1
|
Waheed Z, Iqbal S, Irfan M, Jabeen K, Umar A, Aljowaie RM, Almutairi SM, Gancarz M. Pseudochrobactrum asaccharolyticum mitigates arsenic induced oxidative stress of maize plant by enhancing water status and antioxidant defense system. BMC PLANT BIOLOGY 2024; 24:832. [PMID: 39232682 PMCID: PMC11376096 DOI: 10.1186/s12870-024-05496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Oxidative stress mediated by reactive oxygen species (ROS) is a common denominator in arsenic toxicity. Arsenic stress in soil affects the water absorption, decrease stomatal conductance, reduction in osmotic, and leaf water potential, which restrict water uptake and osmotic stress in plants. Arsenic-induced osmotic stress triggers the overproduction of ROS, which causes a number of germination, physiological, biochemical, and antioxidant alterations. Antioxidants with potential to reduce ROS levels ameliorate the arsenic-induced lesions. Plant growth promoting rhizobacteria (PGPR) increase the total soluble sugars and proline, which scavenging OH radicals thereby prevent the oxidative damages cause by ROS. The main objective of this study was to evaluate the potential role of Arsenic resistant PGPR in growth of maize by mitigating arsenic stress. METHODOLOGY Arsenic tolerant PGPR strain MD3 (Pseudochrobactrum asaccharolyticum) was used to dismiss the 'As' induced oxidative stress in maize grown at concentrations of 50 and 100 mg/kg. Previously isolated arsenic tolerant bacterial strain MD3 "Pseudochrobactrum asaccharolyticum was used for this experiment. Further, growth promoting potential of MD3 was done by germination and physio-biochemical analysis of maize seeds. Experimental units were arranged in Completely Randomized Design (CRD). A total of 6 sets of treatments viz., control, arsenic treated (50 & 100 mg/kg), bacterial inoculated (MD3), and arsenic stress plus bacterial inoculated with three replicates were used for Petri plates and pot experiments. After treating with this MD3 strain, seeds of corn were grown in pots filled with or without 50 mg/kg and 100 mg/kg sodium arsenate. RESULTS The plants under arsenic stress (100 mg/kg) decreased the osmotic potential (0.8 MPa) as compared to control indicated the osmotic stress, which caused the reduction in growth, physiological parameters, proline accumulation, alteration in antioxidant enzymes (Superoxide dismutase-SOD, catalase-CAT, peroxidase-POD), increased MDA content, and H2O2 in maize plants. As-tolerant Pseudochrobactrum asaccharolyticum improved the plant growth by reducing the oxidation stress and antioxidant enzymes by proline accumulation. PCA analysis revealed that all six treatments scattered differently across the PC1 and PC2, having 85.51% and 9.72% data variance, respectively. This indicating the efficiency of As-tolerant strains. The heatmap supported the As-tolerant strains were positively correlated with growth parameters and physiological activities of the maize plants. CONCLUSION This study concluded that Pseudochrobactrum asaccharolyticum reduced the 'As' toxicity in maize plant through the augmentation of the antioxidant defense system. Thus, MD3 (Pseudochrobactrum asaccharolyticum) strain can be considered as bio-fertilizer.
Collapse
Affiliation(s)
- Zainab Waheed
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Iqbal
- Department of Botany, Lahore College for Women University, Lahore, Pakistan.
| | - Muhammad Irfan
- KAM School of Life Sciences, Forman Christian College, Lahore, Pakistan
| | - Khajista Jabeen
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Aisha Umar
- Institute of Botany, University of the Punjab, Lahore, Pakistan.
| | - Reem M Aljowaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Marek Gancarz
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, Krakow, 30-149, Poland
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| |
Collapse
|
2
|
De-la-Vega-Camarillo E, Hernández-García JA, Villa-Tanaca L, Hernández-Rodríguez C. Unlocking the hidden potential of Mexican teosinte seeds: revealing plant growth-promoting bacterial and fungal biocontrol agents. FRONTIERS IN PLANT SCIENCE 2023; 14:1247814. [PMID: 37860235 PMCID: PMC10582567 DOI: 10.3389/fpls.2023.1247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023]
Abstract
The bacterial component of plant holobiont maintains valuable interactions that contribute to plants' growth, adaptation, stress tolerance, and antagonism to some phytopathogens. Teosinte is the grass plant recognized as the progenitor of modern maize, domesticated by pre-Hispanic civilizations around 9,000 years ago. Three teosinte species are recognized: Zea diploperennis, Zea perennis, and Zea mays. In this work, the bacterial diversity of three species of Mexican teosinte seeds was explored by massive sequencing of 16S rRNA amplicons. Streptomyces, Acinetobacter, Olivibacter, Erwinia, Bacillus, Pseudomonas, Cellvibrio, Achromobacter, Devosia, Lysobacter, Sphingopyxis, Stenotrophomonas, Ochrobactrum, Delftia, Lactobacillus, among others, were the bacterial genera mainly represented. The bacterial alpha diversity in the seeds of Z. diploperennis was the highest, while the alpha diversity in Z. mays subsp. mexicana race was the lowest observed among the species and races. The Mexican teosintes analyzed had a core bacteriome of 38 bacterial genera, including several recognized plant growth promoters or fungal biocontrol agents such as Agrobacterium, Burkholderia, Erwinia, Lactobacillus, Ochrobactrum, Paenibacillus, Pseudomonas, Sphingomonas, Streptomyces, among other. Metabolic inference analysis by PICRUSt2 of bacterial genera showed several pathways related to plant growth promotion (PGP), biological control, and environmental adaptation. The implications of these findings are far-reaching, as they highlight the existence of an exceptional bacterial germplasm reservoir teeming with potential plant growth promotion bacteria (PGPB). This reserve holds the key to cultivating innovative bioinoculants and formidable fungal antagonistic strains, thereby paving the way for a more sustainable and eco-friendly approach to agriculture. Embracing these novel NGS-based techniques and understanding the profound impact of the vertical transference of microorganisms from seeds could revolutionize the future of agriculture and develop a new era of symbiotic harmony between plants and microbes.
