1
|
Anikeeva O, Hansen A, Varghese B, Borg M, Zhang Y, Xiang J, Bi P. The impact of increasing temperatures due to climate change on infectious diseases. BMJ 2024; 387:e079343. [PMID: 39366706 DOI: 10.1136/bmj-2024-079343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Global temperatures will continue to rise due to climate change, with high temperature periods expected to increase in intensity, frequency, and duration. Infectious diseases, including vector-borne diseases such as dengue fever and malaria, waterborne diseases such as cholera, and foodborne diseases such as salmonellosis are influenced by temperature and other climatic variables, thus contributing to higher disease burden and associated healthcare costs, particularly in socioeconomically disadvantaged regions. Targeted efforts and investments are therefore needed to support low and middle income countries to prepare for and respond to the increasing infectious disease threats posed by rising temperatures. This can be facilitated by the development and refinement of robust disease and entomological surveillance and early warning systems with integration of climatic information that promote enhanced understanding of the geographic distribution of disease risk. To enhance healthcare workforce capacity and capability to respond to these public health threats, medical curricula and continuing professional education programmes for healthcare providers must include evidence based components on the impacts of climate change on infectious diseases.
Collapse
Affiliation(s)
- Olga Anikeeva
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Alana Hansen
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Blesson Varghese
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Matthew Borg
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| | - Ying Zhang
- University of Sydney, Sydney, New South Wales, Australia
| | | | - Peng Bi
- Department of Public Health, University of Adelaide, Adelaide, South Australia SA 5005, Australia
| |
Collapse
|
2
|
Shartova N, Korennoy F, Zelikhina S, Mironova V, Wang L, Malkhazova S. Spatial and temporal patterns of haemorrhagic fever with renal syndrome (HFRS) and the impact of environmental drivers in a border area of the Russian Far East. Zoonoses Public Health 2024; 71:489-502. [PMID: 38396153 DOI: 10.1111/zph.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
AIMS Haemorrhagic fever with renal syndrome (HFRS) is a significant zoonotic disease transmitted by rodents. The distribution of HFRS in the European part of Russia has been studied quite well; however, much less is known about the endemic area in the Russian Far East. The mutual influence of the epidemic situation in the border regions and the possibility of cross-border transmission of infection remain poorly understood. This study aims to identify the spatiotemporal hot spots of the incidence and the impact of environmental drivers on the HFRS distribution in the Russian Far East. METHODS AND RESULTS A two-scale study design was performed. Kulldorf's spatial scan statistic was used to conduct spatiotemporal analysis at a regional scale from 2000 to 2020. In addition, an ecological niche model based on maximum entropy was applied to analyse the contribution of various factors and identify spatial favourability at the local scale. One spatiotemporal cluster that existed from 2002 to 2011 and located in the border area and one pure temporal cluster from 2004 to 2007 were revealed. The best suitability for orthohantavirus persistence was found along rivers, including those at the Chinese-Russian border, and was mainly explained by land cover, NDVI (as an indicator of vegetation density and greenness) and elevation. CONCLUSIONS Despite the stable incidence in recent years in, targeted prevention strategies are still needed due to the high potential for HRFS distribution in the southeast of the Russian Far East.
