1
|
Hicks KA, Fuzzen MLM, Dhiyebi HA, Bragg LM, Marjan P, Cunningham J, McMaster ME, Srikanthan N, Nikel KE, Arlos MJ, Servos MR. Intersex manifestation in the rainbow darter (Etheostoma caeruleum): Are adult male fish susceptible to developing and recovering from intersex after exposure to endocrine active compounds? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106636. [PMID: 37487446 DOI: 10.1016/j.aquatox.2023.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
For over a decade, intersex has been observed in rainbow darter (RD) (Etheostoma caeruleum) populations living downstream wastewater treatment plants (WWTPs) in the Grand River, Ontario, Canada. To further our understanding of intersex development in adult male fish, the current study addressed three objectives: i) can intersex be induced in adult male fish, ii) is there a specific window of exposure when adult male fish are more susceptible to developing intersex, and iii) can pre-exposed adult male fish recover from intersex? To assess intersex induction in adult male fish, wild male RD were exposed in the laboratory for 22 weeks (during periods of spawning, gonadal regression, and gonadal recrudescence) to environmentally relevant concentrations of 17α-ethinylestradiol (EE2) including nominal 0, 1, and 10 ng/L. Intersex rates and severity at 10 ng/L EE2 were similar to those observed historically in adult male populations living downstream WWTPs in the Grand River and confirmed previous predictions that 1-10 ng/L EE2 would cause these adverse effects. To assess a window of sensitivity in developing intersex, male RD were exposed to nominal 0, 1 or 10 ng/L EE2 for 4 weeks during three different periods of gonadal development, including (i) spawning, (ii) early recrudescence and (iii) late recrudescence. These short-term exposures revealed that intersex incidence and severity were greater when RD were exposed while gonads were fully developed (during spawning) compared to periods of recrudescence. To assess if RD recover from intersex, wild fish were collected downstream WWTPs in the Grand River and assessed for intersex both before and after a 22-week recovery period in clean water that included gonadal regression and recrudescence. Results showed that fish did not recover from intersex, with intersex rates and severity similar to those both before and after the transition to clean water. This study further advances our knowledge on intersex manifestation in adult male fish including their sensitivity to endocrine active compounds during different periods of their annual reproductive cycle and their limited ability to recover from intersex after onset of the condition.
Collapse
Affiliation(s)
- Keegan A Hicks
- Alberta Environment and Protected Areas, 4938 89th Street, Edmonton, AB T6E5K1 Canada; Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada.
| | - Meghan L M Fuzzen
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Patricija Marjan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada; Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
| | - Jessie Cunningham
- Aquatic Contaminant Research Division, Water Science and Technology Branch, Environmentand Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1 Canada
| | - Mark E McMaster
- Aquatic Contaminant Research Division, Water Science and Technology Branch, Environmentand Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1 Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Kirsten E Nikel
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Maricor J Arlos
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, AB T6G 1H9 Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
2
|
Gordon S, Wagner T, Smalling K, Devereux O. Estrogenic activity response to best management practice implementation in agricultural watersheds in the Chesapeake Bay watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116734. [PMID: 36384057 DOI: 10.1016/j.jenvman.2022.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Best management practices (BMPs) have been predominantly used throughout the Chesapeake Bay watershed (CBW) to reduce nutrients and sediments entering streams, rivers, and the bay. These practices have been successful in reducing loads entering the estuary and have shown the potential to reduce other contaminants (pesticides, hormonally active compounds, pathogens) in localized studies and modeled load estimates. However, further understanding of relationships between BMPs and non-nutrient contaminant reductions at regional scales using sampled data would be beneficial. Total estrogenic activity was measured in surface water samples collected over a decade (2008-2018) in 211 undeveloped NHDPlus V2.1 watersheds within the CBW. Bayesian hierarchical modeling between total estrogenic activity and landscape predictors including landcover, runoff, BMP intensity, and a BMP*agriculture intensity interaction term indicates a 96% posterior probability that BMP intensity on agricultural land is reducing total estrogenic activity. Additionally, watersheds with high agriculture and low BMPs had a 49% posterior probability of exceeding an effects-based threshold in aquatic organisms of 1 ng/L but only a 1% posterior probability of exceeding this threshold in high-agriculture, high-BMP watersheds.
