1
|
Tsai ML, Chen KF, Chen PC. Harnessing Electronic Health Records and Artificial Intelligence for Enhanced Cardiovascular Risk Prediction: A Comprehensive Review. J Am Heart Assoc 2025; 14:e036946. [PMID: 40079336 DOI: 10.1161/jaha.124.036946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Electronic health records (EHR) have revolutionized cardiovascular disease (CVD) research by enabling comprehensive, large-scale, and dynamic data collection. Integrating EHR data with advanced analytical methods, including artificial intelligence (AI), transforms CVD risk prediction and management methodologies. This review examines the advancements and challenges of using EHR in developing CVD prediction models, covering traditional and AI-based approaches. While EHR-based CVD risk prediction has greatly improved, moving from models that integrate real-world data on medication use and imaging, challenges persist regarding data quality, standardization across health care systems, and geographic variability. The complexity of EHR data requires sophisticated computational methods and multidisciplinary approaches for effective CVD risk modeling. AI's deep learning enhances prediction performance but faces limitations in interpretability and the need for validation and recalibration for diverse populations. The future of CVD risk prediction and management increasingly depends on using EHR and AI technologies effectively. Addressing data quality issues and overcoming limitations from retrospective data analysis are critical for improving the reliability and applicability of risk prediction models. Integrating multidimensional data, including environmental, lifestyle, social, and genomic factors, could significantly enhance risk assessment. These models require continuous validation and recalibration to ensure their adaptability to diverse populations and evolving health care environments, providing reassurance about their reliability.
Collapse
Affiliation(s)
- Ming-Lung Tsai
- Division of Cardiology, Department of Internal Medicine New Taipei Municipal Tucheng Hospital New Taipei Taiwan
- College of Medicine Chang Gung University Taoyuan Taiwan
- College of Management Chang Gung University Taoyuan Taiwan
| | - Kuan-Fu Chen
- College of Intelligence Computing Chang Gung University Taoyuan Taiwan
- Department of Emergency Medicine Chang Gung Memorial Hospital Keelung Taiwan
| | - Pei-Chun Chen
- National Center for Geriatrics and Welfare Research National Health Research Institutes Yunlin Taiwan
- Big Data Center China Medical University Hospital Taichung Taiwan
| |
Collapse
|
2
|
Qureshi M, Ishaq K, Daniyal M, Iftikhar H, Rehman MZ, Salar SAA. Forecasting cardiovascular disease mortality using artificial neural networks in Sindh, Pakistan. BMC Public Health 2025; 25:34. [PMID: 39754102 PMCID: PMC11699765 DOI: 10.1186/s12889-024-21187-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death and disability worldwide, and its incidence and prevalence are increasing in many countries. Modeling of CVD plays a crucial role in understanding the trend of CVD death cases, evaluating the effectiveness of interventions, and predicting future disease trends. This study aims to investigate the modeling and forecasting of CVD mortality, specifically in the Sindh province of Pakistan. The civil hospital in the Nawabshah area of Sindh province, Pakistan, provided the data set used in this study. It is a time series dataset with actual cardiovascular disease (CVD) mortality cases from 1999 to 2021 included. This study analyzes and forecasts the CVD deaths in the Sindh province of Pakistan using classical time series models, including Naïve, Holt-Winters, and Simple Exponential Smoothing (SES), which have been adopted and compared with a machine learning approach called the Artificial Neural Network Auto-Regressive (ANNAR) model. The performance of both the classical time series models and the ANNAR model has been evaluated using key performance indicators such as Root Mean Square Deviation Error, Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). After comparing the results, it was found that the ANNAR model outperformed all the selected models, demonstrating its effectiveness in predicting CVD mortality and quantifying future disease burden in the Sindh province of Pakistan. The study concludes that the ANNAR model is the best-selected model among the competing models for predicting CVD mortality in the Sindh province. This model provides valuable insights into the impact of interventions aimed at reducing CVD and can assist in formulating health policies and allocating economic resources. By accurately forecasting CVD mortality, policymakers can make informed decisions to address this public health issue effectively.