Collapse
Affiliation(s)
- Natalia Shartova
- International Laboratory of Landscape Ecology, Higher School of Economics, Moscow, Russia
| | - Fedor Korennoy
- FGBI Federal Center for Animal Health (FGBI ARRIAH), mkr. Yurevets, Vladimir, Russia
| | | | - Varvara Mironova
- Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
3
|
Wang J, Luo M, Li T, Liu Y, Jiang G, Wu Y, Liu Q, Gong Z, Sun J. The ecological and etiological investigation of ticks and rodents in China: results from an ongoing surveillance study in Zhejiang Province. Front Vet Sci 2023; 10:1268440. [PMID: 38089699 PMCID: PMC10715276 DOI: 10.3389/fvets.2023.1268440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/13/2023] [Indexed: 05/07/2024] Open
Abstract
OBJECTIVES This study aimed to analyze the population density of vector ticks and reservoir hosts rodents, and to investigate the relevant pathogen infection in Zhejiang Province, China. METHODS In this surveillance study, the data of ticks density were collected with the tick picking method on animal body surface and the drag-flag method, while the rodent density with the night trapping method. The samples of ticks were examined for the severe fever with thrombocytopenia syndrome virus (SFTSV), and blood serum and organs from rodents were subjected for SFTSV, hantavirus, Leptospira, Orientia tsutsugamushi (O. tsutsugamushi) and Yersinia pestis (Y. pestis) screening in the laboratory. RESULTS From 2017 to 2022 in Zhejiang Province, 16,230 parasitic ticks were found in 1848 positive animals, with the density of parasitic ticks of 1.29 ticks per host animal, and a total of 5,201 questing ticks were captured from 1,140,910 meters of vegetation distance with the questing tick density of 0.46 ticks/flag·100 m. Haemaphysalis longicornis (H. longicornis) was the major species. A total of 2,187,739 mousetraps were distributed and 12,705 rodents were trapped, with the density of 0.58 per 100 trap-nights. Rattus norvegicus was the major species. For SFTSV screening, two groups nymphal ticks of H. longicornis were tested to be positive. For the rodents samples, the Leptospira had a positive rate of 12.28% (197/1604), the hantavirus was 1.00% (16/1604), and the O. tsutsugamushi was 0.15% (2/1332). No positive results were found with SFTSV and Y. pestis in the rodents samples. CONCLUSION Findings from this study indicated that the ticks and rodents were widely distributed in Zhejiang Province. Particularly, the positive detection of SFTSV, Leptospira, hantavirus and O. tsutsugamushi in ticks or rodents from this area suggested that more attention should be paid to the possibilities of relevant vector-borne diseases occurrence.
Collapse
Affiliation(s)
- Jinna Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Mingyu Luo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Tianqi Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ying Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Guoqin Jiang
- Shaoxing Center for Disease Control and Prevention, Shaoxing, China
| | - Yuyan Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qinmei Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhenyu Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
4
|
Li S, Zhu L, Zhang L, Zhang G, Ren H, Lu L. Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3328. [PMID: 36834023 PMCID: PMC9960491 DOI: 10.3390/ijerph20043328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease that has threatened Chinese residents for nearly a century. Although comprehensive prevent and control measures were taken, the HFRS epidemic in China presents a rebounding trend in some areas. Urbanization is considered as an important influencing factor for the HFRS epidemic in recent years; however, the relevant research has not been systematically summarized. This review aims to summarize urbanization-related environmental factors and the HFRS epidemic in China and provide an overview of research perspectives. The literature review was conducted following the PRISMA protocol. Journal articles on the HFRS epidemic in both English and Chinese published before 30 June 2022 were identified from PubMed, Web of Science, and Chinese National Knowledge Infrastructure (CNKI). Inclusion criteria were defined as studies providing information on urbanization-related environmental factors and the HFRS epidemic. A total of 38 studies were included in the review. Changes brought by urbanization on population, economic development, land use, and vaccination program were found to be significantly correlated with the HFRS epidemic. By changing the ecological niche of humans-affecting the rodent population, its virus-carrying rate, and the contact opportunity and susceptibility of populations-urbanization poses a biphasic effect on the HFRS epidemic. Future studies require systematic research framework, comprehensive data sources, and effective methods and models.
Collapse
Affiliation(s)
- Shujuan Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lingli Zhu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lidan Zhang
- Department of Public Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Guoyan Zhang
- Beijing Dong Cheng Center for Disease Control and Prevention, Beijing 100010, China
| | - Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
5
|
He J, Wang Y, Wei X, Sun H, Xu Y, Yin W, Wang Y, Zhang W. Spatial-temporal dynamics and time series prediction of HFRS in mainland China: A long-term retrospective study. J Med Virol 2023; 95:e28269. [PMID: 36320103 DOI: 10.1002/jmv.28269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/08/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China. The current study aims to characterize the spatial-temporal dynamics of HFRS in mainland China during a long-term period (1950-2018). A total of 1 665 431 cases of HFRS were reported with an average annual incidence of 54.22 cases/100 000 individuals during 1950-2018. The joint regression model was used to define the global trend of the HFRS cases with an increasing-decreasing-slightly increasing-decreasing-slightly increasing trend during the 68 years. Then spatial correlation analysis and wavelet cluster analysis were used to identify four types of clusters of HFRS cases located in central and northeastern China. Lastly, the prophet model outperforms auto-regressive integrated moving average model in the HFRS modeling. Our findings will help reduce the knowledge gap on the transmission dynamics and distribution patterns of the HFRS in mainland China and facilitate to take effective preventive and control measures for the high-risk epidemic area.
