1
|
Souza Costa DD, Cajas RA, Leal CM, Carvalho LSAD, Souza LCD, Fukui-Silva L, Moraes JD, Da Silva Filho AA. Efficacy of spilanthol and Acmella oleracea (L.) R. K. Jansen (Asteraceae) extract against Schistosoma mansoni infection. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119028. [PMID: 39489364 DOI: 10.1016/j.jep.2024.119028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea (L.) R. K. Jansen, commonly referred to as "Jambu", is a valuable medicinal plant native to the Amazon regions. Inflorescences of A. oleracea is utilized as local anesthetic properties and for its insecticidal, antiparasitic, and anthelmintic attributes. AIMS OF THIS STUDY This study aimed to evaluate the in vitro and in vivo antiparasitic properties of A. oleracea extract and spilanthol (SPL) against Schistosoma mansoni. MATERIALS AND METHODS The ethanolic extract of A. oleracea inflorescences (AoE) was prepared, analyzed by HPLC-DAD, and characterized by UHPLC-HRMS/MS. SPL was isolated from AoE by chromatographic fractionation. The antischistosomal properties of AoE and SPL were evaluated in vitro against adult schistosomes and in preclinical assays using murine models of patent S. mansoni infection. RESULTS Through UHPLC-HRMS/MS analysis, 14 alkamides were annotated in AoE. HPLC-DAD analysis of AoE revealed a peak with a substantial relative area of ∼85%, which was isolated and identified as SPL. AoE and SPL caused mortality of adult schistosomes ex vivo, showing EC50 values of 32.6 μg/mL and 27.8 μM, respectively, without affected Vero cells or Caenorhabditis elegans. In preclinical studies, the oral administration (400 mg/kg) of AoE and SPL resulted in significant reductions in worm burden of 28% and ∼42%, respectively. Additionally, SPL exhibits remarkable effects on oogram, decreasing egg burden and the number of immature eggs by over 80%, while also promoting significant reductions in hepato- and splenomegaly. CONCLUSIONS The research underscores the antischistosomal activity of A. oleracea highlighting the potential of SPL as a lead for the development of new schistosomicidal drugs and encouraging further studies to validate the traditional anthelmintic use of A. oleracea inflorescences.
Collapse
Affiliation(s)
- Danilo de Souza Costa
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Rayssa A Cajas
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Carla Monteiro Leal
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lara S Aleixo de Carvalho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lara Cruz de Souza
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| | - Lucas Fukui-Silva
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil.
| | - Josué de Moraes
- Núcleo de Pesquisa Em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, 07023-070, Brazil; Núcleo de Pesquisa Em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, São Paulo, SP, 08230-030, Brazil.
| | - Ademar A Da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, Juiz de Fora, MG, 36036-900, Brazil.
| |
Collapse
|
2
|
Fajardo JB, Vianna MH, Polo AB, Cordeiro Comitre MR, de Oliveira DA, Ferreira TG, de Oliveira Lemos AS, Souza TDF, Campos LM, de Lima Paula P, Barbosa AF, Geraldo de Carvalho M, Machado Resende Guedes MC, Coimbra ES, da Costa Macedo G, Tavares GD, Barradas TN, Fabri RL. Insights into the bioactive potential of the Amazonian species Acmella oleracea leaves extract: A focus on wound healing applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118866. [PMID: 39357584 DOI: 10.1016/j.jep.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acmella oleracea is traditionally used by Amazonian folks to treat skin and mucous wounds, influenza, cough, toothache, bacterial and fungal infections. Its phytoconstituents, such as alkylamides, phenolic compounds, and terpenes, are reported to produce therapeutic effects, which justify the medicinal use of A. oleracea extracts. However, the scientific evidence supporting the application A. oleracea bioactive products for wound treatment of remains unexplored so far. OBJECTIVE This work aimed to characterize the phytochemical composition of methanolic extract of A. oleracea leaves (AOM) and to investigate their antioxidant, anti-inflammatory, antimicrobial and healing potential focusing on its application for wound healing. MATERIAL AND METHODS The dried leaves from A. oleracea submitted to static maceration in methanol for 40 days. The phytochemical constitution of AOM was analyzed based on the total phenolic dosage method and by UFLC-QTOF-MS analysis. Antioxidant activity was assessed by DPPH and NO scavenging activities, as well as MDA formation, evaluation of ROS levels, and phosphomolybdenum assays. In vitro anti-inflammatory activities were assessed by reduction of NO, IL-6, and TNF-α production and accumulation of LDs in peritoneal macrophages cells. Antimicrobial activity was evaluated by determining MIC and MBC/MFC values against P. aeruginosa, E. coli, S. epidermidis, S. aureus and C. albicans, bacterial killing assay, and biofilm adhesion assessment. In vitro wound healing activity was determined by means of the scratch