Collapse
Affiliation(s)
- Stephanie Gordon
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV, 25430, USA.
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kelly Smalling
- U.S. Geological Survey, New Jersey Water Science Center, Lawrenceville, NJ, 08648, USA
| | - Olivia Devereux
- Devereux Consulting, Inc, 9219 Mintwood St, Silver Spring, MD, 20901, USA
| |
Collapse
|
3
|
Breitmeyer SE, Walsh HL, Blazer VS, Bunnell JF, Burritt PM, Dragon J, Hladik ML, Bradley PM, Romanok KM, Smalling KL. Potential health effects of contaminant mixtures from point and nonpoint sources on fish and frogs in the New Jersey Pinelands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158205. [PMID: 36028019 DOI: 10.1016/j.scitotenv.2022.158205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Aquatic ecosystems convey complex contaminant mixtures from anthropogenic pollution on a global scale. Point (e.g., municipal wastewater) and nonpoint sources (e.g., stormwater runoff) are both drivers of contaminant mixtures in aquatic habitats. The objectives of this study were to identify the contaminant mixtures present in surface waters impacted by both point and nonpoint sources, to determine if aquatic biota (amphibian and fish) health effects (testicular oocytes and parasites) occurred at these sites, and to understand if differences in biological and chemical measures existed between point (on-stream) and nonpoint sources (off-stream). To accomplish this, water chemistry, fishes, and frogs were collected from 21 sites in the New Jersey Pinelands, United States. Off-stream sites consisted of 3 reference and 10 degraded wetlands. On-stream sites consisted of two reference lakes and six degraded streams/lakes (four sites above and two sites below wastewater outfalls). Surface water was collected four times at each site and analyzed for 133 organic and inorganic contaminants. One native and five non-native fish species were collected from streams/lakes and native green frogs from wetlands (ponds and stormwater basins). Limited differences in contaminant concentrations were observed in reference and degraded wetlands but for streams/lakes, results indicated that landscape alteration, (upland agricultural and developed land) was the primary driver of contaminant concentrations rather than municipal wastewater. Incidence of estrogenic endocrine disruption (intersex) was species dependent with the highest prevalence observed in largemouth bass and black crappie and the lowest prevalence observed in green frogs and tessellated darters. Parasite prevalence was site and species dependent. Prevalence of eye parasites increased with increasing concentrations of industrial, mycotoxin, and cumulative inorganic contaminants. These findings are critical to support the conservation, protection, and management of a wide range of aquatic species in the Pinelands and elsewhere as habitat loss, alteration, and fragmentation increase with increasing development.
Collapse
Affiliation(s)
- Sara E Breitmeyer
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA.
| | - Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - John F Bunnell
- New Jersey Pinelands Commission, PO Box 359, 15 Springfield Road, New Lisbon, NJ 08064, USA
| | - Patrick M Burritt
- New Jersey Pinelands Commission, PO Box 359, 15 Springfield Road, New Lisbon, NJ 08064, USA
| | - Jeff Dragon
- New Jersey Pinelands Commission, PO Box 359, 15 Springfield Road, New Lisbon, NJ 08064, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, 6000 J St, Placer Hall, Sacramento, CA 95819, USA
| | - Paul M Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, 720 Gracern Rd, Suite 129, Columbia, SC 29210, USA
| | - Kristin M Romanok
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA
| | - Kelly L Smalling
- U.S. Geological Survey, New Jersey Water Science Center, 3450 Princeton Pike, Suite 110, Lawrenceville, NJ 08648, USA
| |
Collapse
|
4
|
Farag AM, Harper DD, Cozzarelli IM, Kent DB, Mumford AC, Akob DM, Schaeffer T, Iwanowicz LR. Using Biological Responses to Monitor Freshwater Post-Spill Conditions over 3 years in Blacktail Creek, North Dakota, USA. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 83:253-271. [PMID: 36129489 DOI: 10.1007/s00244-022-00943-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
A pipeline carrying unconventional oil and gas (OG) wastewater spilled approximately 11 million liters of wastewater into Blacktail Creek, North Dakota, USA. Flow of the mix of stream water and wastewater down the channel resulted in storage of contaminants in the hyporheic zone and along the banks, providing a long-term source of wastewater constituents to the stream. A multi-level investigation was used to assess the potential effects of oil and brine spills on aquatic life. In this study, we used a combination of experiments using a native fish species, Fathead Minnow (Pimephales promelas), field sampling of the microbial community structure, and measures of estrogenicity. The fish investigation included in situ experiments and experiments with collected site water. Estrogenicity was measured in collected site water samples, and microbial community analyses were conducted on collected sediments. During the initial post-spill investigation, February 2015, performing in situ fish bioassays was impossible because of ice conditions. However, microbial community (e.g., the presence of members of the Halomonadaceae, a family that is indicative of elevated salinity) and estrogenicity differences were compared to reference sites and point to early biological effects of the spill. We noted water column effects on in situ fish survival 6 months post-spill during June 2015. At that time, total dissolved ammonium (sum of ammonium and ammonia, TAN) was 4.41 mg NH4/L with an associated NH3 of 1.09 mg/L, a concentration greater than the water quality criteria established to protect aquatic life. Biological measurements in the sediment defined early and long-lasting effects of the spill on aquatic resources. The microbial community structure was affected during all sampling events. Therefore, sediment may act as a sink for constituents spilled and as such provide an indication of continued and cumulative effects post-spill. However, lack of later water column effects may reflect pulse hyporheic flow of ammonia from shallow ground water. Combining fish toxicological, microbial community structure and estrogenicity information provides a complete ecological investigation that defines potential influences of contaminants at organismal, population, and community levels. In general, in situ bioassays have implications for the individual survival and changes at the population level, microbial community structure defines potential changes at the community level, and estrogenicity measurements define changes at the individual and molecular level. By understanding effects at these various levels of biological organization, natural resource managers can interpret how a course of action, especially for remediation/restoration, might affect a larger group of organisms in the system. The current work also reviews potential effects of additional constituents defined during chemistry investigations on aquatic resources.
Collapse
Affiliation(s)
- Aїda M Farag
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA.
| | - David D Harper
- U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, Jackson, WY, USA
| | | | - Douglas B Kent
- U.S. Geological Survey, Earth Systems Processes Division, Menlo Park, CA, USA
| | - Adam C Mumford
- U.S. Geological Survey, Laboratory Analytical Services Division, Reston, VA, USA
| | - Denise M Akob
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA
| | - Travis Schaeffer
- U.S. Geological Survey, Columbia Environmental Research Center, Yankton Field Research Station, Yankton, SD, USA
| | - Luke R Iwanowicz
- U.S. Geological Survey, Eastern Ecological Science Center, Kearneysville, WV, USA
| |
Collapse
|
5
|
