1
|
Xue Q, Zhang D, Zou J, Wang H, Shi R, Dong L. Treatment advances of sepsis‑induced myopathy (Review). Biomed Rep 2025; 22:19. [PMID: 39651403 PMCID: PMC11621912 DOI: 10.3892/br.2024.1897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024] Open
Abstract
Sepsis-induced myopathy (SIM) is a muscle disease caused by multiple pathological and physiological mechanisms associated with sepsis. The pathogenesis of SIM is extremely complex and still unclear, making treatment challenging. At present, clinical treatment includes early functional exercise, respiratory muscle strength training, regulation of nutritional structure and functional electrical stimulation. Drugs targeting the regulation of the ubiquitin-proteasome system, autophagy-lysosome system, calpain and caspase activation pathways, have provided potential therapeutic targets for the treatment of muscle atrophy. Stem cell transplantation therapy brings new hope for the treatment of SIM.
Collapse
Affiliation(s)
- Qiuli Xue
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Deyou Zhang
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiarui Zou
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haitao Wang
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruiyuan Shi
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lihua Dong
- Department of Intensive Care Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
2
|
Zocchi G, Fontanelli F, Spinelli S, Sturla L, Passalacqua M, González Urra JC, Delsante S, Zocchi E. Thermal measurements support a role of the ABA/LANCL1-2 hormone/receptors system in thermogenesis. Open Biol 2024; 14:240107. [PMID: 39657821 PMCID: PMC11631410 DOI: 10.1098/rsob.240107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 12/12/2024] Open
Abstract
Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.
Collapse
Affiliation(s)
- Giovanni Zocchi
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - Flavio Fontanelli
- Department of Physics, University of Genoa and National Institute of Nuclear Physics (INFN), Section of Genoa, Italy
| | - Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Laura Sturla
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | | | - Simona Delsante
- Department of Chemistry and Industrial Chemistry (DCCI), University of Genoa, Genoa, Italy
| | - Elena Zocchi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Kubat GB, Ulger O, Atalay O, Fatsa T, Turkel I, Ozerklig B, Celik E, Ozenc E, Simsek G, Tuncer M. The effects of exercise and mitochondrial transplantation alone or in combination against Doxorubicin-induced skeletal muscle atrophy. J Muscle Res Cell Motil 2024; 45:233-251. [PMID: 38822935 DOI: 10.1007/s10974-024-09676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug used to treat various types of cancer, but it is associated with significant side effects such as skeletal muscle atrophy. Exercise has been found to prevent skeletal muscle atrophy through the modulation of mitochondrial pathways. Mitochondrial transplantation (MT) may mitigate toxicity, neurological disorders, kidney and liver injury, and skeletal muscle atrophy. The objective of this study was to evaluate the effects of MT, exercise, and MT with exercise on DOX-induced skeletal muscle atrophy. Male Sprague Dawley rats were randomly assigned to the following groups: control, DOX, MT with DOX, exercise with DOX, and exercise with MT and DOX. A 10-day treadmill running exercise and MT (6.5 µg/100 µL) to tibialis anterior (TA) muscle were administered prior to a single injection of DOX (20 mg/kg). Our data showed that exercise and MT with exercise led to an increase in cross-sectional area of the TA muscle. Exercise, MT and MT with exercise reduced inflammation and maintained mitochondrial enzyme activity. Additionally, exercise and MT have been shown to regulate mitochondrial fusion/fission. Our findings revealed that exercise and MT with exercise prevented oxidative damage. Furthermore, MT and MT with exercise decreased apoptosis and MT with exercise triggered mitochondrial biogenesis. These findings demonstrate the importance of exercise in the prevention of skeletal muscle atrophy and emphasize the significant benefits of MT with exercise. To the best of our knowledge, this is the first study to demonstrate the therapeutic effects of MT with exercise in DOX-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey.
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Chen L, Chen S, Bai Y, Zhang Y, Li X, Wang Y, Xiao Y, Wan J, Sun K. Electroacupuncture improves cognitive impairment after ischemic stroke based on regulation of mitochondrial dynamics through SIRT1/PGC-1α pathway. Brain Res 2024; 1844:149139. [PMID: 39111521 DOI: 10.1016/j.brainres.2024.149139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
In recent years, the mechanism of acupuncture in the treatment of post-stroke cognitive impairment (PSCI) has not been fully elucidated. The balance between mitochondrial fission and fusion is important for PSCI. Our previous research demonstrated that electroacupuncture can improve learning and memory in middle cerebral artery ischemia reperfusion (MCAO/R) rats. However, the specific mechanism by which electroacupuncture improves learning and memory in MCAO/R rats by regulating mitochondrial fission and fusion needs to be further investigated. The MCAO/R rats was developed using the line-bolt method. The rats were randomly divided into sham-operated (Sham), model (MCAO/R), electroacupuncture (MCAO/R + EA) and sham-electroacupuncture (MCAO/R + sham EA) groups. Investigating the effects of EA on the expression of Sirtuin1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), Optic atrophy 1R + (OPA1) and Dynamin-related protein 1 (DRP1) in hippocampal neurons and on the morphology and function of hippocampal neurons and mitochondria. EA was able to reduce neurologic deficit scores and cerebral infarct volume and improve new object discrimination in MCAO/R rats, but there were no significant changes in these indices in the sham-electroacupuncture group. Moreover, EA increased the expression of SIRT1, PGC-1α, and OPA1 in hippocampal tissues, inhibited the expression of DRP1, attenuated neuronal and mitochondrial damage, and reduced mitochondrial fragmentation. The mechanism by which EA improves learning memory deficits in MCAO/R rats may be related to the inhibition of SIRT1/PGC-1α expression, the enhancement of mitochondrial fusion and the obstruction of its fission, and the reduction of hippocampal neuronal damage.