assay with L929 fibroblasts. RESULTS Vanillic acid, quercetin, and seven other alkamides, including spilanthol, were detected in the UFLC-QTOF-MS spectrum of AOM. Regarding the biocompatibility, AOM did not induce cytotoxicity in L929 fibroblasts and murine macrophages. The strong anti-inflammatory activity was evidenced by the fact that AOM reduced the cellular production of inflammatory mediators IL-6, TNF-α, NO, and LDs in macrophages by 100%, 96.66 ± 1.95%, 99.21 ± 3.82%, and 67.51 ± 0.72%, respectively. The antioxidant effects were confirmed, since AOM showed IC50 values of 44.50 ± 4.46 and 127.60 ± 14.42 μg/mL in the DPPH and NO radical inhibition assays, respectively. Additionally, AOM phosphomolybdenium reducing power was 63.56 ± 13.01 (RAA% of quercetin) and 104.01 ± 21.29 (RAA% of rutin). Finally, in the MDA quantification assay, AOM showed 63,69 ± 3.47% of lipid peroxidation inhibition. It was also observed that the production of ROS decreased by 69.03 ± 3.85%. The MIC values of AOM ranged from 1000 to 125 μg/mL. Adhesion of S. aureus, P. Aeruginosa, and mixed biofilms was significantly reduced by 44.71 ± 4.44%, 95.50 ± 6.37 %, and 51.83 ± 1.50%, respectively. AOM also significantly inhibited the growth of S. aureus (77.17 ± 1.50 %) and P. aeruginosa (62.36 ± 1.01%). Furthermore, AOM significantly enhanced the in vitro migration of L929 fibroblasts by 97.86 ± 0.82% compared to the control (P < 0.05). CONCLUSIONS This study is the first to report total antioxidant capacity and intracellular LD reduction by AOM. The results clearly demonstrated that AOM exerts potent anti-inflammatory, antioxidant, antimicrobial, and wound healing effects, encouraging its further investigation and promising application in wound treatment.
Collapse
Affiliation(s)
- Júlia Bertolini Fajardo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Hauck Vianna
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ana Barbara Polo
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariane Rocha Cordeiro Comitre
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Débora Almeida de Oliveira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thayná Gomes Ferreira
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Ari Sérgio de Oliveira Lemos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Thalita de Freitas Souza
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Lara Melo Campos
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Priscila de Lima Paula
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Alan Franco Barbosa
- Federal Institute of Education, Science and Technology of Mato Grosso, Sorriso, MG, Brazil
| | - Mário Geraldo de Carvalho
- Department of Chemistry, Institute of Exact Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Maria Clara Machado Resende Guedes
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Elaine Soares Coimbra
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Gilson da Costa Macedo
- Department of Parasitology, Microbiology, and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | - Rodrigo Luiz Fabri
- Laboratory of Bioactive Natural Products, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Wang Z, Li L, Han J, Bai X, Wei B, Fan R. Combined metabolomics and bioactivity assays kernelby-productsof two native Chinese cherry species: The sources of bioactive nutraceutical compounds. Food Chem X 2024; 23:101625. [PMID: 39100251 PMCID: PMC11296007 DOI: 10.1016/j.fochx.2024.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Cherry kernels are a by-product of cherries that are usually discarded, leading to waste and pollution. In this study, the chemical composition of 21 batches of cherry kernels from two different cherry species was analyzed using untargeted metabolomics. The in vitro antioxidant activity, cellular antioxidant activity, and antiproliferative activity of these kernel extracts were also determined, and a correlation analysis was conducted between differential compounds and biological activity. A total of 49 differential compounds were screened. The kernels of Prunus tomentosa were found to have significantly higher total phenol, total flavonoid content, and biological activity than those of Prunus pseudocerasus (P < 0.05). Correlation analysis showed that flavonoids had the greatest contribution to biological activity. The study suggests that both species of cherry kernel, particularly Prunus tomentosa, could be a potential source of bioactive compounds that could be used in the pharmaceutical, cosmetic, and food industries.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Lin Li
- Developing Pediatric department of Shengjing Hospital, China Medical University,No.36Sanhao Street, Shenyang 110000, China
| | - Jiaqi Han
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Xinyu Bai
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| | - Binbin Wei
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang 110122, China
| | - Ronghua Fan
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, Shenyang 110034, China
| |
Collapse
|
4
|