Collapse
Affiliation(s)
- Moiz Qureshi
- Govt Degree College TangoJam, Hyderabad 70060, Sindh, Pakistan
- Department of Statistics, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Khushboo Ishaq
- Ibn-e-Sina Medical University Mirpurkhas, Sindh, Pakistan
| | - Muhammad Daniyal
- Department of Statistics, Faculty of Computing, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hasnain Iftikhar
- Department of Statistics, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
- Al-Barkaat Institute of Management Studies, Aligarh 202122, Dr. A. P. J. Abdul Kalam Technical University, Lucknow 226010, India.
| | - Mohd Ziaur Rehman
- Department of Finance, College of Business Administration, King Saud University, P.O. Box 71115, Riyadh, 11587, Saudi Arabia
| | - S A Atif Salar
- Al-Barkaat Institute of Management Studies, Aligarh 202122, Dr. A. P. J. Abdul Kalam Technical University, Lucknow 226010, India
| |
Collapse
|
3
|
Simon SCS, Bibi I, Schaffert D, Benecke J, Martin N, Leipe J, Vladescu C, Olsavszky V. AutoML-Driven Insights into Patient Outcomes and Emergency Care During Romania's First Wave of COVID-19. Bioengineering (Basel) 2024; 11:1272. [PMID: 39768090 PMCID: PMC11673140 DOI: 10.3390/bioengineering11121272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The COVID-19 pandemic severely impacted healthcare systems, affecting patient outcomes and resource allocation. This study applied automated machine learning (AutoML) to analyze key health outputs, such as discharge conditions, mortality, and COVID-19 cases, with the goal of improving responses to future crises. METHODS AutoML was used to train and validate models on an ICD-10 dataset covering the first wave of COVID-19 in Romania (January-September 2020). RESULTS For discharge outcomes, Light Gradient Boosted models achieved an F1 score of 0.9644, while for mortality 0.7545 was reached. A Generalized Linear Model blender achieved an F1 score of 0.9884 for "acute or emergency" cases, and an average blender reached 0.923 for COVID-19 cases. Older age, specific hospitals, and oncology wards were less associated with improved recovery rates, while mortality was linked to abnormal lab results and cardiovascular/respiratory diseases. Patients admitted without referral, or patients in hospitals in the central region and the capital region of Romania were more likely to be acute cases. Finally, counties such as Argeş (South-Muntenia) and Brașov (Center) showed higher COVID-19 infection rates regardless of age. CONCLUSIONS AutoML provided valuable insights into patient outcomes, highlighting variations in care and the need for targeted health strategies for both COVID-19 and other health challenges.
Collapse
Affiliation(s)
- Sonja C. S. Simon
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (S.C.S.S.); (I.B.); (D.S.); (J.B.); (N.M.); (V.O.)
| | - Igor Bibi
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (S.C.S.S.); (I.B.); (D.S.); (J.B.); (N.M.); (V.O.)
| | - Daniel Schaffert
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (S.C.S.S.); (I.B.); (D.S.); (J.B.); (N.M.); (V.O.)
| | - Johannes Benecke
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (S.C.S.S.); (I.B.); (D.S.); (J.B.); (N.M.); (V.O.)
| | - Niklas Martin
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (S.C.S.S.); (I.B.); (D.S.); (J.B.); (N.M.); (V.O.)
| | - Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Cristian Vladescu
- National Institute for Health Services Management, 030167 Bucharest, Romania
- Faculty of Medicine, University Titu Maiorescu, 031593 Bucharest, Romania
| | - Victor Olsavszky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (S.C.S.S.); (I.B.); (D.S.); (J.B.); (N.M.); (V.O.)
