1
|
Lu Z, Wang Z, Zhang XA, Ning K. Myokines May Be the Answer to the Beneficial Immunomodulation of Tailored Exercise-A Narrative Review. Biomolecules 2024; 14:1205. [PMID: 39456138 PMCID: PMC11506288 DOI: 10.3390/biom14101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Exercise can regulate the immune function, activate the activity of immune cells, and promote the health of the organism, but the mechanism is not clear. Skeletal muscle is a secretory organ that secretes bioactive substances known as myokines. Exercise promotes skeletal muscle contraction and the expression of myokines including irisin, IL-6, BDNF, etc. Here, we review nine myokines that are regulated by exercise. These myokines have been shown to be associated with immune responses and to regulate the proliferation, differentiation, and maturation of immune cells and enhance their function, thereby serving to improve the health of the organism. The aim of this article is to review the effects of myokines on intrinsic and adaptive immunity and the important role that exercise plays in them. It provides a theoretical basis for exercise to promote health and provides a potential mechanism for the correlation between muscle factor expression and immunity, as well as the involvement of exercise in body immunity. It also provides the possibility to find a suitable exercise training program for immune system diseases.
Collapse
Affiliation(s)
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| | - Ke Ning
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (Z.L.); (Z.W.)
| |
Collapse
|
2
|
Kato N, Yang Y, Bumrungkit C, Kumrungsee T. Does Vitamin B6 Act as an Exercise Mimetic in Skeletal Muscle? Int J Mol Sci 2024; 25:9962. [PMID: 39337450 PMCID: PMC11432312 DOI: 10.3390/ijms25189962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Marginal vitamin B6 (B6) deficiency is common in various segments worldwide. In a super-aged society, sarcopenia is a major concern and has gained significant research attention focused on healthy aging. To date, the primary interventions for sarcopenia have been physical exercise therapy. Recent evidence suggests that inadequate B6 status is associated with an increased risk of sarcopenia and mortality among older adults. Our previous study showed that B6 supplementation to a marginal B6-deficient diet up-regulated the expression of various exercise-induced genes in the skeletal muscle of rodents. Notably, a supplemental B6-to-B6-deficient diet stimulates satellite cell-mediated myogenesis in rodents, mirroring the effects of physical exercise. These findings suggest the potential role of B6 as an exercise-mimetic nutrient in skeletal muscle. To test this hypothesis, we reviewed relevant literature and compared the roles of B6 and exercise in muscles. Here, we provide several pieces of evidence supporting this hypothesis and discuss the potential mechanisms behind the similarities between the effects of B6 and exercise on muscle. This research, for the first time, provides insight into the exercise-mimetic roles of B6 in skeletal muscle.
Collapse
Affiliation(s)
- Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yongshou Yang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chanikan Bumrungkit
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
3
|
Novelli G, Calcaterra G, Casciani F, Pecorelli S, Mehta JL. 'Exerkines': A Comprehensive Term for the Factors Produced in Response to Exercise. Biomedicines 2024; 12:1975. [PMID: 39335489 PMCID: PMC11429193 DOI: 10.3390/biomedicines12091975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Regular exercise and physical activity are now considered lifestyle factors with positive effects on human health. Physical activity reduces disease burden, protects against the onset of pathologies, and improves the clinical course of disease. Unlike pharmacological therapies, the effects mediated by exercise are not limited to a specific target organ but act in multiple biological systems simultaneously. Despite the substantial health benefits of physical training, the precise molecular signaling processes that lead to structural and functional tissue adaptation remain largely unknown. Only recently, several bioactive molecules have been discovered that are produced following physical exercise. These molecules are collectively called "exerkines". Exerkines are released from various tissues in response to exercise, and play a crucial role in mediating the beneficial effects of exercise on the body. Major discoveries involving exerkines highlight their diverse functions and health implications, particularly in metabolic regulation, neuroprotection, and muscle adaptation. These molecules, including peptides, nucleic acids, lipids, and microRNAs, act through paracrine, endocrine, and autocrine pathways to exert their effects on various organs and tissues. Exerkines represent a complex network of signaling molecules that mediate the multiple benefits of exercise. Their roles in metabolic regulation, neuroprotection, and muscle adaptation highlight the importance of physical activity in maintaining health and preventing disease.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00173 Rome, Italy
- Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy
- Giovanni Lorenzini Medical Foundation New York, Woodcliff Lake, NJ 07677, USA
- Italian Federation of Sports Medicine, 00196 Rome, Italy
| | - Giuseppe Calcaterra
- Postgraduate Medical School of Cardiology, University of Palermo, 90127 Palermo, Italy
| | - Federico Casciani
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00173 Rome, Italy
| | - Sergio Pecorelli
- Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy
- Giovanni Lorenzini Medical Foundation New York, Woodcliff Lake, NJ 07677, USA
- Italian Federation of Sports Medicine, 00196 Rome, Italy
- School of Medicine, University of Brescia, 25123 Brescia, Italy
| | - Jawahar L Mehta
- Giovanni Lorenzini Medical Foundation, 20129 Milan, Italy
- Giovanni Lorenzini Medical Foundation New York, Woodcliff Lake, NJ 07677, USA
- Department of Medicine (Cardiology), University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Rapps K, Marco A, Pe’er-Nissan H, Kisliouk T, Stemp G, Yadid G, Weller A, Meiri N. Exercise Rescues Obesogenic-Related Genes in the Female Hypothalamic Arcuate Nucleus: A Potential Role of miR-211 Modulation. Int J Mol Sci 2024; 25:7188. [PMID: 39000297 PMCID: PMC11241292 DOI: 10.3390/ijms25137188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Obesity is a major public health concern that is associated with negative health outcomes. Exercise and dietary restriction are commonly recommended to prevent or combat obesity. This study investigates how voluntary exercise mitigates abnormal gene expression in the hypothalamic arcuate nucleus (ARC) of diet-induced obese (DIO) rats. Using a transcriptomic approach, novel genes in the ARC affected by voluntary wheel running were assessed alongside physiology, pharmacology, and bioinformatics analysis to evaluate the role of miR-211 in reversing obesity. Exercise curbed weight gain and fat mass, and restored ARC gene expression. High-fat diet (HFD) consumption can dysregulate satiety/hunger mechanisms in the ARC. Transcriptional clusters revealed that running altered gene expression patterns, including inflammation and cellular structure genes. To uncover regulatory mechanisms governing gene expression in DIO attenuation, we explored miR-211, which is implicated in systemic inflammation. Exercise ameliorated DIO overexpression of miR-211, demonstrating its pivotal role in regulating inflammation in the ARC. Further, in vivo central administration of miR-211-mimic affected the expression of immunity and cell cycle-related genes. By cross-referencing exercise-affected and miR-211-regulated genes, potential candidates for obesity reduction through exercise were identified. This research suggests that exercise may rescue obesity through gene expression changes mediated partially through miR-211.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; (K.R.); (H.P.-N.); (G.Y.)
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Asaf Marco
- Neuro-Epigenetics Laboratory, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel;
| | - Hilla Pe’er-Nissan
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; (K.R.); (H.P.-N.); (G.Y.)
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Tatiana Kisliouk
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| | - Gabrielle Stemp
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Gal Yadid
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel; (K.R.); (H.P.-N.); (G.Y.)
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel; (G.S.); (A.W.)
- Department of Psychology, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7528809, Israel;
| |
Collapse
|
5
|
Liu X, Zhou M, Tan J, Ma L, Tang H, He G, Tao X, Guo L, Kang X, Tang K, Bian X. Inhibition of CX3CL1 by treadmill training prevents osteoclast-induced fibrocartilage complex resorption during TBI healing. Front Immunol 2024; 14:1295163. [PMID: 38283363 PMCID: PMC10811130 DOI: 10.3389/fimmu.2023.1295163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction The healing of tendon-bone injuries is very difficult, often resulting in poor biomechanical performance and unsatisfactory functional recovery. The tendon-bone insertion has a complex four distinct layers structure, and previous studies have often focused on promoting the regeneration of the fibrocartilage layer, neglecting the role of its bone end repair in tendon-bone healing. This study focuses on the role of treadmill training in promoting bone regeneration at the tendon-bone insertion and its related mechanisms. Methods After establishing the tendon-bone insertion injury model, the effect of treadmill training on tendon-bone healing was verified by Micro CT and HE staining; then the effect of CX3CL1 on osteoclast differentiation was verified by TRAP staining and cell culture; and finally the functional recovery of the mice was verified by biomechanical testing and behavioral test. Results Treadmill training suppresses the secretion of CX3CL1 and inhibits the differentiation of local osteoclasts after tendon-bone injury, ultimately reducing osteolysis and promoting tendon bone healing. Discussion Our research has found the interaction between treadmill training and the CX3CL1-C3CR1 axis, providing a certain theoretical basis for rehabilitation training.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Mei Zhou