Kelly MS, Dahl EM, Jeries LM, Sysoeva TA, Karstens L. Characterization of pediatric urinary microbiome at species-level resolution indicates variation due to sex, age, and urologic history. J Pediatr Urol 2024; 20:884-893. [PMID: 38862292 DOI: 10.1016/j.jpurol.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Recently, associations between recurrent urinary tract infections (UTI) and the urinary microbiome (urobiome) composition have been identified in adults. However, little is known about the urobiome in children. We aimed to characterize the urobiome of children with species-level resolution and to identify associations based on UTI history. STUDY DESIGN Fifty-four children (31 females and 21 males) from 3 months to 11 years of age participated in the study. Catheterized urine specimens were obtained from children undergoing a clinically indicated voiding cystourethrogram. To improve the analysis of the pediatric urobiome, we used a novel protocol using filters to collect biomass from the urine coupled with synthetic long-read 16S rRNA gene sequencing to obtain culture-independent species-level resolution data. We tested for differences in microbial composition between sex and history of UTIs using non-parametric tests on individual bacteria and alpha diversity measures. RESULTS We detected bacteria in 61% of samples from 54 children (mean age 40.7 months, 57% females). Similar to adults, urobiomes were distinct across individuals and varied by sex. The urobiome of females showed higher diversity as measured by the inverse Simpson and Shannon indices but not the Pielou evenness index or number of observed species (p = 0.05, p = 0.04, p = 0.35, and p = 0.11, respectively). Additionally, several species were significantly overrepresented in females compared to males, including those from the genera Anaerococcus, Prevotella, and Schaalia (p = 0.03, 0.04, and 0.02, respectively). Urobiome diversity increased with age, driven mainly by males. Comparison of children with a history of 1, 2, or 3+ UTIs revealed that urobiome diversity significantly decreases in the group that experienced 3+ UTIs as measured by the Simpson, Shannon, and Pielou indices (p = 0.03, p = 0.05, p = 0.01). Several bacteria were also found to be reduced in abundance. DISCUSSION In this study, we confirm that urobiome can be identified from catheter-collected urine specimens in infants as young as 3 months, providing further evidence that the pediatric bladder is not sterile. In addition to confirming variations in the urobiome related to sex, we identify age-related changes in children under 5 years of age, which conflicts with some prior research. We additionally identify associations with a history of UTIs. CONCLUSIONS Our study provides additional evidence that the pediatric urobiome exists. The bacteria in the bladder of children appear to be affected by early urologic events and warrants future research.
Collapse
Affiliation(s)
- Maryellen S Kelly
- Division of Healthcare of Women and Children, School of Nursing, Duke University, 307 Trent Drive, Durham, NC 27710, USA; Department of Urology, Duke University Hospital, 40 Duke Medicine Cir Clinic 1G, Durham, NC 27710, USA
| | - Erin M Dahl
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Layla M Jeries
- Department of Biological Sciences, University of Alabama Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Tatyana A Sysoeva
- Department of Biological Sciences, University of Alabama Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Miranda CTCDS, Soares SD, de Oliveira WQ, Lima ADS, Neri Numa IA, Pastore GM. Unconventional Edible Plants of the Amazon: Bioactive Compounds, Health Benefits, Challenges, and Future Trends. Foods 2024; 13:2925. [PMID: 39335854 PMCID: PMC11431067 DOI: 10.3390/foods13182925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The pursuit of an improved quality of life is a major trend in the food market. This is driving the reformulation of the industry's product portfolio, with the aim of providing nourishment while also contributing to beneficial health metabolic processes. In this context, the use of local biodiversity and the recovery of the traditional knowledge associated with the consumption of vegetables that grow spontaneously in nature emerge as more sustainable and nutritionally adequate concepts. The Amazon region is known for its abundant biodiversity, housing numerous unconventional food plants whose nutritional and biological properties remain unknown due to a lack of research. Among the different species are Xanthosoma sagittifolium, Acmella oleracea, Talinum triangulare, Pereskia bleo, Bidens bipinnata, and Costus spiralis. These species contain bioactive compounds such as apigenin, syringic acid, spilanthol, and lutein, which provide various health benefits. There are few reports on the biological effects, nutritional composition, bioactive compounds, and market prospects for these species. Therefore, this review provides an overview of their nutritional contribution, bioactive compounds, health benefits, and current market, as well as the use of new technologies that can contribute to the development of functional products/ingredients derived from them.