| |
Collapse
|
4
|
Schaffert D, Bibi I, Blauth M, Lull C, von Ahnen JA, Gross G, Schulze-Hagen T, Knitza J, Kuhn S, Benecke J, Schmieder A, Leipe J, Olsavszky V. Using Automated Machine Learning to Predict Necessary Upcoming Therapy Changes in Patients With Psoriasis Vulgaris and Psoriatic Arthritis and Uncover New Influences on Disease Progression: Retrospective Study. JMIR Form Res 2024; 8:e55855. [PMID: 38738977 PMCID: PMC11240079 DOI: 10.2196/55855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are complex, multifactorial diseases significantly impacting health and quality of life. Predicting treatment response and disease progression is crucial for optimizing therapeutic interventions, yet challenging. Automated machine learning (AutoML) technology shows promise for rapidly creating accurate predictive models based on patient features and treatment data. OBJECTIVE This study aims to develop highly accurate machine learning (ML) models using AutoML to address key clinical questions for PsV and PsA patients, including predicting therapy changes, identifying reasons for therapy changes, and factors influencing skin lesion progression or an abnormal Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) score. METHODS Clinical study data from 309 PsV and PsA patients were extensively prepared and analyzed using AutoML to build and select the most accurate predictive models for each variable of interest. RESULTS Therapy change at 24 weeks follow-up was modeled using the extreme gradient boosted trees classifier with early stopping (area under the receiver operating characteristic curve [AUC] of 0.9078 and logarithmic loss [LogLoss] of 0.3955 for the holdout partition). Key influencing factors included the initial systemic therapeutic agent, the Classification Criteria for Psoriatic Arthritis score at baseline, and changes in quality of life. An average blender incorporating three models (gradient boosted trees classifier, ExtraTrees classifier, and Eureqa generalized additive model classifier) with an AUC of 0.8750 and LogLoss of 0.4603 was used to predict therapy changes for 2 hypothetical patients, highlighting the significance of these factors. Treatments such as methotrexate or specific biologicals showed a lower propensity for change. An average blender of a random forest classifier, an extreme gradient boosted trees classifier, and a Eureqa classifier (AUC of 0.9241 and LogLoss of 0.4498) was used to estimate PASI (Psoriasis Area and Severity Index) change after 24 weeks. Primary predictors included the initial PASI score, change in pruritus levels, and change in therapy. A lower initial PASI score and consistently low pruritus were associated with better outcomes. BASDAI classification at onset was analyzed using an average blender of a Eureqa generalized additive model classifier, an extreme gradient boosted trees classifier with early stopping, and a dropout additive regression trees classifier with an AUC of 0.8274 and LogLoss of 0.5037. Influential factors included initial pain, disease activity, and Hospital Anxiety and Depression Scale scores for depression and anxiety. Increased pain, disease activity, and psychological distress generally led to higher BASDAI scores. CONCLUSIONS The practical implications of these models for clinical decision-making in PsV and PsA can guide early investigation and treatment, contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Daniel Schaffert
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Igor Bibi
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Mara Blauth
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Christian Lull
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Jan Alwin von Ahnen
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Georg Gross
- Department of Medicine V, Division of Rheumatology, University Medical Center and Medical Faculty Mannheim, Mannheim, Germany
| | - Theresa Schulze-Hagen
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Johannes Knitza
- Institute of Digital Medicine, Philipps-University Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Sebastian Kuhn
- Institute of Digital Medicine, Philipps-University Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Johannes Benecke
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Astrid Schmieder
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Medical Center and Medical Faculty Mannheim, Mannheim, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| |
Collapse
|
5
|
Go J, Moon N. Cleaned Meta Pseudo Labels-Based Pet Behavior Recognition Using Time-Series Sensor Data. SENSORS (BASEL, SWITZERLAND) 2024; 24:3391. [PMID: 38894180 PMCID: PMC11175053 DOI: 10.3390/s24113391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
With the increasing number of households owning pets, the importance of sensor data for recognizing pet behavior has grown significantly. However, challenges arise due to the costs and reliability issues associated with data collection. This paper proposes a method for classifying pet behavior using cleaned meta pseudo labels to overcome these issues. The data for this study were collected using wearable devices equipped with accelerometers, gyroscopes, and magnetometers, and pet behaviors were classified into five categories. Utilizing this data, we analyzed the impact of the quantity of labeled data on accuracy and further enhanced the learning process by integrating an additional Distance Loss. This method effectively improves the learning process by removing noise from unlabeled data. Experimental results demonstrated that while the conventional supervised learning method achieved an accuracy of 82.9%, the existing meta pseudo labels method showed an accuracy of 86.2%, and the cleaned meta pseudo labels method proposed in this study surpassed these with an accuracy of 88.3%. These results hold significant implications for the development of pet monitoring systems, and the approach of this paper provides an effective solution for recognizing and classifying pet behavior in environments with insufficient labels.