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jindong Tan
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Ma
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hong Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gang He
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xu Tao
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lin Guo
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Kanglai Tang
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xuting Bian
- Department of Sports Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Mohammadkhani R, Komaki A, Karimi SA, Behzad M, Heidarisasan S, Salehi I. Maternal high-intensity interval training as a suitable approach for offspring's heart protection in rat: evidence from oxidative stress and mitochondrial genes. Front Physiol 2023; 14:1117666. [PMID: 37288431 PMCID: PMC10242028 DOI: 10.3389/fphys.2023.1117666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Considerable scientific evidence suggests that the intrauterine environment plays a crucial role in determining the long-term health of offspring. The present study aims to investigate the effects of high-intensity interval training in maternal rats before and during pregnancy on the antioxidant status, mitochondrial gene expression, and anxiety-like behavior of their offspring. A total of thirty-two female rats were assigned to four maternal groups based on the timing of exercise: before pregnancy, before and during pregnancy, during pregnancy, and sedentary. The female and male offspring were allocated to groups that matched their mothers' exercise regimen. Anxiety-like behavior in the offspring was evaluated using the open-field and elevated plus-maze tests. Our findings indicate that maternal HIIT does not have any detrimental effect on the anxiety-related behavior of offspring. Also, maternal exercise before and during pregnancy could improve the general activity of the offspring. Furthermore, our results demonstrate that female offspring exhibit more locomotion activity than males. Besides, maternal HIIT leads to a reduction in the levels of TOS and MDA, while TAC levels increase, and significantly upregulate the gene expression of PGC1-α, NFR1, and NRF2 in both sexes in the heart. Therefore, our study suggests that maternal HIIT is a beneficial maternal behavior and serves as a cardioprotective agent to enhance the health of the next generations.
Collapse
Affiliation(s)
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Behzad
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shirin Heidarisasan
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Suzuki K, Hekmatikar AHA, Jalalian S, Abbasi S, Ahmadi E, Kazemi A, Ruhee RT, Khoramipour K. The Potential of Exerkines in Women's COVID-19: A New Idea for a Better and More Accurate Understanding of the Mechanisms behind Physical Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315645. [PMID: 36497720 PMCID: PMC9737724 DOI: 10.3390/ijerph192315645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The benefits of physical exercise are well-known, but there are still many questions regarding COVID-19. Chow et al.'s 2022 study, titled Exerkines and Disease, showed that a special focus on exerkines can help to better understand the underlying mechanisms of physical exercise and disease. Exerkines are a group of promising molecules that may underlie the beneficial effects of physical exercise in diseases. The idea of exerkines is to understand the effects of physical exercise on diseases better. Exerkines have a high potential for the treatment of diseases and, considering that, there is still no study of the importance of exerkines on the most dangerous disease in the world in recent years, COVID-19. This raises the fundamental question of whether exerkines have the potential to manage COVID-19. Most of the studies focused on the general changes in physical exercise in patients with COVID-19, both during the illness and after discharge from the hospital, and did not investigate the basic differences. A unique look at the management of COVID-19 by exerkines, especially in obese and overweight women who experience high severity of COVID-19 and whose recovery period is long after discharge from the hospital, can help to understand the basic mechanisms. In this review, we explore the potential of exerkines in COVID-19 by practicing physical exercise to provide compelling practice recommendations with new insights.