Collapse
Affiliation(s)
- Cynthia Tereza Corrêa da Silva Miranda
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas—UFAM, Manaus 69080-900, AM, Brazil
| | - Stephanie Dias Soares
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Williara Queiroz de Oliveira
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Adriana de Souza Lima
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
- Faculty of Tourism and Hospitality, Federal Fluminense University—UFF, Gragoatá Campus, Niterói 24210-200, RJ, Brazil
| | - Iramaia Angélica Neri Numa
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| | - Gláucia Maria Pastore
- Laboratory of Bioflavours and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil; (S.D.S.); (W.Q.d.O.); (A.d.S.L.); (I.A.N.N.)
| |
Collapse
|
6
|
Jeye BM. Use of Buzz Buttons to Illustrate Taste Perception Principles in a Sensation and Perception Laboratory Exercise. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2024; 22:A177-A184. [PMID: 39355669 PMCID: PMC11441431 DOI: 10.59390/bclx3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 10/03/2024]
Abstract
The buzz button is an edible flower that induces a tingling, electric sensation in the mouth and alters the perception of different flavors. The buzz button's taste-altering effect is thought to be caused by the bioactive compound spilanthol. The present article details a laboratory exercise that explores taste perception principles using the buzz button in an undergraduate Sensation and Perception course. A detailed step-by-step guide for the laboratory exercise is included along with analyzed student results. Students first sampled various food items that spanned the different taste sensations (i.e., salty, sweet, sour and bitter) and then rated their perceived taste intensity on a scale from one (not intense) to ten (very intense). Next, students consumed a buzz button and resampled each food item as well as re-rated their perceived taste intensities. It was found that students' perceived taste intensities for sour items and sweet items were decreased after consuming the buzz buttons. Additionally, students also completed a post-activity survey in which they indicated that this was an interesting and enjoyable exercise. This highlights the value of this particular hands-on demonstration in teaching about the connection between taste and tactile perception.
Collapse
Affiliation(s)
- Brittany M Jeye
- Psychology Department, Worcester State University, Worcester, MA 01602
| |
Collapse
|
7
|
Paolla Raimundo E Silva J, Silva Vasconcelos PG, Raimundo E Silva JP, Murata RM, Costa EMMDB. Cytotoxicity, pro-inflammatory cytokines gene expression and antioxidant activity of Acmella oleracea extract treated with active charcoal. Nat Prod Res 2024:1-5. [PMID: 39205624 DOI: 10.1080/14786419.2024.2398214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
This work reports for the first time the evaluation of the cytotoxicity and inflammatory potential of Acmella oleracea extract treated with active charcoal in THP-1 monocytes. A. oleracea flower ethanolic extract was treated with 4% activated charcoal (TCEE). Later, THP-1 human monocyte cytotoxicity assay was performed using resazurin fluorometric method. Gene expression of inflammatory cytokines in THP-1 cells were evaluated through RT-PCR by ΔΔCt method using IL-1β, IL-6, IL-8, and TNF genes primers. Finally, antioxidant assay was carried out with DPPH radical scavenging method. TCEE had a LD50 of 592.5 µg/mL and did not induce pro-inflammatory gene expression in THP-1 cells after 6 h of treatment. Lastly, TCEE (AA% of 69.4 ± 1.4%) and CEE (AA% of 63.0 ± 0.9%) showed moderate antioxidant activity. A. oleracea treated flower extract showed low cytotoxicity in THP-1 monocytes and does not induce inflammation in THP-1 cells, in addition to presenting antioxidant potential.