Collapse
Affiliation(s)
| | | | | | - César Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
3
|
Jalal A, Oliveira CEDS, Rosa PAL, Galindo FS, Teixeira Filho MCM. Beneficial Microorganisms Improve Agricultural Sustainability under Climatic Extremes. Life (Basel) 2023; 13:life13051102. [PMID: 37240747 DOI: 10.3390/life13051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/08/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The challenging alterations in climate in the last decades have had direct and indirect influences on biotic and abiotic stresses that have led to devastating implications on agricultural crop production and food security. Extreme environmental conditions, such as abiotic stresses, offer great opportunities to study the influence of different microorganisms in plant development and agricultural productivity. The focus of this review is to highlight the mechanisms of plant growth-promoting microorganisms (especially bacteria and fungi) adapted to environmental induced stresses such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light. The present state of knowledge focuses on the potential, prospective, and biotechnological approaches of plant growth-promoting bacteria and fungi to improve plant nutrition, physio-biochemical attributes, and the fitness of plants under environmental stresses. The current review focuses on the importance of the microbial community in improving sustainable crop production under changing climatic scenarios.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Poliana Aparecida Leonel Rosa
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Faculty of Agricultural Sciences and Technology, São Paulo State University (UNESP), Campus of Dracena, Sao Paulo 17900-000, SP, Brazil
| | - Marcelo Carvalho Minhoto Teixeira Filho
- Department of Plant Health, Rural Engineering and Soils, Faculty of Engineering, São Paulo State University (UNESP), Av. Brasil 56-Centro, Ilha Solteira 15385-000, SP, Brazil
| |
Collapse
|
4
|
Anuar MSK, Hashim AM, Ho CL, Wong MY, Sundram S, Saidi NB, Yusof MT. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop. World J Microbiol Biotechnol 2023; 39:123. [PMID: 36934342 DOI: 10.1007/s11274-023-03579-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/12/2023] [Indexed: 03/20/2023]
Abstract
In today's fast-shifting climate change scenario, crops are exposed to environmental pressures, abiotic and biotic stress. Hence, these will affect the production of agricultural products and give rise to a worldwide economic crisis. The increase in world population has exacerbated the situation with increasing food demand. The use of chemical agents is no longer recommended due to adverse effects towards the environment and health. Biocontrol agents (BCAs) and biostimulants, are feasible options for dealing with yield losses induced by plant stresses, which are becoming more intense due to climate change. BCAs and biostimulants have been recommended due to their dual action in reducing both stresses simultaneously. Although protection against biotic stresses falls outside the generally accepted definition of biostimulant, some microbial and non-microbial biostimulants possess the biocontrol function, which helps reduce biotic pressure on crops. The application of synergisms using BCAs and biostimulants to control crop stresses is rarely explored. Currently, a combined application using both agents offer a great alternative to increase the yield and growth of crops while managing stresses. This article provides an overview of crop stresses and plant stress responses, a general knowledge on synergism, mathematical modelling used for synergy evaluation and type of in vitro and in vivo synergy testing, as well as the application of synergism using BCAs and biostimulants in reducing crop stresses. This review will facilitate an understanding of the combined effect of both agents on improving crop yield and growth and reducing stress while also providing an eco-friendly alternative to agroecosystems.
Collapse
Affiliation(s)
- Muhammad Salahudin Kheirel Anuar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Chai Ling Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mui-Yun Wong
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Shamala Sundram
- Biology Research Division, Malaysian Palm Oil Board, Kajang, Selangor, 43000, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, UPM, Selangor, 43400, Malaysia.
| |
Collapse
|
5
|
Solórzano-Acosta R, Toro M, Zúñiga-Dávila D. Plant Growth Promoting Bacteria and Arbuscular Mycorrhizae Improve the Growth of Persea americana var. Zutano under Salt Stress Conditions. J Fungi (Basel) 2023; 9:jof9020233. [PMID: 36836347 PMCID: PMC9967131 DOI: 10.3390/jof9020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
In Peru, almost 50% of the national agricultural products come from the coast, highlighting the production of avocado. Much of this area has saline soils. Beneficial microorganisms can favorably contribute to mitigating the effect of salinity on crops. Two trials were carried out with var. Zutano to evaluate the role of native rhizobacteria and two Glomeromycota fungi, one from a fallow (GFI) and the other from a saline soil (GWI), in mitigating salinity in avocado: (i) the effect of plant growth promoting rhizobacteria, and (ii) the effect of inoculation with mycorrhizal fungi on salt stress tolerance. Rhizobacteria P. plecoglissicida, and B. subtilis contributed to decrease the accumulation of chlorine, potassium and sodium in roots, compared to the uninoculated control, while contributing to the accumulation of potassium in the leaves. Mycorrhizae increased the accumulation of sodium, potassium, and chlorine ions in the leaves at a low saline level. GWI decreased the accumulation of sodium in the leaves compared to the control (1.5 g NaCl without mycorrhizae) and was more efficient than GFI in increasing the accumulation of potassium in leaves and reducing chlorine root accumulation. The beneficial microorganisms tested are promising in the mitigation of salt stress in avocado.