Collapse
Affiliation(s)
| | - Nammee Moon
- Department of Computer Science and Engineering, Hoseo University, Asan-si 31499, Republic of Korea;
| |
Collapse
|
6
|
Bibi I, Schaffert D, Blauth M, Lull C, von Ahnen JA, Gross G, Weigandt WA, Knitza J, Kuhn S, Benecke J, Leipe J, Schmieder A, Olsavszky V. Automated Machine Learning Analysis of Patients With Chronic Skin Disease Using a Medical Smartphone App: Retrospective Study. J Med Internet Res 2023; 25:e50886. [PMID: 38015608 PMCID: PMC10716771 DOI: 10.2196/50886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Rapid digitalization in health care has led to the adoption of digital technologies; however, limited trust in internet-based health decisions and the need for technical personnel hinder the use of smartphones and machine learning applications. To address this, automated machine learning (AutoML) is a promising tool that can empower health care professionals to enhance the effectiveness of mobile health apps. OBJECTIVE We used AutoML to analyze data from clinical studies involving patients with chronic hand and/or foot eczema or psoriasis vulgaris who used a smartphone monitoring app. The analysis focused on itching, pain, Dermatology Life Quality Index (DLQI) development, and app use. METHODS After extensive data set preparation, which consisted of combining 3 primary data sets by extracting common features and by computing new features, a new pseudonymized secondary data set with a total of 368 patients was created. Next, multiple machine learning classification models were built during AutoML processing, with the most accurate models ultimately selected for further data set analysis. RESULTS Itching development for 6 months was accurately modeled using the light gradient boosted trees classifier model (log loss: 0.9302 for validation, 1.0193 for cross-validation, and 0.9167 for holdout). Pain development for 6 months was assessed using the random forest classifier model (log loss: 1.1799 for validation, 1.1561 for cross-validation, and 1.0976 for holdout). Then, the random forest classifier model (log loss: 1.3670 for validation, 1.4354 for cross-validation, and 1.3974 for holdout) was used again to estimate the DLQI development for 6 months. Finally, app use was analyzed using an elastic net blender model (area under the curve: 0.6567 for validation, 0.6207 for cross-validation, and 0.7232 for holdout). Influential feature correlations were identified, including BMI, age, disease activity, DLQI, and Hospital Anxiety and Depression Scale-Anxiety scores at follow-up. App use increased with BMI >35, was less common in patients aged >47 years and those aged 23 to 31 years, and was more common in those with higher disease activity. A Hospital Anxiety and Depression Scale-Anxiety score >8 had a slightly positive effect on app use. CONCLUSIONS This study provides valuable insights into the relationship between data characteristics and targeted outcomes in patients with chronic eczema or psoriasis, highlighting the potential of smartphone and AutoML techniques in improving chronic disease management and patient care.
