosis Patients: A Preliminary Study. Med Sci Monit 2021; 27:e929389. [PMID: 33714972 PMCID: PMC7970661 DOI: 10.12659/msm.929389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Accumulated evidence has suggested that hydrogen sulfide (H2S) has a role in bone formation and bone tissue regeneration. However, it is unknown whether the H2S content is associated with bone mineral density (BMD) in patients with osteopenia/osteoporosis. Material/Methods In the present study, we aimed to explore the changes of serum H2S in osteopenia and osteoporosis patients. We analyzed femur expression of cystathionine β synthase (CBS), cystathionine γ lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), which are key enzymes for generating H2S. Results Sixteen (16%) patients had osteopenia, 9 (9%) had osteoporosis, and 75 (75%) had normal BMD. In comparison with patients with normal BMD (controls), the serum levels of H2S were unexpectedly increased in patients with osteopenia and osteoporosis. This increase was much higher in patients with osteoporosis than in those with osteopenia. Serum H2S levels were negatively correlated with femoral BMD, but not lumbar BMD. Interestingly, the expression of CBS and CSE were downregulated in femur tissues in patients with osteoporosis, whereas the expression of 3-MST remained unchanged. Serum phosphorus levels, alkaline phosphatase, hemoglobin, and triglycerides were found to be closely associated with CBS and CSE scores in femur tissues. Conclusions Serum H2S levels and femur CBS and CSE expression may be involved in osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Yan-Ming Hao
- Department of Joint Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Da-Wei He
- Laboratory Center, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Yan Gao
- Department of Joint Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Ling-Na Fang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Pan-Pan Zhang
- Department of Medical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Ke Lu
- Department of Joint Surgery, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Rong-Zhu Lu
- Laboratory Center, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
18
|
Virgen-Carrillo CA, de Los Ríos DLH, Torres KR, Moreno AGM. Diagnostic Criteria for Metabolic Syndrome in Diet-Induced Rodent Models: A Systematic Review. Curr Diabetes Rev 2021; 17:e140421192834. [PMID: 33855947 DOI: 10.2174/1573399817666210414103730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thousands of publications in recent years have addressed the induction of metabolic syndrome (MetS) in rodents. However, the criteria and the reference values for diagnosing this disease have not been defined. OBJECTIVE Our main objective was to carry out a systematic review to gather evidence about the criteria for biochemical and anthropometric parameters in which scientific studies have relied on to report that rats developed MetS from a previous dietary manipulation. METHODS We compiled characteristics and findings of diet-induced MetS with high-fat, high-carbohydrate, high-fat/high-carbohydrates, and cafeteria diet from PubMed and Science Direct databases published in the last 5 years. RESULTS The results on the principal determinants for the syndrome, published in the reviewed articles, were chosen to propose reference values in the rat models of food induction. CONCLUSION The values obtained will serve as reference cut-of points in the development of the disease; in addition, the compilation of data will be useful in planning and executing research protocols in animal models.
Collapse
Affiliation(s)
- Carmen Alejandrina Virgen-Carrillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Diana Laura Hernández de Los Ríos
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Karina Ruíz Torres
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| | - Alma Gabriela Martínez Moreno
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Jalisco, Mexico
| |
Collapse
|
19
|
Mohamad NV, Ima-Nirwana S, Chin KY. Self-emulsified annatto tocotrienol improves bone histomorphometric parameters in a rat model of oestrogen deficiency through suppression of skeletal sclerostin level and RANKL/OPG ratio. Int J Med Sci 2021; 18:3665-3673. [PMID: 34790038 PMCID: PMC8579289 DOI: 10.7150/ijms.64045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Menopause is the leading cause of osteoporosis for elderly women due to imbalanced bone remodelling in the absence of oestrogen. The ability of tocotrienol in reversing established bone loss due to oestrogen deficiency remains unclear despite the plenitude of evidence showcasing its preventive effects. This study aimed to investigate the effects of self-emulsified annatto tocotrienol (SEAT) on bone histomorphometry and remodelling in ovariectomised rats. Female Sprague Dawley rats (n=36) were randomly assigned into baseline, sham, ovariectomised (OVX) control, OVX-treated with annatto tocotrienol (AT) (60 mg/kg), SEAT (60 mg/kg) and raloxifene (1 mg/kg). Daily treatment given through oral gavage was started two months after castration. The rats were euthanised after eight weeks of treatment. Blood