Collapse
Affiliation(s)
- Limin Chen
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, People's Hospital of Henan University of Chinese Medicine, Department of Rehabilitation Medicine of Zhengzhou People's Hospital (South Hospital), Zhengzhou, Henan, China
| | - Shuying Chen
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yanjie Bai
- Rehabilitation Centre of the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Yongchuang Zhang
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoxiao Li
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Wang
- Rehabilitation Centre of the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuqian Xiao
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jun Wan
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kexin Sun
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Di Lorenzo R, Chimienti G, Picca A, Trisolini L, Latronico T, Liuzzi GM, Pesce V, Leeuwenburgh C, Lezza AMS. Resveratrol impinges on retrograde communication without inducing mitochondrial biogenesis in aged rat soleus muscle. Exp Gerontol 2024; 194:112485. [PMID: 38876448 DOI: 10.1016/j.exger.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The natural polyphenol resveratrol (RSV) might counteract the skeletal muscle age-related loss of muscle mass and strength/function partly acting on mitochondria. This work analysed the effects of a six-week administration of RSV (50 mg/kg/day) in the oxidative Soleus (Sol) skeletal muscle of old rats (27 months old). RSV effects on key mitochondrial biogenesis proteins led to un unchanged amount of SIRT1 protein and a marked decrease (60 %) in PGC-1α protein. In addition, Peroxyredoxin 3 (PRXIII) protein decreased by 50 %, which on overall suggested the absence of induction of mitochondrial biogenesis by RSV in old Sol. A novel direct correlation between PGC-1α and PRXIII proteins was demonstrated by correlation analysis in RSV and ad-libitum (AL) rats, supporting the reciprocally coordinated expression of the proteins. RSV supplementation led to an unexpected 50 % increase in the frequency of the oxidized base OH8dG in mtDNA. Furthermore, RSV supplementation induced a 50 % increase in the DRP1 protein of mitochondrial dynamics. In both rat groups an inverse correlation between PGC-1α and the frequency of OH8dG as well as an inverse correlation between PRXIII and the frequency of OH8dG were also found, suggestive of a relationship between oxidative damage to mtDNA and mitochondrial biogenesis activity. Such results may indicate that the antioxidant activity of RSV in aged Sol impinged on the oxidative fiber-specific, ROS-mediated, retrograde communication, thereby affecting the expression of SIRT1, PGC-1α and PRXIII, reducing the compensatory responses to the age-related mitochondrial oxidative stress and decline.
Collapse
Affiliation(s)
- Rosa Di Lorenzo
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Guglielmina Chimienti
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Anna Picca
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Roma, Italy.
| | - Lucia Trisolini
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Tiziana Latronico
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Grazia Maria Liuzzi
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, FL 32611, USA.
| | - Angela Maria Serena Lezza
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
6
|
Yamamoto H, Shimomura N, Hasegawa Y. Oral Administration of Nacre Extract from Pearl Oyster Shells Has Anti-Aging Effects on Skin and Muscle, and Extends the Lifespan in SAMP8 Mice. Pharmaceuticals (Basel) 2024; 17:713. [PMID: 38931380 PMCID: PMC11206907 DOI: 10.3390/ph17060713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Pearl oysters have been extensively utilized in pearl production; however, most pearl oyster shells are discarded as industrial waste. In a previous study, we demonstrated that the intraperitoneal administration of pearl oyster shell-derived nacre extract (NE) prevented d-galactose-induced brain and skin aging. In this study, we examined the anti-aging effects of orally administered NE in senescence-accelerated mice (SAMP8). Feeding SAMP8 mice NE prevented the development of aging-related characteristics, such as coarse and dull hair, which are commonly observed in aged mice. Additionally, the NE mitigated muscle aging in SAMP8 mice, such as a decline in grip strength. Histological analysis of skeletal muscle revealed that the NE suppressed the expression of aging markers, cyclin-dependent kinase inhibitor 2A (p16) and cyclin-dependent kinase inhibitor 1 (p21), and increased the expression of sirtuin1 and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)- α, which are involved in muscle synthesis. These findings suggest that the oral administration of NE suppresses skeletal muscle aging. Moreover, NE administration suppressed skin aging, including a decline in water content. Interestingly, oral administration of NE significantly extended the lifespan of SAMP8 mice, suggesting that its effectiveness as an anti-aging agent of various tissues including skeletal muscle, skin, and adipose tissue.
Collapse
Affiliation(s)
| | | | - Yasushi Hasegawa
- College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Japan; (H.Y.); (N.S.)
| |
Collapse
|
7
|
Shen Y, Zhang C, Dai C, Zhang Y, Wang K, Gao Z, Chen X, Yang X, Sun H, Yao X, Xu L, Liu H. Nutritional Strategies for Muscle Atrophy: Current Evidence and Underlying Mechanisms. Mol Nutr Food Res 2024; 68:e2300347. [PMID: 38712453 DOI: 10.1002/mnfr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/28/2024] [Indexed: 05/08/2024]
Abstract
Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, β-hydroxy, β-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.