Collapse
Affiliation(s)
- Richard Solórzano-Acosta
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
| | - Marcia Toro
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
- Centro de Ecología Aplicada, Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas 1041-A, Venezuela
- Correspondence: or (M.T.); (D.Z.-D.)
| | - Doris Zúñiga-Dávila
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima 15024, Peru
- Correspondence: or (M.T.); (D.Z.-D.)
| |
Collapse
|
6
|
Shahid M, Singh UB, Khan MS, Singh P, Kumar R, Singh RN, Kumar A, Singh HV. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front Microbiol 2023; 14:1132770. [PMID: 37180266 PMCID: PMC10174264 DOI: 10.3389/fmicb.2023.1132770] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 05/16/2023] Open
Abstract
Growth and productivity of crop plants worldwide are often adversely affected by anthropogenic and natural stresses. Both biotic and abiotic stresses may impact future food security and sustainability; global climate change will only exacerbate the threat. Nearly all stresses induce ethylene production in plants, which is detrimental to their growth and survival when present at higher concentrations. Consequently, management of ethylene production in plants is becoming an attractive option for countering the stress hormone and its effect on crop yield and productivity. In plants, ACC (1-aminocyclopropane-1-carboxylate) serves as a precursor for ethylene production. Soil microorganisms and root-associated plant growth promoting rhizobacteria (PGPR) that possess ACC deaminase activity regulate growth and development of plants under harsh environmental conditions by limiting ethylene levels in plants; this enzyme is, therefore, often designated as a "stress modulator." TheACC deaminase enzyme, encoded by the AcdS gene, is tightly controlled and regulated depending upon environmental conditions. Gene regulatory components of AcdS are made up of the LRP protein-coding regulatory gene and other regulatory components that are activated via distinct mechanisms under aerobic and anaerobic conditions. ACC deaminase-positive PGPR strains can intensively promote growth and development of crops being cultivated under abiotic stresses including salt stress, water deficit, waterlogging, temperature extremes, and presence of heavy metals, pesticides and other organic contaminants. Strategies for combating environmental stresses in plants, and improving growth by introducing the acdS gene into crop plants via bacteria, have been investigated. In the recent past, some rapid methods and cutting-edge technologies based on molecular biotechnology and omics approaches involving proteomics, transcriptomics, metagenomics, and next generation sequencing (NGS) have been proposed to reveal the variety and potential of ACC deaminase-producing PGPR that thrive under external stresses. Multiple stress-tolerant ACC deaminase-producing PGPR strains have demonstrated great promise in providing plant resistance/tolerance to various stressors and, therefore, it could be advantageous over other soil/plant microbiome that can flourish under stressed environments.
Collapse
Affiliation(s)
- Mohammad Shahid
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, India
- *Correspondence: Mohammad Shahid, ; Udai B. Singh, ; Prakash Singh,
| | - Ratan Kumar
- Krishi Vigyan Kendra, Rohtas, Bihar Agricultural University, Bikramganj, Bihar, India
| | - Raj Narian Singh
- Directorate of Extension Education, Bihar Agricultural University, Bhagalpur, Bihar, India
| | - Arun Kumar
- Swamy Keshwanand Rajasthan Agriculture University, Bikaner, Rajasthan, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, India
| |
Collapse
|
7
|
Mageshwaran V, Gupta R, Singh S, Sahu PK, Singh UB, Chakdar H, Bagul SY, Paul S, Singh HV. Endophytic Bacillus subtilis antagonize soil-borne fungal pathogens and suppress wilt complex disease in chickpea plants (Cicer arietinum L.). Front Microbiol 2022; 13:994847. [PMID: 36406422 PMCID: PMC9667066 DOI: 10.3389/fmicb.2022.994847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
The present study aimed to identify potential endophytic bacteria antagonistic against three soil-borne fungal pathogens, Rhizoctonia solani, Sclerotium rolfsii, and Fusarium oxysporum f.sp. ciceri causing root rot, collar rot, and fungal wilt diseases in chickpea plants, respectively. A total of 255 bacterial endophytes were isolated from the leaves, stems, and roots of seven different crop plants (chickpea, tomato, wheat, berseem, mustard, potato, and green pea). The dual culture-based screening for antifungal properties indicated that three endophytic isolates had strong inhibition (>50%) against all three pathogens tested. Based on morphological, biochemical, and molecular characterization, the selected isolates (TRO4, CLO5, and PLO3) were identified as different strains of Bacillus subtilis. The bacterial endophytes (TRO4 and CLO5) were positive for plant growth promoting (PGP) traits viz., ammonia, siderophore, and indole-3-acetic acid (IAA) production. The bio-efficacy of the endophytes (TRO4, CLO5, and PLO3) was tested by an in planta trial in chickpea pre-challenged with R. solani, S. rolfsii, and F. oxysporum f.sp. ciceri. The B. subtilis strains TRO4 and CLO5 were found to be effective in reducing percent disease incidence (p ≤ 0.05) and enhancing plant growth parameters. The different root parameters viz. root length (mm), surface area (cm2), root diameter (mm), and root volume (cm3) were significantly (p ≤ 0.05) increased in TRO4 and CLO5 inoculated chickpea plants. Confocal Scanning Laser Microscopy showed heavy colonization of bacteria in the roots of endophyte-inoculated chickpea plants. The inoculation of endophytic Bacillus subtilis strains TRO4 and CLO5 in chickpea plants through seed biopriming reduced the accumulation of superoxide, enhanced the plant defense enzymes, and induced the expression of Pathogenesis-Related (PR) genes. Semi-quantitative analysis of defense-related genes showed differential activation of PR genes (60srp and IFR) by endophyte inoculation. The results of the present study reveal the antagonistic potential of B. subtilis strains TRO4 and CLO5 against three major soil-borne fungal pathogens and their ability to suppress wilt complex disease in chickpea plants. This is the first report on the simultaneous suppression of three major soil-borne fungal pathogens causing wilt complex in chickpea plants by endophytic B. subtilis strains.