Collapse
Affiliation(s)
| | | | - Joanda Paolla Raimundo E Silva
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Ramiro Mendonça Murata
- School of Dental Medicine -Foundational Sciences, East Carolina University -ECU, Greenville, North Carolina, USA
| | | |
Collapse
|
8
|
Kelly MS, Dahl EM, Jeries L, Sysoeva TA, Karstens L. Characterization of pediatric urinary microbiome at species-level resolution indicates variation due to sex, age, and urologic history. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307309. [PMID: 38798594 PMCID: PMC11118648 DOI: 10.1101/2024.05.16.24307309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Recently, associations between recurrent urinary tract infections (UTI) and the urinary microbiome (urobiome) composition have been identified in adults. However, little is known about the urobiome in children. We aimed to characterize the urobiome of children with species-level resolution and to identify associations based on UTI history. Study design Fifty-four children (31 females and 21 males) from 3 months to 5 years of age participated in the study. Catheterized urine specimens were obtained from children undergoing a clinically indicated voiding cystourethrogram. To improve the analysis of the pediatric urobiome, we used a novel protocol using filters to collect biomass from the urine coupled with synthetic long-read 16S rRNA gene sequencing to obtain culture-independent species-level resolution data. We tested for differences in microbial composition between sex and history of UTIs using non-parametric tests on individual bacteria and alpha diversity measures. Results We detected bacteria in 61% of samples from 54 children (mean age 40.7 months, 57% females). Similar to adults, urobiomes were distinct across individuals and varied by sex. The urobiome of females showed higher diversity as measured by the inverse Simpson and Shannon indices but not the Pielou evenness index or number of observed species (p = 0.05, p=0.04, p = 0.35, and p = 0.11, respectively). Additionally, several species were significantly overrepresented in females compared to males, including those from the genera Anaerococcus, Prevotella, and Schaalia (p = 0.03, 0.04, and 0.02, respectively). Urobiome diversity increased with age, driven mainly by males. Comparison of children with a history of 1, 2, or 3+ UTIs revealed that urobiome diversity significantly decreases in the group that experienced 3+ UTIs as measured by the Simpson, Shannon, and Pielou indices (p = 0.03, p = 0.05, p = 0.01). Several bacteria were also found to be reduced in abundance. Discussion In this study, we confirm that urobiome can be identified from catheter-collected urine specimens in infants as young as 3 months, providing further evidence that the pediatric bladder is not sterile. In addition to confirming variations in the urobiome related to sex, we identify age-related changes in children under 5 years of age, which conflicts with some prior research. We additionally identify associations with a history of UTIs. Conclusions Our study provides additional evidence that the pediatric urobiome exists. The bacteria in the bladder of children appear to be affected by early urologic events and warrants future research.
Collapse
Affiliation(s)
- Maryellen S Kelly
- Division of Healthcare of Women and Children, School of Nursing, Duke University, 307 Trent Drive, Durham, NC 27710, USA
- Department of Urology, Duke University Hospital, 40 Duke Medicine Cir Clinic 1G, Durham, NC 27710, USA
| | - Erin M Dahl
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Layla Jeries
- Department of Biological Sciences, University Of Alabama Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Tatyana A Sysoeva
- Department of Biological Sciences, University Of Alabama Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| |
Collapse
|
9
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
10
|
Tienoue Fotso HM, Mbong Angie MA, Ntentie FR, Makamwe I, Edoun Ebouel FL, Kenjing Ndansack E, Julius Oben E. Aqueous Extract of Leaves and Flowers of Acmella caulirhiza Reduces the Proliferation of Cancer Cells by Underexpressing Some Genes and Activating Caspase-3. Biochem Res Int 2024; 2024:3293305. [PMID: 38371392 PMCID: PMC10874292 DOI: 10.1155/2024/3293305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
The increasing prevalence of cancers and the multiple side effects of cancer treatments have led researchers to constantly search for plants containing bioactive compounds with cell death properties. This work aimed at evaluating the antiproliferative effect of an Acmella caulirhiza extract. After evaluation of the in vitro antioxidant potential of the three extracts of Acmella caulirhiza (aqueous (AE-Ac), hydroethanolic (HEE-Ac), and ethanolic (EE-Ac)) through the scavenging of DPPH● and NO● radicals, the extract with the best antioxidant activity was selected for bioactive compound assessment and antiproliferative tests. Subsequently, the cytotoxic activity was evaluated on the viability of breast (MCF-7), brain (CT2A, SB-28, and GL-261), colon (MC-38), and skin (YUMM 1.7 and B16-F1) cancer lines using the MTT method. Then, the line where the extract was the most active was selected to evaluate the expression of certain genes involved in cancerogenesis by RT-PCR and the expression of cleaved caspase-3 involved in cell death mechanism by western blot. The AE-Ac showed the best scavenging activity with IC50s of 0.52 and 0.02 for DPPH● and NO●, respectively. This AE-Ac was found to contain alkaloids, flavonoids, and tannins and was more active on YUMM 1.7 cells (IC50 = 149.42 and 31.99 μg/mL for 24 and 48 h, respectively). Results also showed that AE-Ac downregulated the expression of inflammation (IL-1b (p = 0.017) and IL-6 (p = 0.028)), growth factors (PDGF (p = 0.039), IGF (p = 0.034), E2F1(p = 0.038), and E2F2(p = 0.016)), and antiapoptotic protein genes (Bcl-2 (p = 0.028) and Bcl-6 (p = 0.039)). The cleaved caspase-3 was positively modulated by the AE-Ac inducing thus cell death by apoptosis. AE-Ac showed inhibitory effects on the expression of genes involved in cancer progression making it a potential health intervention agent that can be exploited in cancer therapy protocols.