Collapse
Grants
- 81901933 National Natural Science Foundation of China
- 82072160 National Natural Science Foundation of China
- 20KJA310012 Major Natural Science Research Projects in Universities of Jiangsu Province
- BK20202013 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- BK20201209 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- ZDB2020003 Natural Science Foundation of Jiangsu Province, and the Scientific Research Project of The Health Commission of Jiangsu Province
- QingLan Project in Jiangsu Universities
- JC22022037 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- MS22022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- JC12022010 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
- HS2022003 The Priority Academic Program Development of Jiangsu Higher Education Institutions, and Nantong Science and Technology Program, and Nantong Health Medical Research Center
Collapse
Affiliation(s)
- Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Chaolun Dai
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Yijie Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, P. R. China, 226001
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| |
Collapse
|
8
|
Li J, Zhang Z, Bo H, Zhang Y. Exercise couples mitochondrial function with skeletal muscle fiber type via ROS-mediated epigenetic modification. Free Radic Biol Med 2024; 213:409-425. [PMID: 38295887 DOI: 10.1016/j.freeradbiomed.2024.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Skeletal muscle is a heterogeneous tissue composed of different types of muscle fibers, demonstrating substantial plasticity. Physiological or pathological stimuli can induce transitions in muscle fiber types. However, the precise regulatory mechanisms behind these transitions remains unclear. This paper reviews the classification and characteristics of muscle fibers, along with the classical mechanisms of muscle fiber type transitions. Additionally, the role of exercise-induced muscle fiber type transitions in disease intervention is reviewed. Epigenetic pathways mediate cellular adaptations and thus represent potential targets for regulating muscle fiber type transitions. This paper focuses on the mechanisms by which epigenetic modifications couple mitochondrial function and contraction characteristics. Reactive Oxygen Species (ROS) are critical signaling regulators for the health-promoting effects of exercise. Finally, we discuss the role of exercise-induced ROS in regulating epigenetic modifications and the transition of muscle fiber types.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
9
|
Mthembu SXH, Mazibuko-Mbeje SE, Ziqubu K, Muvhulawa N, Marcheggiani F, Cirilli I, Nkambule BB, Muller CJF, Basson AK, Tiano L, Dludla PV. Potential regulatory role of PGC-1α within the skeletal muscle during metabolic adaptations in response to high-fat diet feeding in animal models. Pflugers Arch 2024; 476:283-293. [PMID: 38044359 PMCID: PMC10847180 DOI: 10.1007/s00424-023-02890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
High-fat diet (HFD) feeding in rodents has become an essential tool to critically analyze and study the pathological effects of obesity, including mitochondrial dysfunction and insulin resistance. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) regulates cellular energy metabolism to influence insulin sensitivity, beyond its active role in stimulating mitochondrial biogenesis to facilitate skeletal muscle adaptations in response to HFD feeding. Here, some of the major electronic databases like PubMed, Embase, and Web of Science were accessed to update and critically discuss information on the potential role of PGC-1α during metabolic adaptations within the skeletal muscle in response to HFD feeding in rodents. In fact, available evidence suggests that partial exposure to HFD feeding (potentially during the early stages of disease development) is associated with impaired metabolic adaptations within the skeletal muscle, including mitochondrial dysfunction and reduced insulin sensitivity. In terms of implicated molecular mechanisms, these negative effects are partially associated with reduced activity of PGC-1α, together with the phosphorylation of protein kinase B and altered expression of genes involving nuclear respiratory factor 1 and mitochondrial transcription factor A within the skeletal muscle. Notably, metabolic abnormalities observed with chronic exposure to HFD (likely during the late stages of disease development) may potentially occur independently of PGC-1α regulation within the muscle of rodents. Summarized evidence suggests the causal relationship between PGC-1α regulation and effective modulations of mitochondrial biogenesis and metabolic flexibility during the different stages of disease development. It further indicates that prominent interventions like caloric restriction and physical exercise may affect PGC-1α regulation during effective modulation of metabolic processes.
Collapse
Affiliation(s)
- Sinenhlanhla X H Mthembu
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Sithandiwe E Mazibuko-Mbeje
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Ndivhuwo Muvhulawa
- Department of Biochemistry, North-West University, Mafikeng Campus, Mmabatho, 2735, South Africa
| | - Fabio Marcheggiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Ilenia Cirilli
- Department of Clinical Sciences, Section of Biochemistry, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa
- Centre for Cardiometabolic Research Africa (CARMA), Division of Medical Physiology, Stellenbosch University, Tygerberg, Cape Town, 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Albertus K Basson
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, Cape Town, 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, Empangeni, 3886, South Africa.
- Cochrane South Africa, South African Medical Research Council, Tygerberg, 7505, South Africa.
| |
Collapse
|
10
|
Petrocelli JJ, Liu J, Yee EM, Ferrara PJ, Bourrant PE, de Hart NMMP, Tatum SM, Holland WJ, Funai K, Drummond MJ. Skeletal muscle-specific inducible AMPKα1/α2 knockout mice develop muscle weakness, glycogen depletion, and fibrosis that persists during disuse atrophy. Am J Physiol Endocrinol Metab 2024; 326:E50-E60. [PMID: 38019084 PMCID: PMC11193510 DOI: 10.1152/ajpendo.00261.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
The 5' adenosine monophosphate-activated protein kinase (AMPK) is an important skeletal muscle regulator implicated as a possible therapeutic target to ameliorate the local undesired deconditioning of disuse atrophy. However, the muscle-specific role of AMPK in regulating muscle function, fibrosis, and transcriptional reprogramming during physical disuse is unknown. The purpose of this study was to determine how the absence of both catalytic subunits of AMPK in skeletal muscle influences muscle force production, collagen deposition, and the transcriptional landscape. We generated skeletal muscle-specific tamoxifen-inducible AMPKα1/α2 knockout (AMPKα-/-) mice that underwent 14 days of hindlimb unloading (HU) or remained ambulatory for 14 days (AMB). We found that AMPKα-/- during ambulatory conditions altered body weight and myofiber size, decreased muscle function, depleted glycogen stores and TBC1 domain family member 1 (TBC1D1) phosphorylation, increased collagen deposition, and altered transcriptional pathways. Primarily, pathways related to cellular senescence and mitochondrial biogenesis and function were influenced by the absence of AMPKα. The effects of AMPKα-/- persisted, but were not worsened, following hindlimb unloading. Together, we report that AMPKα is necessary to maintain skeletal muscle quality.NEW & NOTEWORTHY We determined that skeletal muscle-specific AMPKα knockout (KO) mice display functional, fibrotic, and transcriptional alterations before and during muscle disuse atrophy. We also observed that AMPKα KO drives muscle fibrosis and pathways related to cellular senescence that continues during the hindlimb unloading period.