Collapse
Affiliation(s)
- Vellaichamy Mageshwaran
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- *Correspondence: Vellaichamy Mageshwaran, ;
| | - Rishabh Gupta
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
- Udai B. Singh,
| | - Hillol Chakdar
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Samadhan Y. Bagul
- ICAR-Directorate of Medicinal and Aromatic Plants Research, Anand, Gujarat, India
| | - Surinder Paul
- Microbial Technology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
8
|
Bhanse P, Kumar M, Singh L, Awasthi MK, Qureshi A. Role of plant growth-promoting rhizobacteria in boosting the phytoremediation of stressed soils: Opportunities, challenges, and prospects. CHEMOSPHERE 2022; 303:134954. [PMID: 35595111 DOI: 10.1016/j.chemosphere.2022.134954] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 05/02/2023]
Abstract
Soil is considered as a vital natural resource equivalent to air and water which supports growth of the plants and provides habitats to microorganisms. Changes in soil properties, productivity, and, inevitably contamination/stress are the result of urbanisation, industrialization, and long-term use of synthetic fertiliser. Therefore, in the recent scenario, reclamation of contaminated/stressed soils has become a potential challenge. Several customized, such as, physical, chemical, and biological technologies have been deployed so far to restore contaminated land. Among them, microbial-assisted phytoremediation is considered as an economical and greener approach. In recent decades, soil microbes have successfully been used to improve plants' ability to tolerate biotic and abiotic stress and strengthen their phytoremediation capacity. Therefore, in this context, the current review work critically explored the microbial assisted phytoremediation mechanisms to restore different types of stressed soil. The role of plant growth-promoting rhizobacteria (PGPR) and their potential mechanisms that foster plants' growth and also enhance phytoremediation capacity are focussed. Finally, this review has emphasized on the application of advanced tools and techniques to effectively characterize potent soil microbial communities and their significance in boosting the phytoremediation process of stressed soils along with prospects for future research.
Collapse
Affiliation(s)
- Poonam Bhanse
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manish Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Lal Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Verma P, Hiremani NS, Gawande SP, Sain SK, Nagrale DT, Narkhedkar NG, Prasad Y. Modulation of plant growth and antioxidative defense system through endophyte biopriming in cotton ( Gossypium spp.) and non-host crops. Heliyon 2022; 8:e09487. [PMID: 35663737 PMCID: PMC9157003 DOI: 10.1016/j.heliyon.2022.e09487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 05/14/2022] [Indexed: 11/28/2022] Open
Abstract
Seed biopriming is very promising in improving seed health by mitigating various biotic and abiotic stresses. In this study, the effect of biopriming with cotton endophytes on seed germination and other growth parameters in host and non-host crops like wheat, sorghum, cowpea and chick pea was examined. The endophytes were antagonistic to cotton pathogens Corynespora cassiicola and Fusarium solani under in vitro. Among the eight endophytes, CFR-1 and CEL-48 were highly efficient with inhibition rates of 66.16% and 64.24% respectively against C. cassiicola, whereas CFL-34 was efficient against F. solani with more than 50% inhibition. Seed biopriming enhanced seed germination in cotton and non-host crops whereas seed vigor index was highest in bio-primed cotton. Moreover, growth promotion parameters were also enhanced upon endophyte biopriming. Total sugar content ranged from 5.46 to 7.54 mg/g F.W in cotton and highest was found in CFL-34 treated wheat (8.64 mg/g FW). There was an increase of 10-30% soluble protein in bioprimed cotton over control. Interestingly, the antioxidant potential in all the bio-primed crops was improved with increased catalase and peroxidase activity. Specific activity of catalase ranged from 0.42 to 1.90 μmol/min/mg protein in cotton, while highest activity was reported in CEL-48 primed wheat. The findings of this investigation emphasizes seed biopriming with endophytes for sustainable plant health management.
Collapse
Affiliation(s)
- Pooja Verma
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| | | | - Shailesh P. Gawande
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| | - Satish K. Sain
- ICAR-Central Institute for Cotton Research, Regional Station, Sirsa, Haryana, India
| | - Dipak T. Nagrale
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| | | | - Y.G. Prasad
- ICAR-Central Institute for Cotton Research, Nagpur, 440010, Maharashtra, India
| |
Collapse
|
10
|
Wu X, Wang Z, Zhang R, Xu T, Zhao J, Liu Y. Diversity of endophytic bacteria in hybrid maize seeds and Bacillus mojavensis J2416-7 may be capable of vertical transmission. Arch Microbiol 2022; 204:213. [PMID: 35305158 DOI: 10.1007/s00203-022-02824-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/25/2022]
Abstract
The diversity of endophytic bacteria in the progeny is related to the parental lines. In this study, the traditional separation method was used to study the dominant endophytic bacteria of the shared paternal line and its pollen, different maternal lines and their F1 progeny. And the results showed that the dominant endophytic bacteria in maize seeds and the pollen were Bacillus and Pantoea. The Bacillus diversity of the progeny JMC121 and JN728 were the same as both the paternal line and the maternal line, including Bacillus subtilis, Bacillus velezensis, Bacillus mojavensis, and Bacillus licheniformis. The Bacillus subtilis and Bacillus velezensis in JN828 were the same as both the paternal line and the maternal line, while Bacillus licheniformis was only the same as the paternal line. Through the RAPD molecular typing, there was the same strain of Bacillus mojavensis existed in the paternal line J2416, the pollen and the progeny JN728; this meant that the paternal line passed its dominant endophytic bacteria to the progeny through pollen in vertical transmission. This study showed that the dominant endophytic bacteria in maize seeds and the pollen were Bacillus, and the diversity of F1 progeny was related to both the paternal line and the maternal line.
Collapse
Affiliation(s)
- Xianyu Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhishan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruyang Zhang
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianjun Xu
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiuran Zhao
- Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
11
|
Houida S, Yakkou L, Kaya LO, Bilen S, Fadil M, Raouane M, El Harti A, Amghar S. Biopriming of Maize seeds with plant growth‐promoting bacteria isolated from the earthworm
Aporrectodea molleri
: Effect on seed germination and seedling growth. Lett Appl Microbiol 2022; 75:61-69. [DOI: 10.1111/lam.13693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Sofia Houida
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Lamia Yakkou
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Leyla Okyay Kaya
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Serdar Bilen
- Department of Soil Science and Plant Nutrition Faculty of Agriculture Atatürk University Erzurum 25240 Turkey
| | - Mouhcine Fadil
- Physico‐chemical laboratory of inorganic and organic materials Materials Science Center (MSC) Ecole Normale Supérieure Mohammed V University in Rabat Rabat Morocco
| | - Mohammed Raouane
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
| | - Abdellatif El Harti
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
| | - Souad Amghar
- Research Team « Lumbricidae Improving Soil Productivity and Environment (LAPSE) Centre : Eau Environnement et Développement Durable (CERNE2D) Ecole Normale Supérieure (ENS) Mohammed V University in Rabat Resources Naturelles 5118 Morocco
| |
Collapse
|
12
|
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053141. [PMID: 35270832 DOI: 10.3390/ijerph190531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 05/28/2023]
Abstract
Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world.