Collapse
Affiliation(s)
| | - Mary-Ann Mbong Angie
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
| | - Françoise Raïssa Ntentie
- Department of Biological Science, Higher Teachers' Training College, University of Yaounde 1, P.O. Box: 47, Yaounde, Cameroon
| | - Inelle Makamwe
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
| | - Ferdinand Lanvin Edoun Ebouel
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
- Centre for Food and Nutrition Research, Institute of Medical Research and Medicinal Plant Studies, MINRESI, P.O. Box: 13033, Yaounde, Cameroon
| | | | - Enyong Julius Oben
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box: 812, Yaounde, Cameroon
- Cameroon Nutrition and Dietetics Research Center, J&A Oben Foundation, P.O. Box: 8348, Yaounde, Cameroon
| |
Collapse
|
11
|
Kart NNB, Günal B, Mutlu D, Doğan NM, Arslan Ş, Semiz G. Evaluating Antibiofilm, Cytotoxic and Apoptotic Activities of Scutellaria brevibracteata subsp. brevibracteata Essential Oil. Chem Biodivers 2023; 20:e202300878. [PMID: 37947368 DOI: 10.1002/cbdv.202300878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Essential oils have many important biological properties, including antibacterial and antibiofilm activities. These unique properties make, essential oils good alternatives to synthetic chemical drugs, which have many side effects. In this study, we aimed to determine the chemical composition and biological activity of the essential oil obtained from Scutellaria brevibracteata subsp. brevibracteata. Specifically, its antibiofilm activity against Pseudomonas aeruginosa PAO1 and Staphylococcus aureus ATCC 29213 biofilms using XTT assay. Cytotoxic and apoptotic properties of the essential oil were investigated in human lung cancer cells (A540 and H1299) using MTT assay, Annexin V-FITC and propidium iodide staining and q-PCR. Thirty-two different compounds were identified from the essential oil, of which elemol (20.42 %), γ-eudesmol (20.12 %) and β-eudesmol (14.85 %) were the main components. The essential oil was more effective against P. aeruginosa PAO1 biofilm (79 %) than S. aureus ATCC 29213 biofilm (27 %). The specific activity of the essential oil against P. aeruginosa biofilm may be related to its high terpene contents. In addition, the essential oil showed high cytotoxic activity towards A549 (IC50 9.09 μg/ml) and H1299 (IC50 55.04 μg/ml) cell lines, inducing apoptosis in these cancer cells. These results demonstrate the antibiofilm and anticancer activities of S. brevibracteata subsp. brevibracteata essential oil.
Collapse
Affiliation(s)
| | - Batıkan Günal
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Doğukan Mutlu
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Nazime Mercan Doğan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Şevki Arslan
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| | - Gürkan Semiz
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Türkiye
| |
Collapse
|
12
|
Lin B, Wang S, Zhou A, Hu Q, Huang G. Ultrasound-assisted enzyme extraction and properties of Shatian pomelo peel polysaccharide. ULTRASONICS SONOCHEMISTRY 2023; 98:106507. [PMID: 37406540 PMCID: PMC10422119 DOI: 10.1016/j.ultsonch.2023.106507] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
In this study, Shatian pomelo peel was used as the raw material for extracting polysaccharides using hot water extraction (HW) and ultrasonic-assisted enzyme (UVE) methods, respectively. The optimal parameters for extractingShatian pomelo peel polysaccharides (StPP) using the ultrasound-assisted enzymatic method were determined using response surface methodology (RSM). The optimal conditions for the extraction of StPP were as follows: ultrasound power 350 W, ultrasound time 50 min, enzymatic digestion time 50 min, compound enzyme addition 1.5%, and enzymatic digestion temperature 55 °C. The yield of StPP was found to be 30.1310% under these conditions. Comparing the physicochemical properties and antioxidant activity of StPP extracted using different methods, it was observed that ultrasound-assisted enzyme extraction resulted in higher yield, sugar content and glucuronic acid content of StPP compared to traditional hot water extraction. Additionally, StPP extracted by ultrasound-assisted enzyme extraction showed better antioxidant activity. These results suggest that ultrasound-assisted enzymatic extraction is an effective method to enhance the activity of natural polysaccharides.