Collapse
Affiliation(s)
- Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Jingtong Liu
- Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Elena M Yee
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Paul-Emile Bourrant
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Naomi M M P de Hart
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Sean M Tatum
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - William J Holland
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Katsuhiko Funai
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
- Department of Nutrition & Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
11
|
Guo M, Zhang J, Ma Y, Zhu Z, Zuo H, Yao J, Wu X, Wang D, Yu J, Meng M, Liu C, Zhang Y, Chen J, Lu J, Ding S, Hu C, Ma X, Xu L. AAV-Mediated nuclear localized PGC1α4 delivery in muscle ameliorates sarcopenia and aging-associated metabolic dysfunctions. Aging Cell 2023; 22:e13961. [PMID: 37584432 PMCID: PMC10577532 DOI: 10.1111/acel.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
Sarcopenia is characterized of muscle mass loss and functional decline in elder individuals which severely affects human physical activity, metabolic homeostasis, and life quality. Physical exercise is considered effective in combating muscle atrophy and sarcopenia, yet it is not feasible to elders with limited mobility. PGC-1α4, a short isoform of PGC-1α, is strongly induced in muscle under resistance training, and promotes muscle hypertrophy. In the present study, we showed that the transcriptional levels and nuclear localization of PGC1α4 was reduced during aging, accompanied with muscle dystrophic morphology, and gene programs. We thus designed NLS-PGC1α4 and ectopically express it in myotubes to enhance PGC1α4 levels and maintain its location in nucleus. Indeed, NLS-PGC1α4 overexpression increased muscle sizes in myotubes. In addition, by utilizing AAV-NLS-PGC1α4 delivery into gastrocnemius muscle, we found that it could improve sarcopenia with grip strength, muscle weights, fiber size and molecular phenotypes, and alleviate age-associated adiposity, insulin resistance and hepatic steatosis, accompanied with altered gene signatures. Mechanistically, we demonstrated that NLS-PGC-1α4 improved insulin signaling and enhanced glucose uptake in skeletal muscle. Besides, via RNA-seq analysis, we identified myokines IGF1 and METRNL as potential targets of NLS-PGC-1α4 that possibly mediate the improvement of muscle and adipose tissue functionality and systemic energy metabolism in aged mice. Moreover, we found a negative correlation between PGC1α4 and age in human skeletal muscle. Together, our results revealed that NLS-PGC1α4 overexpression improves muscle physiology and systematic energy homeostasis during aging and suggested it as a potent therapeutic strategy against sarcopenia and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Mingwei Guo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jun Zhang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Ying Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Zhenzhong Zhu
- Department of OrthopedicsSixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Caizhi Liu
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yi Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Jiangrong Chen
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and HealthEast China Normal UniversityShanghaiChina
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and HealthEast China Normal UniversityShanghaiChina
| | - Cheng Hu
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes MellitusShanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
- Department of Endocrinology and MetabolismFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghaiChina
- Chongqing Key Laboratory of Precision OpticsChongqing Institute of East China Normal UniversityChongqingChina
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life Sciences, East China Normal UniversityShanghaiChina
| |
Collapse
|
12
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Abu Shelbayeh O, Arroum T, Morris S, Busch KB. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel) 2023; 12:antiox12051075. [PMID: 37237941 DOI: 10.3390/antiox12051075] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria play a major role in ROS production and defense during their life cycle. The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation, NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
Collapse
Affiliation(s)
- Othman Abu Shelbayeh
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Tasnim Arroum
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
- Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48202, USA
| | - Silke Morris
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| | - Karin B Busch
- Institute of Integrative Cell Biology and Physiology, University of Münster, Schlossplatz 5, 48149 Münster, Germany
| |
Collapse
|
14
|
Spinelli S, Cossu V, Passalacqua M, Hansen JB, Guida L, Magnone M, Sambuceti G, Marini C, Sturla L, Zocchi E. The ABA/LANCL1/2 Hormone/Receptor System Controls Adipocyte Browning and Energy Expenditure. Int J Mol Sci 2023; 24:ijms24043489. [PMID: 36834900 PMCID: PMC9966313 DOI: 10.3390/ijms24043489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The abscisic acid (ABA)/LANC-like protein 1/2 (LANCL1/2) hormone/receptor system regulates glucose uptake and oxidation, mitochondrial respiration, and proton gradient dissipation in myocytes. Oral ABA increases glucose uptake and the transcription of adipocyte browning-related genes in rodent brown adipose tissue (BAT). The aim of this study was to investigate the role of the ABA/LANCL system in human white and brown adipocyte thermogenesis. Immortalized human white and brown preadipocytes, virally infected to overexpress or silence LANCL1/2, were differentiated in vitro with or without ABA, and transcriptional and metabolic targets critical for thermogenesis were explored. The overexpression of LANCL1/2 increases, and their combined silencing conversely reduces mitochondrial number, basal, and maximal respiration rates; proton gradient dissipation; and the transcription of uncoupling genes and of receptors for thyroid and adrenergic hormones, both in brown and in white adipocytes. The transcriptional enhancement of receptors for browning hormones also occurs in BAT from ABA-treated mice, lacking LANCL2 but overexpressing LANCL1. The signaling pathway downstream of the ABA/LANCL system includes AMPK, PGC-1α, Sirt1, and the transcription factor ERRα. The ABA/LANCL system controls human brown and "beige" adipocyte thermogenesis, acting upstream of a key signaling pathway regulating energy metabolism, mitochondrial function, and thermogenesis.