Collapse
Affiliation(s)
- Amrita Gupta
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Pramod K Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon 802136, India
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA
| | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| | - Madhab C Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India
| | - Theodore C Crusberg
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA
| | - Arun Kumar
- Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India
| | - Anil K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India
| |
Collapse
|
13
|
Gupta A, Singh UB, Sahu PK, Paul S, Kumar A, Malviya D, Singh S, Kuppusamy P, Singh P, Paul D, Rai JP, Singh HV, Manna MC, Crusberg TC, Kumar A, Saxena AK. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3141. [PMID: 35270832 PMCID: PMC8910389 DOI: 10.3390/ijerph19053141] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
Agriculture is a multifarious interface between plants and associated microorganisms. In contemporary agriculture, emphasis is being given to environmentally friendly approaches, particularly in developing countries, to enhance sustainability of the system with the least negative effects on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial community structure and soil sustainability. On the other hand, the question of feeding the ever-growing global population while ensuring system sustainability largely remains unanswered. Agriculturally important microorganisms are envisaged to play important roles in various measures to raise a healthy and remunerative crop, including integrated nutrient management, as well as disease and pest management to cut down agrochemicals without compromising the agricultural production. These beneficial microorganisms seem to have every potential to provide an alternative opportunity to overcome the ill effects of various components of traditional agriculture being practiced by and large. Despite an increased awareness of the importance of organically produced food, farmers in developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases using microbial inoculants may replace/reduce agrochemicals in agricultural production system. The present review aims to examine and discuss the shift in microbial population structure due to current agricultural practices and focuses on the development of a sustainable agricultural system employing the tremendous untapped potential of the microbial world.
Collapse
Affiliation(s)
- Amrita Gupta
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Adarsh Kumar
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India;
| | - Prakash Singh
- Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon 802136, India;
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA;
| | - Jai P. Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| | - Madhab C. Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India;
| | - Theodore C. Crusberg
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA;
| | - Arun Kumar
- Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India;
| | - Anil K. Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (A.G.); (U.B.S.); (P.K.S.); (S.P.); (A.K.); (D.M.); (S.S.); (H.V.S.); (A.K.S.)
| |
Collapse
|
14
|
Zhang H, Wei TP, Li LZ, Luo MY, Jia WY, Zeng Y, Jiang YL, Tao GC. Multigene Phylogeny, Diversity and Antimicrobial Potential of Endophytic Sordariomycetes From Rosa roxburghii. Front Microbiol 2021; 12:755919. [PMID: 34912312 PMCID: PMC8667620 DOI: 10.3389/fmicb.2021.755919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Rosa roxburghii Tratt. is widely applied in food, cosmetics, and traditional medicine, and has been demonstrated to possess diverse bioactivities. Plant endophytic fungi are important microbial resources with great potential for application in many fields. They not only establish mutualistic symbiosis with host plants but also produce a variety of bioactive compounds. Therefore, in the present study, endophytic fungi were isolated from R. roxburghii, the diversity and antimicrobial activities were evaluated. As a result, 242 strains of endophytic Sordariomycetes were successfully isolated. Multigene phylogenetic analyses showed that these isolates included eight orders, 19 families, 33 genera. The dominant genera were Diaporthe (31.4%), Fusarium (14.4%), Chaetomium (7.9%), Dactylonectria (7.0%), Graphium (4.5%), Colletotrichum (4.1%), and Clonostachys (4.1%). For different tissues of R. roxburghii, alpha diversity analysis revealed that the diversity of fungal communities decreased in the order of root, fruit, stem, flower, leaf, and seed, and Clonostachys and Dactylonectria exhibited obvious tissue specificity. Meanwhile, functional annotation of 33 genera indicated that some fungi have multitrophic lifestyles combining endophytic, pathogenic, and saprophytic behavior. Additionally, antimicrobial activities of endophytic Sordariomycetes against Lasiodiplodia theobromae, Botryosphaeria dothidea, Colletotrichum capsici, Pyricularia oryzae, Rhizoctonia solani, Fusarium oxysporum, Pseudomonas syringae, Pantoea agglomerans, Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa were screened. Dual culture test assays showed that there were 40 different endophytic species with strong inhibition of at least one or moderate inhibition of two or more against the 12 tested strains. The results from the filter paper diffusion method suggested that extracellular metabolites may be more advantageous than intracellular metabolites in the development of antimicrobial agents. Eleven isolates with good activities were screened. In particular, Hypomontagnella monticulosa HGUP194009 and Nigrospora sphaerica HGUP191020 have shown promise in both broad-spectrum and intensity. Finally, some fungi that commonly cause disease have been observed to have beneficial biological activities as endophytic fungi. In conclusion, this study showed the species composition, alpha diversity, and lifestyle diversity of endophytic Sordariomycetes from R. roxburghii and demonstrated these isolates are potential sources for exploring antimicrobial agents.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China.,Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Tian-Peng Wei
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Lin-Zhu Li
- Guizhou Academy of Testing and Analysis, Guiyang, China
| | - Ming-Yan Luo
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Wei-Yu Jia
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yan Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Yu-Lan Jiang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Guang-Can Tao
- Guizhou Academy of Testing and Analysis, Guiyang, China.,Food Safety and Nutrition (Guizhou) Information Technology Co., Ltd., Guiyang National High-Tech Industrial Development Zone, Guiyang, China
| |
Collapse
|
15
|
Roy S, Chakraborty AP, Chakraborty R. Understanding the potential of root microbiome influencing salt-tolerance in plants and mechanisms involved at the transcriptional and translational level. PHYSIOLOGIA PLANTARUM 2021; 173:1657-1681. [PMID: 34549441 DOI: 10.1111/ppl.13570] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Soil salinity severely affects plant growth and development and imparts inevitable losses to crop productivity. Increasing the concentration of salts in the vicinity of plant roots has severe consequences at the morphological, biochemical, and molecular levels. These include loss of chlorophyll, decrease in photosynthetic rate, reduction in cell division, ROS generation, inactivation of antioxidative enzymes, alterations in phytohormone biosynthesis and signaling, and so forth. The association of microorganisms, viz. plant growth-promoting rhizobacteria, endophytes, and mycorrhiza, with plant roots constituting the root microbiome can confer a greater degree of salinity tolerance in addition to their inherent ability to promote growth and induce defense mechanisms. The mechanisms involved in induced stress tolerance bestowed by these microorganisms involve the modulation of phytohormone biosynthesis and signaling pathways (including indole acetic acid, gibberellic acid, brassinosteroids, abscisic acid, and jasmonic acid), accumulation of osmoprotectants (proline, glycine betaine, and sugar alcohols), and regulation of ion transporters (SOS1, NHX, HKT1). Apart from this, salt-tolerant microorganisms are known to induce the expression of salt-responsive genes via the action of several transcription factors, as well as by posttranscriptional and posttranslational modifications. Moreover, the potential of these salt-tolerant microflora can be employed for sustainably improving crop performance in saline environments. Therefore, this review will briefly focus on the key responses of plants under salinity stress and elucidate the mechanisms employed by the salt-tolerant microorganisms in improving plant tolerance under saline environments.