Collapse
Affiliation(s)
- Junyu He
- Ocean College, Zhejiang University, Zhoushan, China.,Ocean Academy, Zhejiang University, Zhoushan, China
| | - Yanding Wang
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xianyu Wei
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Hailong Sun
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yuanyong Xu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wenwu Yin
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wenyi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China.,Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Wang N, Yin JX, Zhang Y, Wu L, Li WH, Luo YY, Li R, Li ZW, Liu SQ. Genetic Evolution Analysis and Host Characteristics of Hantavirus in Yunnan Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13433. [PMID: 36294012 PMCID: PMC9603364 DOI: 10.3390/ijerph192013433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
For a long time, the epidemic situation of hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus (HV) in Yunnan Province of China has been relatively severe. The molecular epidemiology and host characteristics of HV in Yunnan Province are still not completely clear, and the systematic and long-term investigation of the epidemic area is very limited. In this study, a total of 488 murine-shaped animals were captured in the three regions of Mile City, Mangshi City and Lianghe County in Yunnan Province, and then the type of HV was identified by multiplex real-time RT-PCR and sequenced. The results indicate that 2.46% of the murine-shaped animal specimens were infected with HV. A new subtype of Seoul virus (SEOV) was found in the rare rat species Rattus nitidus in Lianghe County, and the two strains of this new subtype were named YNLH-K40 and YNLH-K53. Through the phylogenetic analysis of this new subtype, it is shown that this new subtype is very similar to the type S5 of SEOV, which is previously described as the main cause for the high incidence of HFRS in Longquan City, Zhejiang Province, China. This new subtype is highly likely to cause human infection and disease. Therefore, in addition to further promoting the improvement of the HV gene database and strengthening the discovery and monitoring of the host animals in Yunnan Province, more attention should be paid to the pathogenic potential of the newly discovered HV type.
Collapse
|
7
|
Baek K, Choi J, Park JT, Kwak K. Influence of temperature and precipitation on the incidence of hepatitis A in Seoul, Republic of Korea: a time series analysis using distributed lag linear and non-linear model. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1725-1736. [PMID: 35829753 DOI: 10.1007/s00484-022-02313-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to analyze the association between temperature and precipitation and the incidence of hepatitis A in Seoul, Korea, as meteorological factors may have different effects on specific diseases depending on the lifestyle in each region. Weekly cases of hepatitis A, weekly mean daily precipitation, and temperature data from 2016 to 2020 were analyzed. Quasi-Poisson-generalized linear models with time variable adjusted by spline function were used considering 0-6-week lags. The association of each variable and hepatitis A incidence was assessed by the single lag and the constrained distributed lag model. Multivariable distributed lag linear and non-linear models were used to develop models with significant independent variables. Weekly mean of daily mean temperature (Tmean) and maximum temperature (Tmax) were negatively associated with hepatitis A in the 6-week lag. Precipitation was negatively associated with hepatitis A in the 5- and 6-week lags. The multivariable model showed the negative association of Tmax, precipitation and hepatitis A in the 5- and 6-week lags. In the non-linear models, the incidence rate ratio (IRR) was the highest at a Tmax of 11 °C and decreased thereafter. IRR was the highest at 12 mm of precipitation and showed decrease pattern to 25 mm and then gradually increased in the 5- and 6-week lags. Identifying the impact of climate factors on hepatitis A incidence would help in the development of strategies to prevent diseases and indirectly estimate the impact of climate change on hepatitis A epidemiology.