Collapse
Affiliation(s)
- Igor Bibi
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Daniel Schaffert
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Mara Blauth
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Christian Lull
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Jan Alwin von Ahnen
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Georg Gross
- Department of Medicine V, Division of Rheumatology, University Medical Centre and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wanja Alexander Weigandt
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Johannes Knitza
- Institute of Digital Medicine, Philipps-University Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Sebastian Kuhn
- Institute of Digital Medicine, Philipps-University Marburg and University Hospital of Giessen and Marburg, Marburg, Germany
| | - Johannes Benecke
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| | - Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Medical Centre and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Astrid Schmieder
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Victor Olsavszky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Center of Excellence in Dermatology, Heidelberg University, Mannheim, Germany
| |
Collapse
|
7
|
Yang C, An S, Qiao B, Guan P, Huang D, Wu W. Exploring the influence of COVID-19 on the spread of hand, foot, and mouth disease with an automatic machine learning prediction model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20369-20385. [PMID: 36255582 PMCID: PMC9579594 DOI: 10.1007/s11356-022-23643-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is an important public health problem and has received concern worldwide. Moreover, the coronavirus disease 2019 (COVID-19) epidemic also increases the difficulty of understanding and predicting the prevalence of HFMD. The purpose is to prove the usability and applicability of the automatic machine learning (Auto-ML) algorithm in predicting the epidemic trend of HFMD and to explore the influence of COVID-19 on the spread of HFMD. The AutoML algorithm and the autoregressive integrated moving average (ARIMA) model were applied to construct and validate models, based on the monthly incidence numbers of HFMD and meteorological factors from May 2008 to December 2019 in Henan province, China. A total of four models were established, among which the Auto-ML model with meteorological factors had minimum RMSE and MAE in both the model constructing phase and forecasting phase (training set: RMSE = 1424.40 and MAE = 812.55; test set: RMSE = 2107.83, MAE = 1494.41), so this model has the best performance. The optimal model was used to further predict the incidence numbers of HFMD in 2020 and then compared with the reported cases. And, for analysis, 2020 was divided into two periods. The predicted incidence numbers followed the same trend as the reported cases of HFMD before the COVID-19 outbreak; while after the COVID-19 outbreak, the reported cases have been greatly reduced than expected, with an average of only about 103 cases per month, and the incidence peak has also been delayed, which has led to significant changes in the seasonality of HFMD. Overall, the AutoML algorithm is an applicable and ideal method to predict the epidemic trend of the HFMD. Furthermore, it was found that the countermeasures of COVID-19 have a certain influence on suppressing the spread of HFMD during the period of COVID-19. The findings are helpful to health administrative departments.
Collapse
Affiliation(s)
- Chuan Yang
- Department of Mathematics, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning China
| | - Shuyi An
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning China
| | - Baojun Qiao
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, Liaoning China
| | - Peng Guan
- Department of Mathematics, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning China
| | - Desheng Huang
- Department of Intelligent Computing, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning China
| | - Wei Wu
- Department of Mathematics, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning China
| |
Collapse
|
8
|
Sauer CM, Chen LC, Hyland SL, Girbes A, Elbers P, Celi LA. Leveraging electronic health records for data science: common pitfalls and how to avoid them. Lancet Digit Health 2022; 4:e893-e898. [PMID: 36154811 DOI: 10.1016/s2589-7500(22)00154-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 12/29/2022]
Abstract
Analysis of electronic health records (EHRs) is an increasingly common approach for studying real-world patient data. Use of routinely collected data offers several advantages compared with other study designs, including reduced administrative costs, the ability to update analysis as practice patterns evolve, and larger sample sizes. Methodologically, EHR analysis is subject to distinct challenges because data are not collected for research purposes. In this Viewpoint, we elaborate on the importance of in-depth knowledge of clinical workflows and describe six potential pitfalls to be avoided when working with EHR data, drawing on examples from the literature and our experience. We propose solutions for prevention or mitigation of factors associated with each of these six pitfalls-sample selection bias, imprecise variable definitions, limitations to deployment, variable measurement frequency, subjective treatment allocation, and model overfitting. Ultimately, we hope that this Viewpoint will guide researchers to further improve the methodological robustness of EHR analysis.