Collapse
Affiliation(s)
- Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, Darjeeling, West Bengal, India
| |
Collapse
|
16
|
Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189936. [PMID: 34574855 PMCID: PMC8467820 DOI: 10.3390/ijerph18189936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
A wide range of root-associated mutualistic microorganisms have been successfully applied and documented in the past for growth promotion, biofertilization, biofortification and biotic and abiotic stress amelioration in major crops. These microorganisms include nitrogen fixers, nutrient mobilizers, bio-remediators and bio-control agents. The present study aimed to demonstrate the impact of salt-tolerant compatible microbial inoculants on plant growth; Zn biofortification and yield of wheat (Triticum aestivum L.) crops grown in saline-sodic soil and insight of the mechanisms involved therein are being shared through this paper. Field experiments were conducted to evaluate the effects of Trichoderma harzianum UBSTH-501 and Bacillus amyloliquefaciens B-16 on wheat grown in saline-sodic soil at Research Farm, ICAR-Indian Institute of Seed Sciences, Kushmaur, India. The population of rhizosphere-associated microorganisms changed dramatically upon inoculation of the test microbes in the wheat rhizosphere. The co-inoculation induced a significant accumulation of proline and total soluble sugar in wheat at 30, 60, 90 and 120 days after sowing as compared to the uninoculated control. Upon quantitative estimation of organic solutes and antioxidant enzymes, these were found to have increased significantly in co-inoculated plants under salt-stressed conditions. The application of microbial inoculants enhanced the salt tolerance level significantly in wheat plants grown in saline-sodic soil. A significant increase in the uptake and translocation of potassium (K+) and calcium (Ca2+) was observed in wheat co-inoculated with the microbial inoculants, while a significant reduction in sodium (Na+) content was recorded in plants treated with both the bio-agents when compared with the respective uninoculated control plants. Results clearly indicated that significantly higher expression of TaHKT-1 and TaNHX1 in the roots enhances salt tolerance effectively by maintaining the Na+/K+ balance in the plant tissue. It was also observed that co-inoculation of the test inoculants increased the expression of ZIP transporters (2–3.5-folds) which ultimately led to increased biofortification of Zn in wheat grown in saline-sodic soil. Results suggested that co-inoculation of T. harzianum UBSTH-501 and B. amyloliquefaciens B-16 not only increased plant growth but also improved total grain yield along with a reduction in seedling mortality in the early stages of crop growth. In general, the present investigation demonstrated the feasibility of using salt-tolerant rhizosphere microbes for plant growth promotion and provides insights into plant-microbe interactions to ameliorate salt stress and increase Zn bio-fortification in wheat.