Collapse
Affiliation(s)
- Sonia Spinelli
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Vanessa Cossu
- IRCCS Ospedale Policlinico San Martino, U.O. Medicina Nucleare, 16132 Genova, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Lucrezia Guida
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Mirko Magnone
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, U.O. Medicina Nucleare, 16132 Genova, Italy
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy
| | - Cecilia Marini
- IRCCS Ospedale Policlinico San Martino, U.O. Medicina Nucleare, 16132 Genova, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054 Milan, Italy
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
| | - Elena Zocchi
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy
- Correspondence: ; Tel.: +39-01-0353-8161
| |
Collapse
|
15
|
Zargani M, Rahimi A, Mazaheri Tirani Z, Arabzadeh E, Feizolahi F. Swimming exercise and nano-l-arginine supplementation improve oxidative capacity and some autophagy-related genes in the soleus muscle of aging rats. Gene 2023; 850:146955. [PMID: 36220447 DOI: 10.1016/j.gene.2022.146955] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 01/04/2023]
Abstract
The present research aims to evaluate the effect of swimming exercise and chitosan-coated l-arginine on mitochondrial oxidation, BCL2 Interacting Protein 3 (Bnip3), NIP-like protein × (Nix), B-cell lymphoma-extra-large (Bcl-xL) and autophagy-related protein light chain 3(LC3) expression in soleus muscle of aging rats. In this experimental research, 25 male Wistar rats were assigned into five groups randomly: young, old, old + Nano l-arginine (Nano L-a), old + exercise (Ex), and old + Nano l-arginine (Nano L-a) + exercise (Ex) (n = 5 in each). They performed a swimming exercise program five days a week for six weeks. To determine the relative strength for rats before and after performing these interventions, the 1repetition maximum (1RM) test was done as a pre and post-test. The exercise program started with 20 min and after four sessions, gradually increased to 60 min and this time was maintained until the completion of the training period. l-arginine coated with chitosan nanoparticles was given to the rats in the l-arginine-supplemented group via gavage at a dosage of 500 mg/kg/day, five days a week, for six weeks. Additionally, the rats in all groups were fed a normal diet (2.87 kcal/g and 15 % energy from fat). Upon the completion of the protocol implementation, the rats were sacrificed and the soleus muscle was fixed and frozen to determine hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), gene expression analysis, levels of reactive oxygen species (ROS), and total antioxidant capacity (TAC). The results from the present research indicated that swimming exercise and Nano l-arginine improve the strength and histology of muscle tissue in old rats (p < 0.05). Aging significantly increased the expression of Nix and Bnip3 (p < 0.05) and reduced the Bcl-xL gene expression (p < 0.05). The expression of LC3 protein also increased with aging (p < 0.05). Therapeutic interventions, such as combined treatment (old + Nano L-a + Ex) for old animals, reduced the amount of this protein in soleus muscle (p < 0.05). The ROS values also showed a significant reduction only in the old + Nano L-a + Ex group compared to the old group. Moreover, TAC values show a significant decrease in the old and old + Ex groups in comparison to the young group. The use of arginine supplement, especially in nano form, along with swimming exercise seems to reduce the oxidative damage to the elderly muscle tissue, which has a positive effect on the structure and function of the soleus muscle. Since these interventions only had a significant effect on LC3 protein, further studies with more diverse measurement methods for autophagy are suggested.
Collapse
Affiliation(s)
- Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Alireza Rahimi
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Foad Feizolahi
- Clinical Care and Health Promotion Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
16
|
Pirani H, Bakhtiari A, Amiri B, Salehi OR. Beneficial Mitochondrial Biogenesis in Gastrocnemius Muscle Promoted by High-Intensity Interval Training in Elderly Female Rats. CELL JOURNAL 2023; 25:11-16. [PMID: 36680479 PMCID: PMC9868433 DOI: 10.22074/cellj.2022.557565.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Exercise can attenuate mitochondrial dysfunction caused by aging. Our study aimed to compare 12 weeks of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on the expression of mitochondria proteins [e.g., AMP-activated protein kinase (AMPK), Estrogen-related receptor alpha (ERRα), p38 mitogen-activated protein kinase (P38MAPK), and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α)] in gastrocnemius muscle of old female rats. MATERIALS AND METHODS In this experimental study, thirty six old female Wistar rats (18-month-old and 270-310 g) were divided into three groups: i. HIIT, ii. MICT, and iii. Control group (C). The HIIT protocol was performed for 12 weeks with 16-28 minutes (2 minutes training with 85-90% VO2max in high intensity and 2 minutes training with 45-75% VO2max low intensity). The MICT was performed for 30-60 minutes with the intensity of 65-70% VO2max. The gastrocnemius muscle expression of AMPK, ERRα, P38MAPK, and PGC1α proteins were determined by Western blotting. RESULTS The expression of AMPK (P=0.004), P38MAPK (P=0.003), PGC-1α (P=0.028), and ERRα (P=0.006) in HIIT was higher than C group. AMPK (P=0.03), P38MAPK (P=0.032), PGC-1α (P=0.015), and ERRα (P=0.028) in MICT was higher than the C group. Also expression of AMPK (P=0.008), P38MAPK (P=0.009), PGC-1α (P=0.020) and ERRα (P=0.014) in MICT was higher than MICT group. CONCLUSION It seems that exercise training has beneficial effects on mitochondrial biogenesis, but the HIIT training method is more effective than MICT in improving mitochondrial function in aging.