Collapse
Affiliation(s)
- Kiook Baek
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, Republic of Korea
| | - Jonghyuk Choi
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
8
|
Douglas KO, Payne K, Sabino-Santos G, Agard J. Influence of Climatic Factors on Human Hantavirus Infections in Latin America and the Caribbean: A Systematic Review. Pathogens 2021; 11:pathogens11010015. [PMID: 35055965 PMCID: PMC8778283 DOI: 10.3390/pathogens11010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND With the current climate change crisis and its influence on infectious disease transmission there is an increased desire to understand its impact on infectious diseases globally. Hantaviruses are found worldwide, causing infectious diseases such as haemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS)/hantavirus pulmonary syndrome (HPS) in tropical regions such as Latin America and the Caribbean (LAC). These regions are inherently vulnerable to climate change impacts, infectious disease outbreaks and natural disasters. Hantaviruses are zoonotic viruses present in multiple rodent hosts resident in Neotropical ecosystems within LAC and are involved in hantavirus transmission. METHODS We conducted a systematic review to assess the association of climatic factors with human hantavirus infections in the LAC region. Literature searches were conducted on MEDLINE and Web of Science databases for published studies according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria. The inclusion criteria included at least eight human hantavirus cases, at least one climatic factor and study from > 1 LAC geographical location. RESULTS In total, 383 papers were identified within the search criteria, but 13 studies met the inclusion criteria ranging from Brazil, Chile, Argentina, Bolivia and Panama in Latin America and a single study from Barbados in the Caribbean. Multiple mathematical models were utilized in the selected studies with varying power to generate robust risk and case estimates of human hantavirus infections linked to climatic factors. Strong evidence of hantavirus disease association with precipitation and habitat type factors were observed, but mixed evidence was observed for temperature and humidity. CONCLUSIONS The interaction of climate and hantavirus diseases in LAC is likely complex due to the unknown identity of all vertebrate host reservoirs, circulation of multiple hantavirus strains, agricultural practices, climatic changes and challenged public health systems. There is an increasing need for more detailed systematic research on the influence of climate and other co-related social, abiotic, and biotic factors on infectious diseases in LAC to understand the complexity of vector-borne disease transmission in the Neotropics.
Collapse
Affiliation(s)
- Kirk Osmond Douglas
- Centre for Biosecurity Studies, Cave Hill Campus, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados
- Correspondence:
| | - Karl Payne
- Centre for Resource Management and Environmental Studies, Cave Hill Campus, The University of the West Indies, Cave Hill, St. Michael BB11000, Barbados;
| | - Gilberto Sabino-Santos
- School of Public Health and Tropical Medicine, Tulane University, 1324 Tulane Ave Suite 517, New Orleans, LA 70112, USA;
- Centre for Virology Research, Ribeirao Preto Medical School, University of Sao Paulo, 3900 Av. Bandeirantes, Ribeirao Preto 14049-900, SP, Brazil
| | - John Agard
- Department of Life Sciences, The University of the West Indies, St. Augustine 999183, Trinidad and Tobago;
| |
Collapse
|
9
|
Sun W, Liu X, Li W, Mao Z, Sun J, Lu L. Effects and interaction of meteorological factors on hemorrhagic fever with renal syndrome incidence in Huludao City, northeastern China, 2007-2018. PLoS Negl Trop Dis 2021; 15:e0009217. [PMID: 33764984 PMCID: PMC7993601 DOI: 10.1371/journal.pntd.0009217] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 02/06/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne disease, is a severe public health threat. Previous studies have discovered the influence of meteorological factors on HFRS incidence, while few studies have concentrated on the stratified analysis of delayed effects and interaction effects of meteorological factors on HFRS. Objective Huludao City is a representative area in north China that suffers from HFRS with primary transmission by Rattus norvegicus. This study aimed to evaluate the climate factors of lag, interaction, and stratified effects of meteorological factors on HFRS incidence in Huludao City. Methods Our researchers collected meteorological data and epidemiological data of HFRS cases in Huludao City during 2007–2018. First, a distributed lag nonlinear model (DLNM) for a maximum lag of 16 weeks was developed to assess the respective lag effect of temperature, precipitation, and humidity on HFRS incidence. We then