Collapse
|
17
|
Singh S, Singh UB, Trivdi M, Malviya D, Sahu PK, Roy M, Sharma PK, Singh HV, Manna MC, Saxena AK. Restructuring the Cellular Responses: Connecting Microbial Intervention With Ecological Fitness and Adaptiveness to the Maize ( Zea mays L.) Grown in Saline-Sodic Soil. Front Microbiol 2021; 11:568325. [PMID: 33643224 PMCID: PMC7907600 DOI: 10.3389/fmicb.2020.568325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/24/2020] [Indexed: 11/13/2022] Open
Abstract
Salt stress hampers plant growth and development. It is now becoming one of the most important threats to agricultural productivity. Rhizosphere microorganisms play key roles in modulating cellular responses and enable plant tolerant to salt stress, but the detailed mechanisms of how this occurs need in-depth investigation. The present study elucidated that the microbe-mediated restructuring of the cellular responses leads to ecological fitness and adaptiveness to the maize (Zea mays L.) grown in saline-sodic soil. In the present study, effects of seed biopriming with B. safensis MF-01, B. altitudinis MF-15, and B. velezensis MF-08 singly and in consortium on different growth parameters were recorded. Soil biochemical and enzymatic analyses were performed. The activity and gene expression of High-Affinity K+ Transporter (ZmHKT-1), Sodium/Hydrogen exchanger 1 (zmNHX1), and antioxidant enzymes (ZmAPX1.2, ZmBADH-1, ZmCAT, ZmMPK5, ZmMPK7, and ZmCPK11) were studied. The expression of genes related to lateral root development (ZmHO-1, ZmGSL-1, and ZmGSL-3) and root architecture were also carried out. Seeds bioprimed with consortium of all three strains have been shown to confer increased seed germination (23.34-26.31%) and vigor indices (vigor index I: 38.71-53.68% and vigor index II: 74.11-82.43%) as compared to untreated control plant grown in saline-sodic soil at 30 days of sowing. Results indicated that plants treated with consortium of three strains induced early production of adventitious roots (tips: 4889.29, forks: 7951.57, and crossings: 2296.45) in maize compared to plants primed with single strains and untreated control (tips: 2019.25, forks: 3021.45, and crossings: 388.36), which was further confirmed by assessing the transcript level of ZmHO-1 (7.20 folds), ZmGSL-1 (4.50 folds), and ZmGSL-3 (12.00 folds) genes using the qPCR approach. The uptake and translocation of Na+, K+, and Ca2+ significantly varied in the plants treated with bioagents alone or in consortium. qRT-PCR analysis also revealed that the ZmHKT-1 and zmNHX1 expression levels varied significantly in the maize root upon inoculation and showed a 6- to 11-fold increase in the plants bioprimed with all the three strains in combination. Further, the activity and gene expression levels of antioxidant enzymes were significantly higher in the leaves of maize subjected seed biopriming with bioagents individually or in combination (3.50- to 12.00-fold). Our research indicated that ZmHKT-1 and zmNHX1 expression could effectively enhance salt tolerance by maintaining an optimal Na+/K+ balance and increasing the antioxidant activity that keeps reactive oxygen species at a low accumulation level. Interestingly, up-regulation of ZmHKT-1, NHX1, ZmHO-1, ZmGSL-1, and ZmGSL-3 and genes encoding antioxidants regulates the cellular responses that could effectively enhance the adaptiveness and ultimately leads to better plant growth and grain production in the maize crop grown in saline-sodic soil.
Collapse
Affiliation(s)
- Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Mala Trivdi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Pramod K. Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Manish Roy
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Pawan K. Sharma
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - Harsh V. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| | - M. C. Manna
- Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal, India
| | - Anil K. Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, India
| |
Collapse
|
18
|
Sarkar D, Rakshit A. Safeguarding the fragile rice–wheat ecosystem of the Indo-Gangetic Plains through bio-priming and bioaugmentation interventions. FEMS Microbiol Ecol 2020; 96:5956486. [DOI: 10.1093/femsec/fiaa221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Managing agrochemicals for crop production always remains a classic challenge for us to maintain the doctrine of sustainability. Intensively cultivated rice–wheat production system without using the organics (organic amendments, manures, biofertilizers) has a tremendous impact on soil characteristics (physical, chemical, and biological), environmental quality (water, air), input use efficiency, ecosystem biodiversity, and nutritional security. Consequently, crop productivity is found to be either decreasing or stagnating. Rice–wheat cropping system is the major agroecosystem in India feeding millions of people, which is widely practiced in the Indo-Gangetic Plains (IGP). Microorganisms as key players in the soil system can restore the degraded ecosystems using a variety of mechanisms. Here, we propose how delivery systems (i.e., the introduction of microbes in seed, soil, and crop through bio-priming and/or bioaugmentation) can help us in eradicating food scarcity and maintaining sustainability without compromising the ecosystem services. Both bio-priming and bioaugmentation are efficient techniques to utilize bio-agents judiciously for successful crop production by enhancing phytohormones, nutrition status, and stress tolerance levels in plants (including mitigating of abiotic stresses and biocontrol of pests/pathogens). However, there are some differences in application methods, and the latter one also includes the aspects of bioremediation or soil detoxification. Overall, we have highlighted different perspectives on applying biological solutions in the IGP to sustain the dominant (rice–wheat) cropping sequence.
Collapse
Affiliation(s)
- Deepranjan Sarkar
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amitava Rakshit
- Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
19
|
Sahu PK, Singh S, Gupta A, Singh UB, Paul S, Paul D, Kuppusamy P, Singh HV, Saxena AK. A Simplified Protocol for Reversing Phenotypic Conversion of Ralstonia solanacearum during Experimentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124274. [PMID: 32549351 PMCID: PMC7344456 DOI: 10.3390/ijerph17124274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ralstonia solanacearum has the problem of losing the virulence in laboratory conditions, during prolonged experimentation. Since pure colonies of R. solanacearum contain cell fractions differing in virulence, it was considered worthwhile to find a way of selecting the cells with lower attenuation. Therefore, a methodology for inducing virulent-type colonies occurrence in Ralstonia solanacearum was developed. METHODS Nutrient gradient was created by swabbing R. solanacearum culture in a slanted KMTTC medium, and Phyllanthus emblica extract was given by well diffusion. Live-dead cell imaging using BacLight, effects of ascorbic acid on cell viability, and production of virulence factors (exopolysaccharides, cellulase, and pectinase) supported this hypothesis. The tagging of R. solanacearum with green fluorescent protein and further confocal scanning laser microscopic visualization confirmed the colonization in vascular bundles of tomato. RESULTS P. emblica extract suppressed R. solanacearum initially in well diffusion, but further developed virulent-type colonies around the wells. Nutrient deprivation was found to have synergistic effects with P. emblica extract. The converted fluidal (virulent type) colonies could be able to colonize vascular bundles and cause wilting symptoms. CONCLUSION This method will be useful in the laboratories working on biocontrol of R. solanacearum for maintaining virulent-type colonies. Moreover, it could form the basis for studies on the stability of phenotypic conversion and cell fractions in R. solanacearum.