Collapse
Affiliation(s)
- Hossein Pirani
- Department of Basic Sciences, Chabahar Maritime University, Chabahar, Iran,P.O.Box: 997175649Department of Basic SciencesChabahar Maritime UniversityChabaharIran
| | - Ali Bakhtiari
- Department of Physical Education and Sport Sciences of Tehran University, Tehran, Iran
| | - Bahareh Amiri
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| | - Omid Reza Salehi
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
17
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
18
|
Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed Pharmacother 2022; 156:113876. [DOI: 10.1016/j.biopha.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
19
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
20
|
Goto-Inoue N, Morisasa M, Kimura K, Mori T, Furuichi Y, Manabe Y, Fujii NL. Mass spectrometry imaging reveals local metabolic changes in skeletal muscle due to chronic training. Biosci Biotechnol Biochem 2022; 86:730-738. [PMID: 35285857 DOI: 10.1093/bbb/zbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022]
Abstract
Muscle atrophy is a major health problem that needs effective prevention and treatment approaches. Chronic exercise, an effective treatment strategy for atrophy, promotes muscle hypertrophy, which leads to dynamic metabolic changes; however, the metabolic changes vary among myofiber types. To investigate local metabolic changes due to chronic exercise, we utilized comprehensive proteome and mass spectrometry (MS) imaging analyses. Our training model exhibited hypertrophic features only in glycolytic myofibers. The proteome analyses demonstrated that exercise promoted anabolic pathways, such as protein synthesis, and significant changes in lipid metabolism, but not in glucose metabolism. Furthermore, the fundamental energy sources, glycogen, neutral lipids, and ATP, were sensitive to exercise, and the changes in these sources differed between glycolytic and oxidative myofibers. MS imaging revealed that the lipid composition differs among myofibers; arachidonic acid might be an effective target for promoting lipid metabolism during muscle hypertrophy in oxidative myofibers.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Mizuki Morisasa
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Keisuke Kimura
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Yasuro Furuichi
- Health Promotion Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo, Japan
| | - Yasuko Manabe
- Health Promotion Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo, Japan
| | - Nobuharu L Fujii
- Health Promotion Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo, Japan
| |
Collapse
|
21
|
Wang CY, Wang J, Cao J, Xu J, Wu RM, Xu XL. Activating PGC-1α-mediated signaling cascades in the aorta contributes to the amelioration of vascular senescence and atherosclerosis by 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154017. [PMID: 35276590 DOI: 10.1016/j.phymed.2022.154017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 2,3,4',5-tetrahydroxystilbene-2-O-β-d-glycoside (TSG), the main active polyphenolic component of Polygonum multiflorum, possesses many pharmacological activities. Its anti-aging effect influences a variety of tissues with diverse mechanisms. However, the effectiveness and exact mechanisms of TSG against vascular senescence in atherosclerosis remain unclear. The present study is aimed to investigate the effects of TSG against vascular senescence in atherosclerosis both in vivo and in vitro, and the possible underlying mechanisms focusing on aortic peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-mediated signaling cascades which have never been studied. METHODS In vivo, 12-mo-old male LDLr-/- mice were randomly separated into control, high-fat diet (HFD), and TSG -treatment groups. At the end of the 12 weeks, the blood samples and aorta tissues of mice were collected for further analysis. In vitro, to mimic the condition of endothelial senescence in hyperlipidemic mice, human aortic endothelial cells (HAECs) were incubated with oxidized low-density lipoprotein (ox-LDL) to induce senescence. RESULTS TSG administration improved lipid profiles, ameliorated HFD-exacerbated vascular senescence and atherosclerosis. The protective effect of TSG via inhibiting telomere malfunction, oxidative stress, and mitochondrial damage was found both in vivo and in vitro. Notably, TSG administration increased aortic PGC-1α mRNA and protein expression along with the regulation of its targeted genes TERT, NRF1, TFAM, Mn-SOD, and catalase. Further, by using PGC-1α siRNA in ox-LDL-treated HAECs, it is proved that TSG reduced endothelial senescence, telomere malfunction, oxidative stress, and mitochondrial damage at least partly through activating the PGC-1α pathway. CONCLUSIONS These results provide new evidence for TSG in the treatment of atherosclerosis and the activation of aortic PGC-1α is involved in its beneficial effects.
Collapse
Affiliation(s)
- Chun Yan Wang
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Jie Wang
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Ji Cao
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Jin Xu
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Ruo Man Wu
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China
| | - Xiao Le Xu
- Department of Pharmacology, Division of Medicine, Nantong University Pharmacy College, 19 Qi Xiu Road, Nantong 226001, China.
| |
Collapse
|
22
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Rivera ME, Rivera CN, Vaughan RA. Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance. Endocrine 2022; 76:18-28. [PMID: 34811646 DOI: 10.1007/s12020-021-02939-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Branched-chain amino acids (BCAA) have been shown to enhance several cellular signaling pathways including protein synthesis and mitochondrial biogenesis, yet population data demonstrate a correlation between circulating BCAA and severity of insulin resistance which has been hypothesized to be, in part, a byproduct of BCAA inhibition of mitochondrial function. The purpose of this study is to examine the effect of a BCAA mixture on muscle metabolism and related gene expression in vitro. METHODS C2C12 myotubes were treated with a BCAA mixture containing leucine:isoleucine:valine at a ratio of 2:1:1 at 0.2, 2, or 20 mM (based on leucine content) for 6 days. qRT-PCR was used to measure metabolic gene expression. Oxygen consumption and extracellular acidification were used to assess mitochondrial and glycolytic metabolism, respectively. Mitochondrial content was determined via mitochondrial-specific staining. RESULTS Despite significantly elevated mitochondrial staining, 6-day BCAA treatment reduced basal mitochondrial metabolism at a supraphysiological concentration (20 mM) in both insulin sensitive and resistant cells. Peak mitochondrial capacity was also reduced in insulin-resistant (but not insulin sensitive) cells. Conversely, basal glycolytic metabolism was elevated following 20 mM BCAA treatment, regardless of insulin resistance. In addition, insulin-resistant cells treated with 20 mM BCAA exhibited reduced gene expression of Ppargc1a, Cytc, Atp5b, Glut4, and several glycolytic enzymes versus insulin sensitive cells treated with 20 mM BCAA. CONCLUSIONS Collectively, these findings suggest BCAA at supraphysiologically high levels may negatively alter mitochondrial metabolism, and concurrent insulin resistance may also diminish peak mitochondrial capacity, as well as impede molecular adaptations that support a transition to a glycolytic preference/compensation.