Collapse
Affiliation(s)
- Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Shadi Jalalian
- Department of Physical Education and Sport Sciences, Science and Research Branch, Islamic Azad University, Tehran 10600, Iran
| | - Shaghayegh Abbasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kharazmi University, Tehran 10600, Iran
| | - Elmira Ahmadi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran 10600, Iran
| | - Abdolreza Kazemi
- Department of Sports Science, Faculty of Literature and Humanities, Vali-e-Asr University, Rafsanjan 7718897111, Iran
| | | | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| |
Collapse
|
8
|
Kitase Y, Vallejo JA, Dallas SL, Xie Y, Dallas M, Tiede-Lewis L, Moore D, Meljanac A, Kumar C, Zhao C, Rosser J, Brotto M, Johnson ML, Liu Z, Wacker MJ, Bonewald L. Body weight influences musculoskeletal adaptation to long-term voluntary wheel running during aging in female mice. Aging (Albany NY) 2022; 15:308-352. [PMID: 36403149 PMCID: PMC9925690 DOI: 10.18632/aging.204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022]
Abstract
Frailty is the hallmark of aging that can be delayed with exercise. The present studies were initiated based on the hypothesis that long-term voluntary wheel running (VWR) in female mice from 12 to 18 or 22 months of age would have beneficial effects on the musculoskeletal system. Mice were separated into high (HBW) and low (LBW) body weight based on final body weights upon termination of experiments. Bone marrow fat was significantly higher in HBW than LBW under sedentary conditions, but not with VWR. HBW was more protective for soleus size and function than LBW under sedentary conditions, however VWR increased soleus size and function regardless of body weight. VWR plus HBW was more protective against muscle loss with aging. Similar effects of VWR plus HBW were observed with the extensor digitorum longus, EDL, however, LBW with VWR was beneficial in improving EDL fatigue resistance in 18 mo mice and was more beneficial with regards to muscle production of bone protective factors. VWR plus HBW maintained bone in aged animals. In summary, HBW had a more beneficial effect on muscle and bone with aging especially in combination with exercise. These effects were independent of bone marrow fat, suggesting that intrinsic musculoskeletal adaptions were responsible for these beneficial effects.
Collapse
Affiliation(s)
- Yukiko Kitase
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Julian A. Vallejo
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Mark Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - LeAnn Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - David Moore
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Anthony Meljanac
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Corrine Kumar
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Carrie Zhao
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Jennifer Rosser
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Marco Brotto
- Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas, Arlington, TX 76019, USA
| | - Mark L. Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, MO 64108, USA
| | - Ziyue Liu
- Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Michael J. Wacker
- Department of Biomedical Sciences, School of Medicine, University of Missouri, Kansas City, MO 64108, USA
| | - Lynda Bonewald
- Department of Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Ribeiro FM, Silva MA, Lyssa V, Marques G, Lima HK, Franco OL, Petriz B. The molecular signaling of exercise and obesity in the microbiota-gut-brain axis. Front Endocrinol (Lausanne) 2022; 13:927170. [PMID: 35966101 PMCID: PMC9365995 DOI: 10.3389/fendo.2022.927170] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is one of the major pandemics of the 21st century. Due to its multifactorial etiology, its treatment requires several actions, including dietary intervention and physical exercise. Excessive fat accumulation leads to several health problems involving alteration in the gut-microbiota-brain axis. This axis is characterized by multiple biological systems generating a network that allows bidirectional communication between intestinal bacteria and brain. This mutual communication maintains the homeostasis of the gastrointestinal, central nervous and microbial systems of animals. Moreover, this axis involves inflammatory, neural, and endocrine mechanisms, contributes to obesity pathogenesis. The axis also acts in appetite and satiety control and synthesizing hormones that participate in gastrointestinal functions. Exercise is a nonpharmacologic agent commonly used to prevent and treat obesity and other chronic degenerative diseases. Besides increasing energy expenditure, exercise induces the synthesis and liberation of several muscle-derived myokines and neuroendocrine peptides such as neuropeptide Y, peptide YY, ghrelin, and leptin, which act directly on the gut-microbiota-brain axis. Thus, exercise may serve as a rebalancing agent of the gut-microbiota-brain axis under the stimulus of chronic low-grade inflammation induced by obesity. So far, there is little evidence of modification of the gut-brain axis as a whole, and this narrative review aims to address the molecular pathways through which exercise may act in the context of disorders of the gut-brain axis due to obesity.