Smalling KL, Mosher BA, Iwanowicz LR, Loftin KA, Boehlke A, Hladik ML, Muletz-Wolz CR, Córtes-Rodríguez N, Femmer R, Campbell Grant EH. Site- and Individual-Level Contaminations Affect Infection Prevalence of an Emerging Infectious Disease of Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:781-791. [PMID: 35040181 DOI: 10.1002/etc.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Emerging infectious disease outbreaks are one of multiple stressors responsible for amphibian declines globally. In the northeastern United States, ranaviral diseases are prevalent in amphibians and other ectothermic species, but there is still uncertainty as to whether their presence is leading to population-level effects. Further, there is also uncertainty surrounding the potential interactions among disease infection prevalence in free-ranging animals and habitat degradation (co-occurrence of chemical stressors). The present study was designed to provide field-based estimates of the relationship between amphibian disease and chemical stressors. We visited 40 wetlands across three protected areas, estimated the prevalence of ranavirus among populations of larval wood frogs and spotted salamanders, and assessed chemical and biological stressors in wetland habitats and larval amphibians using a suite of selected bioassays, screening tools, and chemical analyses. Ranavirus was detected on larval amphibians from each protected area with an estimated occupancy ranging from 0.27 to 0.55. Considerable variation in ranavirus occupancy was also observed within and among each protected area. Of the stressors evaluated, ranavirus prevalence was strongly and positively related to concentrations of metalloestrogens (metals with the potential to bind to estrogen receptors) and total metals in wetland sediments and weakly and negatively related to total pesticide concentrations in larval amphibians. These results can be used by land managers to refine habitat assessments to include such environmental factors with the potential to influence disease susceptibility. Environ Toxicol Chem 2022;41:781-791. © 2022 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Kelly L Smalling
- New Jersey Water Science Center, US Geological Survey, Lawrenceville, New Jersey, USA
| | - Brittany A Mosher
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| | - Luke R Iwanowicz
- Eastern Ecological Science Center at Leetown, US Geological Survey, Kearneysville, West Virginia, USA
| | - Keith A Loftin
- Kansas Water Science Center, US Geological Survey, Lawrence, Kansas, USA
| | - Adam Boehlke
- Geology, Geochemistry and Geophysics Science Center, US Geological Survey, Denver, Colorado, USA
| | - Michelle L Hladik
- California Water Science Center, US Geological Survey, Sacramento, California, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Nandadevi Córtes-Rodríguez
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
- Department of Biological Sciences, Ithaca College, Ithaca, New York, USA
| | - Robin Femmer
- Kansas Water Science Center, US Geological Survey, Lawrence, Kansas, USA
| | - Evan H Campbell Grant
- Eastern Ecological Science Center, S.O. Conte Anadromous Fish Research Laboratory, US Geological Survey, Turner Falls, Massachusetts, USA
| |
Collapse
|
6
|
Smalling KL, Devereux OH, Gordon SE, Phillips PJ, Blazer VS, Hladik ML, Kolpin DW, Meyer MT, Sperry AJ, Wagner T. Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145687. [PMID: 33609846 DOI: 10.1016/j.scitotenv.2021.145687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
If not managed properly, modern agricultural practices can alter surface and groundwater quality and drinking water resources resulting in potential negative effects on aquatic and terrestrial ecosystems. Exposure to agriculturally derived contaminant mixtures has the potential to alter habitat quality and negatively affect fish and other aquatic organisms. Implementation of conservation practices focused on improving water quality continues to increase particularly in agricultural landscapes throughout the United States. The goal of this study was to determine the consequences of land management actions on the primary drivers of contaminant mixtures in five agricultural watersheds in the Chesapeake Bay, the largest watershed of the Atlantic Seaboard in North America where fish health issues have been documented for two decades. Surface water was collected and analyzed for 301 organic contaminants to determine the benefits of implemented best management practices (BMPs) designed to reduce nutrients and sediment to streams in also reducing contaminants in surface waters. Of the contaminants measured, herbicides (atrazine, metolachlor), phytoestrogens (formononetin, genistein, equol), cholesterol and total estrogenicity (indicator of estrogenic response) were detected frequently enough to statistically compare to seasonal flow effects, landscape variables and BMP intensity. Contaminant concentrations were often positively correlated with seasonal stream flow, although the magnitude of this effect varied by contaminant across seasons and sites. Land-use and other less utilized landscape variables including biosolids, manure and pesticide application and percent phytoestrogen producing crops were inversely related with site-average contaminant concentrations. Increased BMP intensity was negatively related to contaminant concentrations indicating potential co-benefits of BMPs for contaminant reduction in the studied watersheds. The information gained from this study will help prioritize ecologically relevant contaminant mixtures for monitoring and contributes to understanding the benefits of BMPs on improving surface water quality to better manage living resources in agricultural landscapes inside and outside the Chesapeake Bay watershed.