Collapse
Affiliation(s)
- Christopher M Sauer
- Laboratory for Critical Care Computational Intelligence, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam Cardiovascular Science, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands; Laboratory for Computational Physiology, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Li-Ching Chen
- Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Armand Girbes
- Laboratory for Critical Care Computational Intelligence, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam Cardiovascular Science, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| | - Paul Elbers
- Laboratory for Critical Care Computational Intelligence, Department of Intensive Care Medicine, Amsterdam Medical Data Science, Amsterdam Cardiovascular Science, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| | - Leo A Celi
- Laboratory for Computational Physiology, Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
9
|
Big Data, Decision Models, and Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148543. [PMID: 35886394 PMCID: PMC9324609 DOI: 10.3390/ijerph19148543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022]
|
10
|
Hypertension and Diabetes in Akatsi South District, Ghana: Modeling and Forecasting. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9690964. [PMID: 35187174 PMCID: PMC8850043 DOI: 10.1155/2022/9690964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Background The rising incidence of hypertension and diabetes calls for a global response. Hypertension and diabetes will rise in Ghana as the population ages, urbanization increases, and people lead unhealthy lives. Our goal was to create a time series algorithm that effectively predicts future increases to help preventative medicine and health care intervention strategies by preparing health care practitioners to control health problems. Methods Data on hypertension and diabetes from January 2016 to December 2020 were obtained from three health facilities. To detect patterns and predict data from a particular time series, three forecasting algorithms (SARIMAX (seasonal autoregressive integrated moving average with exogenous components), ARIMA (autoregressive integrated moving average), and LSTM (long short-term memory networks)) were implemented. We assessed the model's ability to perform by calculating the root mean square error (RMSE), mean absolute error (MAE), mean square error (MSE), and mean absolute percentage error (MAPE). Results The RMSE, MSE, MAE, and MAPE for ARIMA (5, 2, 4), SARIMAX (1, 1, 1) × (1, 1, 1, 7), and LSTM was 28, 769.02, 22, and 7%, 67, 4473, 56, and 14%, and 36, 1307, 27, and 8.6%, respectively. We chose ARIMA (5, 2, 4) as a more suitable model due to its lower error metrics when compared to the others. Conclusion All models had promising predictability and predicted a rise in the number of cases in the future, and this was essential for administrative and management planning. For appropriate and efficient strategic planning and control, the prognosis was useful enough than would have been possible without it.
Collapse
|
11
|
Benecke J, Benecke C, Ciutan M, Dosius M, Vladescu C, Olsavszky V. Retrospective analysis and time series forecasting with automated machine learning of ascariasis, enterobiasis and cystic echinococcosis in Romania. PLoS Negl Trop Dis 2021; 15:e0009831. [PMID: 34723982 PMCID: PMC8584970 DOI: 10.1371/journal.pntd.0009831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/11/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
The epidemiology of neglected tropical diseases (NTD) is persistently underprioritized, despite NTD being widespread among the poorest populations and in the least developed countries on earth. This situation necessitates thorough and efficient public health intervention. Romania is at the brink of becoming a developed country. However, this South-Eastern European country appears to be a region that is susceptible to an underestimated burden of parasitic diseases despite recent public health reforms. Moreover, there is an evident lack of new epidemiologic data on NTD after Romania's accession to the European Union (EU) in 2007. Using the national ICD-10 dataset for hospitalized patients in Romania, we generated time series datasets for 2008-2018. The objective was to gain deep understanding of the epidemiological distribution of three selected and highly endemic parasitic diseases, namely, ascariasis, enterobiasis and cystic echinococcosis (CE), during this period and forecast their courses for the ensuing two years. Through descriptive and inferential analysis, we observed a decline in case numbers for all three NTD. Several distributional particularities at regional level emerged. Furthermore, we performed predictions using a novel automated time series (AutoTS) machine learning tool and could interestingly show a stable course for these parasitic NTD. Such predictions can help public health officials and medical organizations to implement targeted disease prevention and control. To our knowledge, this is the first study involving a retrospective analysis of ascariasis, enterobiasis and CE on a nationwide scale in Romania. It is also the first to use AutoTS technology for parasitic NTD.