Collapse
Affiliation(s)
- Bobo Lin
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Shasha Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Anqi Zhou
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Qiurui Hu
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
13
|
Bernabé-Antonio A, Castro-Rubio C, Rodríguez-Anda R, Silva-Guzmán JA, Manríquez-González R, Hurtado-Díaz I, Sánchez-Ramos M, Hinojosa-Ventura G, Romero-Estrada A. Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks. Biomolecules 2023; 13:biom13050746. [PMID: 37238616 DOI: 10.3390/biom13050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Acmella radicans (Asteraceae) is a plant native to America. Despite it having medicinal attributes, studies on its phytochemical properties are scarce, and biotechnological studies do not exist for this species. In this study, we established an adventitious root culture from A. radicans internodal segments in shake flasks with indole-3-butyric acid (IBA), and then elicited it with jasmonic acid (JA) and salicylic acid (SA). The total phenolic content and antioxidant activity were evaluated, and a comparison was made using in vitro plantlets and wild plants. Internodal segments with 0.1 mg/L IBA showed 100% root induction and exhibited better growth after transfer to shake flasks with MS liquid culture medium. JA had a significant effect on biomass increase compared to unelicited roots, mainly with 50 µM JA (28%), while SA did not show significant results. Root elicited with 100 µM (SA and JA) showed a 0.34- and 3.9-fold increase, respectively, in total phenolic content (TPC) compared to the control. The antioxidant activity was also significant, and a lower half-maximal inhibitory concentration (IC50) was observed as the AJ concentration increased. Roots elicited with AJ (100 µM) exhibited high antioxidant activity with DPPH (IC50 = 9.4 µg/mL) and ABTS (IC50 = 3.3 µg/mL) assays; these values were close to those for vitamin C (IC50 = 2.0 µg/mL). The TPC and antioxidant activity of in vitro plants and root cultured in shake flasks showed the lowest values in most cases; even the root cultures without elicitation were better than those of a wild plant. In this study, we demonstrated that A. radicans root culture is capable of producing secondary metabolites, while its production and antioxidant activity can be enhanced using jasmonic acid.
Collapse
Affiliation(s)
- Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Clarisa Castro-Rubio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Raúl Rodríguez-Anda
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Ricardo Manríquez-González
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Israel Hurtado-Díaz
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Mariana Sánchez-Ramos
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Gabriela Hinojosa-Ventura
- Department of Chemical Engineering, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Antonio Romero-Estrada
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
14
|
Hein PP, Arunachalam K, Fu Y, Zaw M, Yang Y, Yang X. Diversity of medicinal plants and their therapeutic usages of Kachin people (Jinghpaw) in the central part of Kachin State, Myanmar. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115921. [PMID: 36403741 DOI: 10.1016/j.jep.2022.115921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medical system plays a major role in healthcare in Kachin State, Myanmar, where long-term political instability persists and conventional healthcare facilities are inadequate. A knowledge of the traditional medicinal plants therefore benefits the Kachin people, yet documentation and records of the uses of these plants are rare. In this study, we attempt to answer the questions on what medicinal plants and how they are used by the Kachin people. AIM OF THE STUDY We aimed to document knowledge of the traditional medicinal plants and to identify those most frequently used by the Kachin people. MATERIALS AND METHODS Eighty-two informants from eight villages in three townships were interviewed, and their knowledge of medicinal plants was recorded. The reported ailments were classified to the standard categories of the International Classification of Primary Care-2 (ICPC-2) system. Use reports (UR) were employed to evaluate the knowledge consensus of the informants. RESULTS We recorded a total of 117 species used as medicinal plants, of which 22 are newly recorded medicinal plant species for Myanmar. The plants belonged to 103 genera in 52 families, and were used to treat a total of 72 ailments from 17 ICPC-2 disease categories. Fabaceae and Lamiaceae were the most highly represented families of medicinal plants, with eleven and eight species used, respectively. The most cited species based on URs were Tinospora cordifolia (Willd.) Hook.f. & Thomson (URs = 39), Oroxylum indicum (L.) Kurz (URs = 28), Aquilaria malaccensis Lam. (URs = 26), Chromolaena odorata (L.) R.M.King & H.Rob. (URs = 24), and Chloranthus elatior Link. (URs = 22). Digestive system disorder was the most prevalent disease category, and was treated with 47 different medicinal plants (URs = 142). Leaves were the most commonly used plant part; decoction was the dominant method of preparation; and oral consumption was the most frequent method of administration. CONCLUSION Our study documented a list of 117 medicinal plants and their uses in traditional medicine based on the local knowledge of the Kachin people. The study also identified the five most frequently cited species and found that the plants investigated are used to treat a total of 72 diseases. The 642 therapeutic reports we collected showcase a rich and diverse living knowledge of medicinal plant use by the Kachin people. Moreover, we present 22 new medicinal records, enriching the list of known medicinal plants in Myanmar. This exploratory study has enabled us to assemble the local knowledge of the Kachin people into solid dataset that will allow further scientific validation and will potentially contribute to better integration of medicinal plants into the healthcare provision for Kachin people in Myanmar.