constructed a generalized additive model (GAM) to explore the interaction effect between temperature and the other two meteorological factors on HFRS incidence and the stratified effect of meteorological factors. Results During the study period, 2751 cases of HFRS were reported in Huludao City. The incidence of HFRS showed a seasonal trend and peak times from February to May. Using the median WAT, median WTP, and median WARH as the reference, the results of DLNM showed that extremely high temperature (97.5th percentile of WAT) had significant associations with HFRS at lag week 15 (RR = 1.68, 95% CI: 1.04–2.74) and lag week 16 (RR = 2.80, 95% CI: 1.31–5.95). Under the extremely low temperature (2.5th percentile of WAT), the RRs of HFRS infection were significant at lag week 5 (RR = 1.28, 95% CI: 1.01–1.67) and lag 6 weeks (RR = 1.24, 95% CI: 1.01–1.57). The RRs of relative humidity were statistically significant at lag week 10 (RR = 1.19, 95% CI: 1.00–1.43) and lag week 11 (RR = 1.24, 95% CI: 1.02–1.50) under extremely high relative humidity (97.5th percentile of WARH); however, no statistically significance was observed under extremely low relative humidity (2.5th percentile of WARH). The RRs were significantly high when WAT was -10 degrees Celsius (RR = 1.34, 95% CI: 1.02–1.76), -9 degrees Celsius (1.37, 95% CI: 1.04–1.79), and -8 degrees Celsius (RR = 1.34, 95% CI: 1.03–1.75) at lag week 5 and more than 23 degrees Celsius after 15 weeks. Interaction and stratified analyses showed that the risk of HFRS infection reached its highest when both temperature and precipitation were at a high level. Conclusions Our study indicates that meteorological factors, including temperature and humidity, have delayed effects on the occurrence of HFRS in the study area, and the effect of temperature can be modified by humidity and precipitation. Public health professionals should pay more attention to HFRS control when the weather conditions of high temperature with more substantial precipitation and 15 weeks after the temperature is higher than 23 degrees Celsius. Climate change impacts vector-borne disease incidence by influencing vectors’ habitat and behaviors. As a rodent-borne disease, HFRS’s incidence rate fluctuates with the change of meteorological factors. In this study, we model the meteorological factors and time-series cases to explore the exposure-lag-response effect and interaction between meteorological factors on the risk of HFRS, respectively. The result showed there exist a lag effect between meteorological factors and the occurrence of HFRS and we find that a temperature higher than 23 Celsius degrees resulted in a significantly higher HFRS incidence after 15 weeks; a relative humidity higher than 93% led to a significantly higher incidence after 10 weeks. Also, a synergistic interaction between high temperature and high precipitation on HFRS risk was detected, this effect can be attributed to increased animal reproduction and food resources under this environment. This study provides a basis for in-depth evaluating the impact of meteorological factors and their interaction on HFRS.
Collapse
Affiliation(s)
- Wanwan Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Li
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiyuan Mao
- Cornell University, Ithaca, New York, United States of America
| | - Jimin Sun
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- * E-mail: (JMS); (LL)
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (JMS); (LL)
| |
Collapse
|
10
|
He J, Chen G, Jiang Y, Jin R, Shortridge A, Agusti S, He M, Wu J, Duarte CM, Christakos G. Comparative infection modeling and control of COVID-19 transmission patterns in China, South Korea, Italy and Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141447. [PMID: 32771775 PMCID: PMC7397934 DOI: 10.1016/j.scitotenv.2020.141447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 05/07/2023]
Abstract
The COVID-19 has become a pandemic. The timing and nature of the COVID-19 pandemic response and control varied among the regions and from one country to the other, and their role in affecting the spread of the disease has been debated. The focus of this work is on the early phase of the disease when control measures can be most effective. We proposed a modified susceptible-exposed-infected-removed model (SEIR) model based on temporal moving windows to quantify COVID-19 transmission patterns and compare the temporal progress of disease spread in six representative regions worldwide: three Chinese regions (Zhejiang, Guangdong and Xinjiang) vs. three countries (South Korea, Italy and Iran). It was found that in the early phase of COVID-19 spread the disease follows a certain empirical law that is common in all regions considered. Simulations of the imposition of strong social distancing measures were used to evaluate the impact