Collapse
Affiliation(s)
- Filipe M. Ribeiro
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Maycon A. Silva
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Victória Lyssa
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, University of Brasilia, Brasilia, Brazil
| | - Gabriel Marques
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
| | - Henny K. Lima
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
| | - Octavio L. Franco
- Post-Graduation Program in Physical Education, Catholic University of Brasilia, Brasilia, Brazil
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- S-Inova Biotech, Catholic University Dom Bosco, Biotechnology Program, Campo Grande, Brazil
| | - Bernardo Petriz
- Center for Proteomic and Biochemical Analysis, Post-Graduation in Genomic and Biotechnology Sciences, Catholic University of Brasilia, Brasília, Brazil
- Laboratory of Molecular Exercise Physiology - University Center of the Federal District - UDF, Brasilia, Brazil
- Postgraduate Program in Rehabilitation Sciences - University of Brasília, Brasília, Brazil
| |
Collapse
|
10
|
Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/07/2023]
Abstract
Physical exercise has gradually become a focus in cancer treatment due to its pronounced role in reducing cancer risk, enhancing therapeutic efficacy, and improving prognosis. In recent decades, skeletal muscles have been considered endocrine organs, exerting their biological functions via the endocrine, autocrine, and paracrine systems by secreting various types of myokines. The amount of myokines secreted varies depending on the intensity, type, and duration of exercise. Recent studies have shown that muscle-derived myokines are highly involved the effects of exercise on cancer. Multiple myokines, such as interleukin-6 (IL-6), oncostatin M (OSM), secreted protein acidic and rich in cysteine (SPARC), and irisin, directly mediate cancer progression by influencing the proliferation, apoptosis, stemness, drug resistance, metabolic reprogramming, and epithelial-mesenchymal transformation (EMT) of cancer cells. In addition, IL-6, interleukin-8 (IL-8), interleukin-15 (IL-15), brain-derived neurotrophic factor (BDNF), and irisin can improve obesity-induced inflammation by stimulating lipolysis of adipose tissues, promoting glucose uptake, and accelerating the browning of white fat. Furthermore, some myokines could regulate the tumor microenvironment, such as angiogenesis and the immune microenvironment. Cancer cachexia occurs in up to 80% of cancer patients and is responsible for 22%-30% of patient deaths. It is characterized by systemic inflammation and decreased muscle mass. Exercise-induced myokine production is important in regulating cancer cachexia. This review summarizes the roles and underlying mechanisms of myokines, such as IL-6, myostatin, IL-15, irisin, fibroblast growth factor 21 (FGF21) and musclin, in cancer cachexia. Through comprehensive analysis, we conclude that myokines are potential targets for inhibiting cancer progression and the associated cachexia.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu 610041, China.
| |
Collapse
|
11
|
Effects of an Exercise Program Combining Aerobic and Resistance Training on Protein Expressions of Neurotrophic Factors in Obese Rats Injected with Beta-Amyloid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137921. [PMID: 35805580 PMCID: PMC9266049 DOI: 10.3390/ijerph19137921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022]
Abstract
In this study, the effects of a 12-week exercise program combining aerobic and resistance training on high-fat diet-induced obese Sprague Dawley (SD) rats after the injection of beta-amyloid into the cerebral ventricle were investigated. Changes in physical fitness, cognitive function, blood levels of beta-amyloid and metabolic factors, and protein expressions of neurotrophic factors related to brain function such as BDNF (brain-derived neurotrophic factor) in the quadriceps femoris, hippocampus, and cerebral cortex were analyzed. The subjects were thirty-two 10-week-old SD rats (DBL Co., Ltd., Seoul, Korea). The rats were randomized into four groups: β-Non-Ex group (n = 8) with induced obesity and βA25-35 injection into the cerebral ventricle through stereotactic biopsy; β-Ex group (n = 8) with induced obesity, βA25-35 injection, and exercise; S-Non-Ex group (n = 8) with an injection of saline in lieu of βA25-35 as the control; and S-Ex group (n = 8) with saline injection and exercise. The 12-week exercise program combined aerobic training and resistance training. As for protein expressions of the factors related to brain function, the combined exercise program was shown to have a clear effect on activating the following factors: PGC-1α (peroxisome proliferator-activated receptor gamma coactivator 1-alpha), FNDC5 (fibronectin type III domain-containing protein 5), and BDNF in the quadriceps femoris; TrkB (Tropomyosin receptor kinase B), FNDC5, and BDNF in the hippocampus; PGC-1α, FNDC5, and BDNF in the cerebral cortex. The protein expression of β-amyloid in the cerebral cortex was significantly lower in the β-Ex group than in the β-Non-Ex group (p < 0.05). The 12-week intervention with the combined exercise program of aerobic and resistance training was shown to improve cardiopulmonary function, muscular endurance, and short-term memory. The results demonstrate a set of positive effects of the combined exercise program, which were presumed to have arisen mainly due to its alleviating effect on β-amyloid plaques, the main cause of reduced brain function, as well as the promotion of protein expressions of PGC-1α, FNDC5, and BDNF in the quadriceps femoris, hippocampus, and cerebral cortex.