Collapse
Affiliation(s)
- Kelly L Smalling
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ 08648, USA.
| | | | - Stephanie E Gordon
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA.
| | - Patrick J Phillips
- U.S. Geological Survey New York Water Science Center, Troy, NY 12180, USA.
| | - Vicki S Blazer
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA
| | - Michelle L Hladik
- U.S. Geological Survey California Water Science Center Sacramento, CA 95819, USA.
| | - Dana W Kolpin
- U.S. Geological Survey Central Midwest Water Science Center Iowa City, IA 52240, USA.
| | - Michael T Meyer
- U.S. Geological Survey Kansas Water Science Center, Lawrence, KS 66046, USA.
| | - Adam J Sperry
- U.S. Geological Survey Leetown Science Center, National Fish Health Research Laboratory, Kearneysville, WV 25430, USA
| | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, Pennsylvania State University, 402 Forest Resources Building, University Park, PA 16802, USA.
| |
Collapse
|
7
|
Gordon S, Jones DK, Blazer VS, Iwanowicz L, Williams B, Smalling K. Modeling estrogenic activity in streams throughout the Potomac and Chesapeake Bay watersheds. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:105. [PMID: 33527185 DOI: 10.1007/s10661-021-08899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Endocrine-disrupting compounds (EDCs), specifically estrogenic endocrine-disrupting compounds, vary in concentration and composition in surface waters under the influence of different landscape sources and landcover gradients. Estrogenic activity in surface waters may lead to adverse effects in aquatic species at both individual and population levels, often observed through the presence of intersex and vitellogenin induction in male fish. In the Chesapeake Bay Watershed, located on the mid-Atlantic coast of the USA, intersex has been observed in several sub-watersheds where previous studies have identified specific landscape sources of EDCs in tandem with observed fish health effects. Previous work in the Potomac River Watershed (PRW), the largest basin within the Chesapeake Bay Watershed, was leveraged to build random forest regression models to predict estrogenic activity at unsampled reaches in both the Potomac River and larger Chesapeake Bay Watersheds (CBW). Model outputs including important variables, partial dependence plots, and predicted values of estrogenic activity at unsampled reaches provide insight into drivers of estrogenic activity at different seasons and scales. Using the US Environmental Protection Agency effects-based threshold of 1.0 ng/L 17 β-estradiol equivalents, catchments predicted to exceed this value were categorized as at risk for adverse effects from exposure to estrogenic compounds and evaluated relative to healthy watersheds and recreation access locations throughout the PRW. Results show immediate catchment scale models are more reliable than upstream models, and the best predictive variables differ by season and scale. A small percentage of healthy watersheds (< 13%) and public access sites were classified as at risk using the "Total" (annual) model in the CBW. This study is the first Potomac River Watershed assessment of estrogenic activity, providing a new foundation for future risk assessment and management design efforts, with additional context provided for the entire Chesapeake Bay Watershed.
Collapse
Affiliation(s)
- Stephanie Gordon
- U.S. Geological Survey Leetown Science Center Aquatic Ecology Laboratory, Kearneysville, WV, USA.
| | - Daniel K Jones
- U.S. Geological Survey Utah Water Science Center, West Valley City, UT, USA
| | - Vicki S Blazer
- U.S. Geological Survey Leetown Science Center Fish Health Laboratory, Kearneysville, WV, USA
| | - Luke Iwanowicz
- U.S. Geological Survey Leetown Science Center Fish Health Laboratory, Kearneysville, WV, USA
| | - Brianna Williams
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ, USA
| | - Kelly Smalling
- U.S. Geological Survey New Jersey Water Science Center, Lawrenceville, NJ, USA
| |
Collapse
|