was collected for bone biomarkers. Femur and lumbar bones were collected for histomorphometry and remodelling markers. The results showed that AT and SEAT improved osteoblast numbers and trabecular mineralisation rate (p<0.05 vs untreated OVX). AT also decreased skeletal sclerostin expression in OVX rats (p<0.05 vs untreated OVX). Similar effects were observed in the raloxifene-treated group. Only SEAT significantly increased bone formation rate and reduced RANKL/OPG ratio (p<0.05 vs untreated OVX). However, no changes in osteoclast-related parameters were observed among the groups (p>0.05). In conclusion, SEAT exerts potential skeletal anabolic properties by increasing bone formation, suppressing sclerostin expression and reducing RANKL/OPG ratio in rats with oestrogen deficiency.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Wong SK, Chin KY, Ahmad F, Ima-Nirwana S. Biochemical and histopathological assessment of liver in a rat model of metabolic syndrome induced by high-carbohydrate high-fat diet. J Food Biochem 2020; 44:e13371. [PMID: 32744348 DOI: 10.1111/jfbc.13371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
This study aimed to evaluate the oxidative stress status, antioxidants capacity, and presence of nonalcoholic fatty liver disease (NAFLD) in an animal model of MetS induced by high-carbohydrate high-fat (HCHF) diet. Male Wistar rats were randomized into two groups, assigned for two different types of diet (standard rat pellet or HCHF diet) for 20 weeks. Liver was excised, weighed, and subjected to lipid peroxidation, nitric oxide (NO·) production, antioxidants activity, and histological assessment. The HCHF rats had higher lipid peroxidation and NO· level but lower enzymatic and nonenzymatic antioxidant levels than the normal animals. Histological evaluation revealed higher lobular inflammation, hepatocellular ballooning, NAFLD activity score, and lipid accumulation in the liver of HCHF group. In conclusion, the HCHF diet causes an increase in oxidative stress, depletion of antioxidants capacity, NAFLD, and liver injury. The induction of oxidative stress may be partially responsible for the development of NAFLD in MetS. PRACTICAL APPLICATIONS: The prevalence of MetS is estimated to increase rapidly with the escalating levels of obesity, diabetes, hypertension, and dyslipidemia. A suitable animal model of MetS that best mimicked the human disease state with known underlying mechanisms responsible for the pathogenesis of MetS is indispensable to search for potential adjunct therapies and drug targets. Thus, our current study elucidated the involvement of oxidative stress in linking MetS and NAFLD which might resemble the pathogenesis of MetS among Southeast Asian population.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Casati L, Pagani F, Maggi R, Ferrucci F, Sibilia V. Reply "Comment on: Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration. Int. J. Mol. Sci. 2020, 21, 4661". Int J Mol Sci 2020; 21:ijms21186675. [PMID: 32932619 PMCID: PMC7555298 DOI: 10.3390/ijms21186675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Dear Editor.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (L.C.); (F.P.)
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (L.C.); (F.P.)
| | - Roberto Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (L.C.); (F.P.)
- Correspondence:
| |
Collapse
|
22
|
Quercetin as an Agent for Protecting the Bone: A Review of the Current Evidence. Int J Mol Sci 2020; 21:ijms21176448. [PMID: 32899435 PMCID: PMC7503351 DOI: 10.3390/ijms21176448] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
Collapse
|
23
|
Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration. Int J Mol Sci 2020; 21:ijms21134661. [PMID: 32629979 PMCID: PMC7370057 DOI: 10.3390/ijms21134661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, indicating that stimulation of osteoblast migration could be a promising osteoanabolic strategy. We showed that purified δ-tocotrienol (δ-TT, 10 μg/mL), isolated from commercial palm oil (Elaeis guineensis) fraction, stimulates the migration of both MC3T3-E1 osteoblast-like cells and primary human bone marrow mesenchymal stem cells (BMSC) as detected by wound healing assay or Boyden chamber assay respectively. The ability of δ-TT to promote MC3T3-E1 cells migration is dependent on Akt phosphorylation detected by Western blotting and involves Wnt/β-catenin signalling pathway activation. In fact, δ-TT increased β-catenin transcriptional activity, measured using a Nano luciferase assay and pretreatment with procaine (2 µM), an inhibitor of the Wnt/β-catenin signalling pathway, reducing the wound healing activity of δ-TT on MC3T3-E1 cells. Moreover, δ-TT treatment increased the expression of β-catenin specific target genes, such as Osteocalcin and Bone Morphogenetic Protein-2, involved in osteoblast differentiation and migration, and increased alkaline phosphatase and collagen content, osteoblast differentiation markers. The ability of δ-TT to enhance the recruitment of BMSC, and to promote MC3T3-E1 differentiation and migratory behavior, indicates that δ-TT could be considered a promising natural anabolic compound.