Collapse
|
12
|
Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022; 11:cells11010160. [PMID: 35011721 PMCID: PMC8750433 DOI: 10.3390/cells11010160] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and ageing place a tremendous strain on the global healthcare system. Age-related sarcopenia is characterized by decreased muscular strength, decreased muscle quantity, quality, and decreased functional performance. Sarcopenic obesity (SO) is a condition that combines sarcopenia and obesity and has a substantial influence on the older adults’ health. Because of the complicated pathophysiology, there are disagreements and challenges in identifying and diagnosing SO. Recently, it has become clear that dysbiosis may play a role in the onset and progression of sarcopenia and SO. Skeletal muscle secretes myokines during contraction, which play an important role in controlling muscle growth, function, and metabolic balance. Myokine dysfunction can cause and aggravate obesity, sarcopenia, and SO. The only ways to prevent and slow the progression of sarcopenia, particularly sarcopenic obesity, are physical activity and correct nutritional support. While exercise cannot completely prevent sarcopenia and age-related loss in muscular function, it can certainly delay development and slow down the rate of sarcopenia. The purpose of this review was to discuss potential pathways to muscle deterioration in obese individuals. We also want to present the current understanding of the role of various factors, including microbiota and myokines, in the process of sarcopenia and SO.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Correspondence: ; Tel.: +48-12-421-93-51
| | - Piotr Pierzchalski
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Marian Szczepanik
- Department of Medical Biology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Institute of Physiotherapy, Jagiellonian University Medical College, 31-126 Krakow, Poland; (P.P.); (J.B.)
| | - Jerzy A. Zoladz
- Chair of Exercise Physiology and Muscle Bioenergetics, Faculty of Health Sciences, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| |
Collapse
|
13
|
Hart DA. Learning From Human Responses to Deconditioning Environments: Improved Understanding of the "Use It or Lose It" Principle. Front Sports Act Living 2021; 3:685845. [PMID: 34927066 PMCID: PMC8677937 DOI: 10.3389/fspor.2021.685845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Physical activity, mobility or patterned mobility (i.e., exercise) is intrinsic to the functioning of Homo sapiens, and required for maintenance of health. Thus, systems such as the musculoskeletal and cardiovascular systems appear to require constant reinforcement or conditioning to maintain integrity. Loss of conditioning or development of chronic deconditioning can have multiple consequences. The study of different types of deconditioning and their prevention or reversal can offer a number of clues to the regulation of these systems and point to how deconditioning poses risk for disease development and progression. From the study of deconditioning associated with spaceflight, a condition not predicted by evolution, prolonged bedrest, protracted sedentary behavior, as well as menopause and obesity and their consequences, provide a background to better understand human heterogeneity and how physical fitness may impact the risks for chronic conditions subsequent to the deconditioning. The effectiveness of optimized physical activity and exercise protocols likely depend on the nature of the deconditioning, the sex and genetics of the individual, whether one is addressing prevention of deconditioning-associated disease or disease-associated progression, and whether it is focused on acute or chronic deconditioning associated with different forms of deconditioning. While considerable research effort has gone into preventing deconditioning, the study of the process of deconditioning and its endpoints can provide clues to the regulation of the affected systems and their contributions to human heterogeneity that have been framed by the boundary conditions of Earth during evolution and the "use it or lose it" principle of regulation. Such information regarding heterogeneity that is elaborated by the study of deconditioning environments could enhance the effectiveness of individualized interventions to prevent deconditions or rescue those who have become deconditioned.
Collapse
Affiliation(s)
- David A Hart
- Bone and Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB, Canada.,Department of Surgery, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.,Department of Family Practice, Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Zakharova AN, Kironenko TA, Milovanova KG, Orlova AA, Dyakova EY, Kalinnikova Yu G, Kabachkova AV, Chibalin AV, Kapilevich LV. Treadmill Training Effect on the Myokines Content in Skeletal Muscles of Mice With a Metabolic Disorder Model. Front Physiol 2021; 12:709039. [PMID: 34858197 PMCID: PMC8631430 DOI: 10.3389/fphys.2021.709039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/12/2021] [Indexed: 02/02/2023] Open
Abstract
The effect of treadmill training loads on the content of cytokines in mice skeletal muscles with metabolic disorders induced by a 16 week high fat diet (HFD) was studied. The study included accounting the age and biorhythmological aspects. In the experiment, mice were used at the age of 4 and 32 weeks, by the end of the experiment—respectively 20 and 48 weeks. HFD feeding lasted 16 weeks. Treadmill training were carried out for last 4 weeks six times a week, the duration 60 min and the speed from 15 to 18 m/min. Three modes of loading were applied. The first subgroup was subjected to stress in the morning hours (light phase); the second subgroup was subjected to stress in the evening hours (dark phase); the third subgroup was subjected to loads in the shift mode (the first- and third-weeks treadmill training was used in the morning hours, the second and fourth treadmill training was used in the evening hours). In 20-week-old animals, the exercise effect does not depend on the training regime, however, in 48-week-old animals, the decrease in body weight in mice with the shift training regime was more profound. HFD affected muscle myokine levels. The content of all myokines, except for LIF, decreased, while the concentration of CLCX1 decreased only in young animals in response to HFD. The treadmill training caused multidirectional changes in the concentration of myokines in muscle tissue. The IL-6 content changed most profoundly. These changes were observed in all groups of animals. The changes depended to the greatest extent on the training time scheme. The effect of physical activity on the content of IL-15 in the skeletal muscle tissue was observed mostly in 48-week-old mice. In 20-week-old animals, physical activity led to an increase in the concentration of LIF in muscle tissue when applied under the training during the dark phase or shift training scheme. In the HFD group, this effect was significantly more pronounced. The content of CXCL1 did not change with the use of treadmill training in almost all groups of animals. Physical activity, introduced considering circadian rhythms, is a promising way of influencing metabolic processes both at the cellular and systemic levels, which is important for the search for new ways of correcting metabolic disorders.