that these measures might have had on the duration and severity of COVID-19 outbreaks in the three countries. Measure-dependent transmission rates followed a modified normal distribution (empirical law) in the three Chinese regions. These rates responded quickly to the launch of the 1st-level Response to Major Public Health Emergency in each region, peaking after 1-2 days, reaching their inflection points after 10-19 days, and dropping to zero after 11-18 days since the 1st-level response was launched. By March 29th, the mortality rates were 0.08% (Zhejiang), 0.54% (Guangdong) and 3.95% (Xinjiang). Subsequent modeling simulations were based on the working assumption that similar infection transmission control measures were taken in South Korea as in Zhejiang on February 25th, in Italy as in Guangdong on February 25th, and in Iran as in Xinjiang on March 8th. The results showed that by June 15th the accumulated infection cases could have been reduced by 32.49% (South Korea), 98.16% (Italy) and 85.73% (Iran). The surface air temperature showed stronger association with transmission rate of COVID-19 than surface relative humidity. On the basis of these findings, disease control measures were shown to be particularly effective in flattening and shrinking the COVID-10 case curve, which could effectively reduce the severity of the disease and mitigate medical burden. The proposed empirical law and the SEIR-temporal moving window model can also be used to study infectious disease outbreaks worldwide.
Collapse
Affiliation(s)
- Junyu He
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China
| | | | - Yutong Jiang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Runjie Jin
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ashton Shortridge
- Department of Geography, Environment and Spatial Sciences, Michigan State University, East Lansing, USA
| | - Susana Agusti
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mingjun He
- Ocean College, Zhejiang University, Zhoushan, China
| | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan, China; Ocean Academy, Zhejiang University, Zhoushan, China.
| | - Carlos M Duarte
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - George Christakos
- Ocean Academy, Zhejiang University, Zhoushan, China; Department of Geography, San Diego State University, San Diego, USA
| |
Collapse
|
11
|
Kabwe E, Davidyuk Y, Shamsutdinov A, Garanina E, Martynova E, Kitaeva K, Malisheni M, Isaeva G, Savitskaya T, Urbanowicz RA, Morzunov S, Katongo C, Rizvanov A, Khaiboullina S. Orthohantaviruses, Emerging Zoonotic Pathogens. Pathogens 2020; 9:E775. [PMID: 32971887 PMCID: PMC7558059 DOI: 10.3390/pathogens9090775] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/23/2022] Open
Abstract
Orthohantaviruses give rise to the emerging infections such as of hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) in Eurasia and the Americas, respectively. In this review we will provide a comprehensive analysis of orthohantaviruses distribution and circulation in Eurasia and address the genetic diversity and evolution of Puumala orthohantavirus (PUUV), which causes HFRS in this region. Current data indicate that the geographical location and migration of the natural hosts can lead to the orthohantaviruses genetic diversity as the rodents adapt to the new environmental conditions. The data shows that a high level of diversity characterizes the genome of orthohantaviruses, and the PUUV genome is the most divergent. The reasons for the high genome diversity are mainly caused by point mutations and reassortment, which occur in the genome segments. However, it still remains unclear whether this diversity is linked to the disease's severity. We anticipate that the information provided in this review will be useful for optimizing and developing preventive strategies of HFRS, an emerging zoonosis with potentially very high mortality rates.
Collapse
Affiliation(s)
- Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Anton Shamsutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Kristina Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | | | - Guzel Isaeva
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Tatiana Savitskaya
- Kazan Research Institute of Epidemiology and Microbiology, 420012 Kazan, Russia; (G.I.); (T.S.)
| | - Richard A. Urbanowicz
- Wolfson Centre for Global Virus Infections, University of Nottingham, Nottingham NG7 2UH, UK;
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sergey Morzunov
- Department of Pathology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Cyprian Katongo
- Department of Biological Sciences, University of Zambia, Lusaka 10101, Zambia;
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (E.K.); (Y.D.); (A.S.); (E.G.); (E.M.); (K.K.); (A.R.)
| | - Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, NV 89557, USA;
| |
Collapse
|