Collapse
|
24
|
Wong SK, Kamisah Y, Mohamed N, Muhammad N, Masbah N, Mohd Fahami NA, Mohamed IN, Shuid AN, Mohd Saad Q, Abdullah A, Mohamad NV, Ibrahim NI, Pang KL, Chow YY, Thong BKS, Subramaniam S, Chan CY, Ima-Nirwana S, Chin KY. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrients 2020; 12:E259. [PMID: 31963885 PMCID: PMC7019837 DOI: 10.3390/nu12010259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tocotrienol (T3) is a subfamily of vitamin E known for its wide array of medicinal properties. This review aimed to summarize the health benefits of T3, particularly in prevention or treatment of non-communicable diseases (NCDs), including cardiovascular, musculoskeletal, metabolic, gastric, and skin disorders, as well as cancers. Studies showed that T3 could prevent various NCDs, by suppressing 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) in the mevalonate pathway, inflammatory response, oxidative stress, and alternating hormones. The efficacy of T3 in preventing/treating these NCDs is similar or greater compared to tocopherol (TF). TF may lower the efficacy of T3 because the efficacy of the combination of TF and T3 was lower than T3 alone in some studies. Data investigating the effects of T3 on osteoporosis, arthritis, and peptic ulcers in human are limited. The positive outcomes of T3 treatment obtained from the preclinical studies warrant further validation from clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia; (S.K.W.); (Y.K.); (N.M.); (N.M.); (N.M.); (N.A.M.F.); (I.N.M.); (A.N.S.); (Q.M.S.); (A.A.); (N.-V.M.); (N.I.I.); (K.-L.P.); (Y.Y.C.); (B.K.S.T.); (S.S.); (C.Y.C.); (S.I.-N.)
| |
Collapse
|
25
|
Chin KY, Wong SK, Ekeuku SO, Pang KL. Relationship Between Metabolic Syndrome and Bone Health - An Evaluation of Epidemiological Studies and Mechanisms Involved. Diabetes Metab Syndr Obes 2020; 13:3667-3690. [PMID: 33116718 PMCID: PMC7569044 DOI: 10.2147/dmso.s275560] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome (MetS) and osteoporosis are two medical problems plaguing the ageing populations worldwide. Though seemingly distinctive to each other, metabolic derangements are shown to influence bone health. This review summarises the relationship between MetS and bone health derived from epidemiological studies and explains the mechanistic basis of this relationship. The discourse focuses on the link between MetS and bone mineral density, quantitative sonometric indices, geometry and fracture risk in humans. The interesting sex-specific trend in the relationship, probably due to factors related to body composition and hormonal status, is discussed. Mechanistically, each component of MetS affects the bone distinctly, forming a complex interacting network influencing the skeleton. Lastly, the effects of MetS management, such as pharmacotherapies, exercise and bariatric surgery, on bone, are presented. This review aims to highlight the significant relationship between MetS and bone, and proper management of MetS with the skeletal system in mind could prevent cardiovascular and bone complications.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Correspondence: Kok-Yong Chin Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, MalaysiaTel +60 3-9145 9573 Email
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Meister ML, Mo H, Ji X, Shen CL. Tocotrienols in Bone Protection: Evidence from Preclinical Studies. EFOOD 2020. [DOI: 10.2991/efood.k.200427.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
27
|
Wong SK, Chin KY, Ima-Nirwana S. The Osteoprotective Effects Of Kaempferol: The Evidence From In Vivo And In Vitro Studies. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3497-3514. [PMID: 31631974 PMCID: PMC6789172 DOI: 10.2147/dddt.s227738] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/12/2019] [Indexed: 01/06/2023]
Abstract
Kaempferol is a dietary bioflavonoid ubiquitously found in various types of plant. It possesses a wide range of medicinal properties suggesting its potential clinical utility that requires further investigation. The present review intends to highlight the efficacy of kaempferol and its molecular mechanisms of action in regulating bone metabolism. Many reports have acknowledged the bone-protecting property of kaempferol and kaempferol-containing plants using in vitro and in vivo experimental models. Kaempferol supplementation showed bone-sparing effects in newborn rats, glucocorticoid-induced and ovariectomy-induced osteoporotic models as well as bone fracture models. It achieves the bone-protective effects by inhibiting adipogenesis, inflammation, oxidative stress, osteoclastic autophagy and osteoblastic apoptosis while activating osteoblastic autophagy. The anti-osteoporotic effects of kaempferol are mediated through regulation of estrogen receptor, bone morphogenetic protein-2 (BMP-2), nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways. In summary, kaempferol exhibits beneficial effects on skeleton, thus is potentially effective for the prophylaxis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|