Collapse
Affiliation(s)
- Anna Nikolaevna Zakharova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | | | - Kseniia G Milovanova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - A A Orlova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - E Yu Dyakova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - G Kalinnikova Yu
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Anastasia V Kabachkova
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Alexander V Chibalin
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Leonid V Kapilevich
- Department of Sport Tourism, Sport Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia.,Central Research Laboratory, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
15
|
Crites S, Joumaa V, Rios JL, Sawatsky A, Hart DA, Reimer RA, Herzog W. Moderate aerobic exercise, but not dietary prebiotic fibre, attenuates losses to mechanical property integrity of tail tendons in a rat model of diet-induced obesity. J Biomech 2021; 129:110798. [PMID: 34700144 DOI: 10.1016/j.jbiomech.2021.110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/26/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the alterations with obesity, and the effects of moderate aerobic exercise or prebiotic dietary-fibre supplementation on the mechanical and biochemical properties of the tail tendon in a rat model of high-fat/high-sucrose (HFS) diet-induced obesity. Thirty-two male Sprague-Dawley rats were randomized to chow (n = 8) or HFS (n = 24) diets. After 12-weeks, the HFS fed rats were further randomized into sedentary (HFS sedentary, n = 8), exercise (HFS + E, n = 8) or prebiotic fibre supplementation (HFS + F, n = 8) groups. After another 12-weeks, rats were sacrificed, and one tail tendon was isolated and tested. Stress-relaxation and stretch-to-failure tests were performed to determine mechanical properties (peak, steady-state, yield and failure stresses, Young's modulus, and yield and failure strains) of the tendons. The hydroxyproline content was also analyzed. The HFS sedentary and HFS + F groups had higher final body masses and fat percentages compared to the chow and HFS + E groups. Yield strain was reduced in the HFS sedentary rats compared to the chow rats. Peak and steady-state stresses, failure strain, Young's modulus, and hydroxyproline content were not different across groups. Although the HFS + E group showed higher failure stress, yield stress, and yield strain compared to the HFS sedentary group, HFS + F animals did not produce differences in the properties of the tail tendon compared to the HFS sedentary group. These results indicate that exposure to a HFS diet led to a reduction in the yield strain of the tail tendon and aerobic exercise, but not fibre supplementation, attenuated these diet-related alterations to tendon integrity.
Collapse
Affiliation(s)
- Stephanie Crites
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Venus Joumaa
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Jaqueline L Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherland
| | - Andrew Sawatsky
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - David A Hart
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Sex-Specific Impacts of Exercise on Cardiovascular Remodeling. J Clin Med 2021; 10:jcm10173833. [PMID: 34501285 PMCID: PMC8432130 DOI: 10.3390/jcm10173833] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death in men and women. Biological sex plays a major role in cardiovascular physiology and pathological cardiovascular remodeling. Traditionally, pathological remodeling of cardiovascular system refers to the molecular, cellular, and morphological changes that result from insults, such as myocardial infarction or hypertension. Regular exercise training is known to induce physiological cardiovascular remodeling and beneficial functional adaptation of the cardiovascular apparatus. However, impact of exercise-induced cardiovascular remodeling and functional adaptation varies between males and females. This review aims to compare and contrast sex-specific manifestations of exercise-induced cardiovascular remodeling and functional adaptation. Specifically, we review (1) sex disparities in cardiovascular function, (2) influence of biological sex on exercise-induced cardiovascular remodeling and functional adaptation, and (3) sex-specific impacts of various types, intensities, and durations of exercise training on cardiovascular apparatus. The review highlights both animal and human studies in order to give an all-encompassing view of the exercise-induced sex differences in cardiovascular system and addresses the gaps in knowledge in the field.