Collapse
Affiliation(s)
- Pramod Kumar Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
- Corresponding author:
| | - Shailendra Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
| | - Amrita Gupta
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
| | - Udai B. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
| | - Surinder Paul
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr. Cleveland, GA 30528, USA;
| | - Pandiyan Kuppusamy
- ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur, Maharashtra 440023, India;
| | - Harsh V. Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan UP-275103, India; (S.S.); (A.G.); (U.B.S.); (S.P.); (H.V.S.); (A.K.S.)
| |
Collapse
|
20
|
Ocampo-Alvarez H, Meza-Canales ID, Mateos-Salmón C, Rios-Jara E, Rodríguez-Zaragoza FA, Robles-Murguía C, Muñoz-Urias A, Hernández-Herrera RM, Choix-Ley FJ, Becerril-Espinosa A. Diving Into Reef Ecosystems for Land-Agriculture Solutions: Coral Microbiota Can Alleviate Salt Stress During Germination and Photosynthesis in Terrestrial Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:648. [PMID: 32523601 PMCID: PMC7261865 DOI: 10.3389/fpls.2020.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
From their chemical nature to their ecological interactions, coral reef ecosystems have a lot in common with highly productive terrestrial ecosystems. While plants are responsible for primary production in the terrestrial sphere, the photosynthetic endosymbionts of corals are the key producers in reef communities. As in plants, coral microbiota have been suggested to stimulate the growth and physiological performance of the photosynthetic endosymbionts that provide energy sources to the coral. Among them, actinobacteria are some of the most probable candidates. To explore the potential of coral actinobacteria as plant biostimulants, we have analyzed the activity of Salinispora strains isolated from the corals Porites lobata and Porites panamensis, which were identified as Salinispora arenicola by 16S rRNA sequencing. We evaluated the effects of this microorganism on the germination, plant growth, and photosynthetic response of wild tobacco (Nicotiana attenuata) under a saline regime. We identified protective activity of this actinobacteria on seed germination and photosynthetic performance under natural light conditions. Further insights into the possible mechanism showed an endophytic-like symbiosis between N. attenuata roots and S. arenicola and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity by S. arenicola. We discuss these findings in the context of relevant ecological and physiological responses and biotechnological potential. Overall, our results will contribute to the development of novel biotechnologies to cope with plant growth under saline stress. Our study highlights the importance of understanding marine ecological interactions for the development of novel, strategic, and sustainable agricultural solutions.
Collapse
Affiliation(s)
- Héctor Ocampo-Alvarez
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Iván D. Meza-Canales
- Laboratorio de Evolución de Sistemas Ecológicos, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
- Laboratorio de Biología Molecular, Genómica y Proteómica, Instituto Transdisciplinar de Investigación y Servicios, Universidad de Guadalajara, Zapopan, Mexico
| | - Carolina Mateos-Salmón
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Eduardo Rios-Jara
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Fabián A. Rodríguez-Zaragoza
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Celia Robles-Murguía
- Laboratorio de Evolución de Sistemas Ecológicos, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Alejandro Muñoz-Urias
- Laboratorio de Evolución de Sistemas Ecológicos, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | - Rosalba Mireya Hernández-Herrera
- Laboratorio de Investigación en Biotecnología, Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | | | - Amayaly Becerril-Espinosa
- CONACYT, Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| |
Collapse
|
21
|
Singh S, Singh UB, Malviya D, Paul S, Sahu PK, Trivedi M, Paul D, Saxena AK. Seed Biopriming with Microbial Inoculant Triggers Local and Systemic Defense Responses against Rhizoctonia solani Causing Banded Leaf and Sheath Blight in Maize ( Zea mays L.). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1396. [PMID: 32098185 PMCID: PMC7068308 DOI: 10.3390/ijerph17041396] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
Plant growth promoting rhizobacteria Pseudomonas aeruginosa strain MF-30 isolated from maize rhizosphere was characterized for several plant growth stimulating attributes. The strain MF-30 was also evaluated for antifungal properties against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.) under in vitro conditions and was found to have higher mycelial growth suppression in the culture suspension (67.41%) followed by volatile organic compounds (62.66%) and crude extract (51.20%) in a dual plate assay. The endophytic and epiphytic colonization ability was tested using Green Fluorescent Protein (GFP)-tagging. Visualization through confocal scanning laser microscope clearly indicated that strain MF-30 colonizes the root and foliar parts of the plants. Further, the effects of seed bio-priming with P. aeruginosa MF-30 was evaluated in the induction and bioaccumulation of defense-related biomolecules, enzymes, natural antioxidants, and other changes in maize under pot trial. This not only provided protection from R. solani but also ensured growth promotion under pathogenic stress conditions in maize. The maximum concentration of hydrogen peroxide (H2O2) was reported in the root and shoot of the plants treated with R. solani alone (8.47 and 17.50 mmol mg-1 protein, respectively) compared to bioagent, P. aeruginosa MF-30 bio-primed plants (3.49 and 7.50 mmol mg-1 protein, respectively). Effects on total soluble sugar content, total protein, and total proline were also found to enhanced significantly due to inoculation of P. aeruginosa MF-30. The activities of anti-oxidative defense enzymes phenylalanine ammonia lyase (PAL), ascorbate peroxidase, peroxidase, superoxide dismutase, and catalase increased significantly in the plants bio-primed with P. aeruginosa MF-30 and subsequent foliar spray of culture suspension of MF-30 compared to pathogen alone inoculated plants. qRT-PCR analysis revealed that seed bio-priming and foliar application of P. aeruginosa MF-30 significantly increased the expression of PR-1 and PR-10 genes with the simultaneous decrease in the disease severity and lesion length in the maize plants under pathogenic stress conditions. A significant enhancement of shoot and root biomass was recorded in MF-30 bio-primed plants as compared to untreated control (p < 0.05). Significant increase in plant growth and antioxidant content, as well as decreased disease severity in the P. aeruginosa MF-30 bio-primed plants, suggested the possibility of an eco-friendly and economical means of achieving antioxidants-rich, healthier maize plants.
Collapse
Affiliation(s)
- Shailendra Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 227105, India
| | - Udai B. Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Surinder Paul
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Pramod Kumar Sahu
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| | - Mala Trivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 227105, India
| | - Diby Paul
- Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University, 100 Alumni Dr., Cleveland, GA 30528, USA;
| | - Anil Kumar Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; (S.S.); (U.B.S.); (D.M.); (S.P.); (P.K.S.); (A.K.S.)
| |
Collapse
|