Collapse
Affiliation(s)
- Madison E Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Caroline N Rivera
- Department of Exercise Science, High Point University, High Point, NC, USA
| | - Roger A Vaughan
- Department of Exercise Science, High Point University, High Point, NC, USA.
| |
Collapse
|
24
|
McCarty MF. Nutraceutical and Dietary Strategies for Up-Regulating Macroautophagy. Int J Mol Sci 2022; 23:2054. [PMID: 35216170 PMCID: PMC8875972 DOI: 10.3390/ijms23042054] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Macroautophagy is a "cell cleansing" process that rids cells of protein aggregates and damaged organelles that may contribute to disease pathogenesis and the dysfunctions associated with aging. Measures which boost longevity and health span in rodents typically up-regulate macroautophagy, and it has often been suggested that safe strategies which can promote this process in humans may contribute to healthful aging. The kinase ULK1 serves as a trigger for autophagy initiation, and the transcription factors TFEB, FOXO1, ATF4 and CHOP promote expression of a number of proteins which mediate macroautophagy. Nutraceutical or dietary measures which stimulate AMPK, SIRT1, eIF5A, and that diminish the activities of AKT and mTORC1, can be expected to boost the activities of these pro-autophagic factors. The activity of AMPK can be stimulated with the phytochemical berberine. SIRT1 activation may be achieved with a range of agents, including ferulic acid, melatonin, urolithin A, N1-methylnicotinamide, nicotinamide riboside, and glucosamine; correction of ubiquinone deficiency may also be useful in this regard, as may dietary strategies such as time-restricted feeding or intermittent fasting. In the context of an age-related decrease in cellular polyamine levels, provision of exogenous spermidine can boost the hypusination reaction required for the appropriate post-translational modification of eIF5A. Low-protein plant-based diets could be expected to increase ATF4 and CHOP expression, while diminishing IGF-I-mediated activation of AKT and mTORC1. Hence, practical strategies for protecting health by up-regulating macroautophagy may be feasible.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, San Diego, CA 92109, USA
| |
Collapse
|
25
|
Spinelli S, Begani G, Guida L, Magnone M, Galante D, D'Arrigo C, Scotti C, Iamele L, De Jonge H, Zocchi E, Sturla L. LANCL1 binds abscisic acid and stimulates glucose transport and mitochondrial respiration in muscle cells via the AMPK/PGC-1α/Sirt1 pathway. Mol Metab 2021; 53:101263. [PMID: 34098144 PMCID: PMC8237609 DOI: 10.1016/j.molmet.2021.101263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Abscisic acid (ABA) is a plant hormone also present and active in animals. In mammals, ABA regulates blood glucose levels by stimulating insulin-independent glucose uptake and metabolism in adipocytes and myocytes through its receptor LANCL2. The objective of this study was to investigate whether another member of the LANCL protein family, LANCL1, also behaves as an ABA receptor and, if so, which functional effects are mediated by LANCL1. METHODS ABA binding to human recombinant LANCL1 was explored by equilibrium-binding experiments with [3H]ABA, circular dichroism, and surface plasmon resonance. Rat L6 myoblasts overexpressing either LANCL1 or LANCL2, or silenced for the expression of both proteins, were used to investigate the basal and ABA-stimulated transport of a fluorescent glucose analog (NBDG) and the signaling pathway downstream of the LANCL proteins using Western blot and qPCR analysis. Finally, glucose tolerance and sensitivity to ABA were compared in LANCL2-/- and wild-type (WT) siblings. RESULTS Human recombinant LANCL1 binds ABA with a Kd between 1 and 10 μM, depending on the assay (i.e., in a concentration range that lies between the low and high-affinity ABA binding sites of LANCL2). In L6 myoblasts, LANCL1 and LANCL2 similarly, i) stimulate both basal and ABA-triggered NBDG uptake (4-fold), ii) activate the transcription and protein expression of the glucose transporters GLUT4 and GLUT1 (4-6-fold) and the signaling proteins AMPK/PGC-1α/Sirt1 (2-fold), iii) stimulate mitochondrial respiration (5-fold) and the expression of the skeletal muscle (SM) uncoupling proteins sarcolipin (3-fold) and UCP3 (12-fold). LANCL2-/- mice have a reduced glucose tolerance compared to WT. They spontaneously overexpress LANCL1 in the SM and respond to chronic ABA treatment (1 μg/kg body weight/day) with an improved glycemia response to glucose load and an increased SM transcription of GLUT4 and GLUT1 (20-fold) of the AMPK/PGC-1α/Sirt1 pathway and sarcolipin, UCP3, and NAMPT (4- to 6-fold). CONCLUSIONS LANCL1 behaves as an ABA receptor with a somewhat lower affinity for ABA than LANCL2 but with overlapping effector functions: stimulating glucose uptake and the expression of muscle glucose transporters and mitochondrial uncoupling and respiration via the AMPK/PGC-1α/Sirt1 pathway. Receptor redundancy may have been advantageous in animal evolution, given the role of the ABA/LANCL system in the insulin-independent stimulation of cell glucose uptake and energy metabolism.
Collapse
Affiliation(s)
- Sonia Spinelli
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Giulia Begani
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Lucrezia Guida
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Mirko Magnone
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| | - Denise Galante
- Institute for Macromolecular Studies, National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Cristina D'Arrigo
- Institute for Macromolecular Studies, National Research Council, Via De Marini 6, 16149, Genova, Italy
| | - Claudia Scotti
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy; Ardis Srl, Via Taramelli 24, 27100, Pavia, Italy
| | - Luisa Iamele
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy; Ardis Srl, Via Taramelli 24, 27100, Pavia, Italy
| | - Hugo De Jonge
- Department of Molecular Medicine, Immunology and General Pathology Unit, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy; Ardis Srl, Via Taramelli 24, 27100, Pavia, Italy
| | - Elena Zocchi
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy.