Collapse
Affiliation(s)
- Johannes Benecke
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| | - Cornelius Benecke
- Barcelona Institute for Global Health, University of Barcelona, Barcelona, Spain
| | - Marius Ciutan
- National School of Public Health Management and Professional Development, Bucharest, Romania
| | - Mihnea Dosius
- National School of Public Health Management and Professional Development, Bucharest, Romania
| | - Cristian Vladescu
- National School of Public Health Management and Professional Development, Bucharest, Romania
- University Titu Maiorescu, Faculty of Medicine, Bucharest, Romania
| | - Victor Olsavszky
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, University of Heidelberg, and Center of Excellence in Dermatology, Mannheim, Germany
| |
Collapse
|
12
|
Qin S, Duan X, Kimm P. WITHDRAWN: Usage of deep learning in environmental health risk assessment. Work 2021:WOR205371. [PMID: 34308886 DOI: 10.3233/wor-205371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
- Shengyang Qin
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Student Affairs Office, Yancheng Teachers University, Yancheng, China
| | - Xinxing Duan
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
| | - Paul Kimm
- School of Science, Engineering & Design, Teesside University, UK
| |
Collapse
|
13
|
The Deep Learning LSTM and MTD Models Best Predict Acute Respiratory Infection among Under-Five-Year Old Children in Somaliland. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The most effective techniques for predicting time series patterns include machine learning and classical time series methods. The aim of this study is to search for the best artificial intelligence and classical forecasting techniques that can predict the spread of acute respiratory infection (ARI) and pneumonia among under-five-year old children in Somaliland. The techniques used in the study include seasonal autoregressive integrated moving averages (SARIMA), mixture transitions distribution (MTD), and long short term memory (LSTM) deep learning. The data used in the study were monthly observations collected from five regions in Somaliland from 2011–2014. Prediction results from the three best competing models are compared by using root mean square error (RMSE) and absolute mean deviation (MAD) accuracy measures. Results have shown that the deep learning LSTM and MTD models slightly outperformed the classical SARIMA model in predicting ARI values.
Collapse
|
14
|
Manco L, Maffei N, Strolin S, Vichi S, Bottazzi L, Strigari L. Basic of machine learning and deep learning in imaging for medical physicists. Phys Med 2021; 83:194-205. [DOI: 10.1016/j.ejmp.2021.03.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
|
15
|
Chan CL, Chang CC. Big Data, Decision Models, and Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186723. [PMID: 32942728 PMCID: PMC7558933 DOI: 10.3390/ijerph17186723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/23/2022]
Abstract
Unlike most daily decisions, medical decision making often has substantial consequences and trade-offs. Recently, big data analytics techniques such as statistical analysis, data mining, machine learning and deep learning can be applied to construct innovative decision models. With complex decision making, it can be difficult to comprehend and compare the benefits and risks of all available options to make a decision. For these reasons, this Special Issue focuses on the use of big data analytics and forms of public health decision making based on the decision model, spanning from theory to practice. A total of 64 submissions were carefully blind peer reviewed by at least two referees and, finally, 23 papers were selected for this Special Issue.
Collapse
Affiliation(s)
- Chien-Lung Chan
- Department of Information Management, Yuan Ze University, Taoyuan 320, Taiwan;
- Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan 320, Taiwan
| | - Chi-Chang Chang
- School of Medical Informatics, Chung Shan Medical University & IT Office, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-24730022
| |
Collapse
|