Collapse
|
17
|
Cariati I, Bonanni R, Onorato F, Mastrogregori A, Rossi D, Iundusi R, Gasbarra E, Tancredi V, Tarantino U. Role of Physical Activity in Bone-Muscle Crosstalk: Biological Aspects and Clinical Implications. J Funct Morphol Kinesiol 2021; 6:55. [PMID: 34205747 PMCID: PMC8293201 DOI: 10.3390/jfmk6020055] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Bone and muscle tissues influence each other through the integration of mechanical and biochemical signals, giving rise to bone-muscle crosstalk. They are also known to secrete osteokines, myokines, and cytokines into the circulation, influencing the biological and pathological activities in local and distant organs and cells. In this regard, even osteoporosis and sarcopenia, which were initially thought to be two independent diseases, have recently been defined under the term "osteosarcopenia", to indicate a synergistic condition of low bone mass with muscle atrophy and hypofunction. Undoubtedly, osteosarcopenia is a major public health concern, being associated with high rates of morbidity and mortality. The best current defence against osteosarcopenia is prevention based on a healthy lifestyle and regular exercise. The most appropriate type, intensity, duration, and frequency of exercise to positively influence osteosarcopenia are not yet known. However, combined programmes of progressive resistance exercises, weight-bearing impact exercises, and challenging balance/mobility activities currently appear to be the most effective in optimising musculoskeletal health and function. Based on this evidence, the aim of our review was to summarize the current knowledge about the role of exercise in bone-muscle crosstalk, highlighting how it may represent an effective alternative strategy to prevent and/or counteract the onset of osteosarcopenia.
Collapse
Affiliation(s)
- Ida Cariati
- PhD in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Roberto Bonanni
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (V.T.)
| | - Federica Onorato
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Ambra Mastrogregori
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Danilo Rossi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Riccardo Iundusi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Elena Gasbarra
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (V.T.)
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy; (F.O.); (A.M.); (D.R.); (R.I.); (E.G.)
| |
Collapse
|
18
|
Kironenko TA, Milovanova KG, Zakharova AN, Sidorenko SV, Klimanova EA, Dyakova EY, Orlova AA, Negodenko ES, Kalinnikova YG, Orlov SN, Kapilevich LV. Effect of Dynamic and Static Load on the Concentration of Myokines in the Blood Plasma and Content of Sodium and Potassium in Mouse Skeletal Muscles. BIOCHEMISTRY (MOSCOW) 2021; 86:370-381. [PMID: 33838636 DOI: 10.1134/s0006297921030123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modulation of cytokine production by physical activity is of considerable interest, since it might be a promising strategy for correcting metabolic processes at both cellular and systemic levels. The content of IL-6, IL-8, and IL-15 in the plasma and the concentration of monovalent cations in the skeletal muscles of trained and untrained mice were studied at different periods after static and dynamic exercises. Dynamic loads caused an increase in the IL-6 content and decrease in the IL-15 content in the plasma of untrained mice, but produced no effect on the concentration of IL-8. In trained mice, the effect of a single load on the concentration of IL-6 and IL-15 in the plasma was enhanced, while the concentration of IL-8 decreased. Static loads produced a similar, but more pronounced effect on the plasma concentration of IL-6 and IL-15 compared the dynamic exercises; however, the concentration of IL-8 in response to the static exercise increased significantly. Prior training reinforced the described response for all the myokines studied. Dynamic load (swimming) increased the intracellular content of sodium but decreased the content of potassium in the mouse musculus soleus. Similar response was observed after the static load (grid hanging) in the musculus biceps; but no correlation of this response with the prior training was found. Possible mechanisms involved in the regulation of cytokine secretion after exercise are discussed, including triggering of gene transcription in response to changes in the [Na+]i/[K+]I ratio.
Collapse
Affiliation(s)
| | | | | | | | - Elizaveta A Klimanova
- National Research Tomsk State University, Tomsk, 634050, Russia. .,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Anna A Orlova
- National Research Tomsk State University, Tomsk, 634050, Russia
| | | | | | - Sergei N Orlov
- National Research Tomsk State University, Tomsk, 634050, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | |
Collapse
|