| | - Laura Sturla
- Department of Experimental Medicine, Section of Biochemistry, School of Medical and Pharmaceutical Sciences, University of Genova, Viale Benedetto XV 1, 16132, Genova, Italy
| |
Collapse
|
26
|
Petrocelli JJ, Mahmassani ZS, Fix DK, Montgomery JA, Reidy PT, McKenzie AI, de Hart NM, Ferrara PJ, Kelley JJ, Eshima H, Funai K, Drummond MJ. Metformin and leucine increase satellite cells and collagen remodeling during disuse and recovery in aged muscle. FASEB J 2021; 35:e21862. [PMID: 34416035 DOI: 10.1096/fj.202100883r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/11/2022]
Abstract
Loss of muscle mass and strength after disuse followed by impaired muscle recovery commonly occurs with aging. Metformin (MET) and leucine (LEU) individually have shown positive effects in skeletal muscle during atrophy conditions but have not been evaluated in combination nor tested as a remedy to enhance muscle recovery following disuse atrophy in aging. The purpose of this study was to determine if a dual treatment of metformin and leucine (MET + LEU) would prevent disuse-induced atrophy and/or promote muscle recovery in aged mice and if these muscle responses correspond to changes in satellite cells and collagen remodeling. Aged mice (22-24 months) underwent 14 days of hindlimb unloading (HU) followed by 7 or 14 days of reloading (7 or 14 days RL). MET, LEU, or MET + LEU was administered via drinking water and were compared to Vehicle (standard drinking water) and ambulatory baseline. We observed that during HU, MET + LEU resolved whole body grip strength and soleus muscle specific force decrements caused by HU. Gastrocnemius satellite cell abundance was increased with MET + LEU treatment but did not alter muscle size during disuse or recovery conditions. Moreover, MET + LEU treatment alleviated gastrocnemius collagen accumulation caused by HU and increased collagen turnover during 7 and 14 days RL driven by a decrease in collagen IV content. Transcriptional pathway analysis revealed that MET + LEU altered muscle hallmark pathways related to inflammation and myogenesis during HU. Together, the dual treatment of MET and LEU was able to increase muscle function, satellite cell content, and reduce collagen accumulation, thus improving muscle quality during disuse and recovery in aging.
Collapse
Affiliation(s)
- Jonathan J Petrocelli
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Dennis K Fix
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, USA
| | - Alec I McKenzie
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Naomi M de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Kelley
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
27
|
Voluntary Wheel Running Exercise Improves Aging-Induced Sarcopenia via Activation of Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α/Fibronectin Type III Domain-Containing Protein 5/Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway. Int Neurourol J 2021; 25:S27-34. [PMID: 34053208 PMCID: PMC8171240 DOI: 10.5213/inj.2142170.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1979] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose In this study, the protective effect of voluntary wheel running exercise on muscle loss and muscle weakness in gastrocnemius of old rats was investigated. The association of voluntary wheel exercise with the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5)/adenosine monophosphate- activated protein kinase (AMPK) signaling pathway and vascular endothelial growth factor (VEGF) expression was also evaluated. Methods Six-month-old and 22-month-old male rats were used for this experiment. The rats in voluntary wheel running exercise groups were performed wheel running for 2 months. Weight bearing test for walking strength, rotarod test for motor coordination and balance, hematoxylin and eosin (H&E) staining for histological changes in the muscle tissues, Western blot analysis for PGC-1α, FNDC5, AMPK, immunofluorescence for VEGF were conducted. Results Decreased muscle mass, strength, and coordination due to aging were associated with a decrease in the PGC-1α/FNDC5/AMPK signaling pathway in the gastrocnemius. Voluntary wheel running exercise enhanced VEGF expression by activating the PGC-1α/FNDC5/AMPK signaling pathway, then increased muscle mass, strength, and coordination. Conclusions It has been suggested that voluntary wheel running exercise alleviates symptoms of urological diseases that are difficult to treat. Wheel running exercise is a good therapeutic strategy to prevent or treat aging-related sarcopenia.
Collapse
|
28
|
Wei TT, Feng YK, Cao JH, Li JH, Yuan SL, Ding Y, Chai YR. Dosage effects of resveratrol on thymus involution in D-galactose-treated mice. J Food Biochem 2021; 45:e13709. [PMID: 33778958 DOI: 10.1111/jfbc.13709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
The thymus regulates a specific microenvironment for the growth and maturation of naive T cells. Involution of immune function was an important factor during body aging. Preventing the senescence of immune organs has become a major medical issue. Resveratrol (RSV) has been proved to delay the aging of many organs including the thymus. However, the underlying mechanism remains indefinite and the dosages of RSV on thymus involution need to be further clarified. In the current study, the senescence-accelerated mice were produced using d-galactose for two months. RSV at different dosages (25, 50, 100 mg kg-1 day-1 ) was then administered. The alteration of the thymic morphological structure was observed. It showed that three dosages of RSV significantly decreased cellular senescence of the thymus and no dosage difference was detected. For cellular proliferation and apoptosis of the thymus, 50 and 25 mg/kg per day of RSV displayed the best effects on cellular proliferation and apoptosis in the thymus, respectively. Furthermore, 50 mg/kg per day of RSV increased the expression of FoxN1 both at transcription and translation levels. These findings indicated that RSV could delay thymus atrophy in a dosage-dependent pattern and FoxN1 might involve in the beneficial mechanism of RSV, which was of great significance for the enhancement of thymic health and organic immunity. PRACTICAL APPLICATIONS: Resveratrol has been proved to delay aging of many organs including of thymus. In the present study, we explored the dosage of resveratrol on thymus involution and the expression of transcription factors forkhead box protein N1 (FoxN1) in the senescenceaccelerated mice induced by D-galactose. The results indicated that resveratrol could delay thymus atrophy in a dosage-dependent pattern within a certain dose range, and higher RSV concentration may have drug toxicity, which suggests that the dosage of RSV requires attention, And FoxN1 might involve in the beneficial mechanism of resveratrol supplement, which was of great significance to explore the mechanism for the enhancement of thymus immunity.
Collapse
Affiliation(s)
- Ting-Ting Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Scientific and Technical Institute of Reproductive Health, Zhengzhou, China
| | - Yuan-Kang Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jia-Hui Cao
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie-Han Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shu-Liang Yuan
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|