Collapse
Affiliation(s)
- Pyae Phyo Hein
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Karuppusamy Arunachalam
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Yao Fu
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Moe Zaw
- Forest Research Institute, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Yongping Yang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, 666303, China.
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
15
|
Lalsangpuii F, Rokhum SL, Nghakliana F, Fakawmi L, Ruatpuia JVL, Laltlanmawii E, Lalfakzuala R, Siama Z. Green Synthesis of Silver Nanoparticles Using Spilanthes acmella Leaf Extract and its Antioxidant-Mediated Ameliorative Activity against Doxorubicin-Induced Toxicity in Dalton's Lymphoma Ascites (DLA)-Bearing Mice. ACS OMEGA 2022; 7:44346-44359. [PMID: 36506147 PMCID: PMC9730486 DOI: 10.1021/acsomega.2c05970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Green synthesis of metal nanoparticles is a rapidly growing research area in the field of nanotechnology because of their biomedical applications. This study describes the synthesis of silver nanoparticles (AgNPs) using Spilanthes acmella leaf extract and its ameliorative effects against doxorubicin-induced toxicity. The formation of AgNPs was confirmed by a ultraviolet-visible (UV-vis) spectrum that revealed an absorption band at 430 nm. A shift in the absorption bands in Fourier-transform infrared spectroscopy (FT-IR) confirmed the bioactive molecules of S. acmella leaf extract that acted as a reducing and capping agent. The spherical shape of AgNPs was confirmed by scanning electron microscope (SEM) analysis, and the presence of elemental silver was indicated by energy dispersive X-ray spectroscopy (EDS) analysis. X-ray diffraction (XRD) analysis revealed that the crystalline size of the synthesized AgNPs was 6.702 nm. Treatment of Dalton's lymphoma ascites (DLA) mice with 20 mg/kg of doxorubicin (DOX) significantly increased the activities of serum toxicity markers including aspartate amino-transferase (AST), alanine amino-transferase (ALT), and lactate dehydrogenase (LDH). However, compared to DOX alone treatment, the coadministration of DOX and AgNPs reduced AST, ALT, and LDH activities. DOX alone treatment reduced glutathione (GSH) contents and decreased the activities of glutathione-s-transferase (GST) and superoxide dismutase (SOD) in DLA mice. However, the administration of AgNPs to DOX-treated DLA mice increased GSH content and the activities of GST and SOD. Consistently, biosynthesized AgNPs were found to possess significantly higher free-radical scavenging activities when compared to the S. acmella leaf extract, as measured by ABTS, DPPH, and O2 •- assays. The biosynthesized AgNPs also showed significant inhibitory activities against erythrocyte hemolysis and lipid peroxidation in the liver homogenate.
Collapse
Affiliation(s)
- Fanai Lalsangpuii
- Department
of Botany, Mizoram University, Aizawl796004, Mizoram, India
| | | | - Fanai Nghakliana
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Lal Fakawmi
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| | - Joseph V. L. Ruatpuia
- Department
of Chemistry, National Institute of Technology
Silchar, Silchar788010, Assam, India
| | | | - Ralte Lalfakzuala
- Department
of Botany, Mizoram University, Aizawl796004, Mizoram, India
| | - Zothan Siama
- Department
of Zoology, Mizoram University, Aizawl796004, Mizoram, India
| |
Collapse
|
16
|
Spinozzi E, Ferrati M, Baldassarri C, Cappellacci L, Marmugi M, Caselli A, Benelli G, Maggi F, Petrelli R. A Review of the Chemistry and Biological Activities of Acmella oleracea ("jambù", Asteraceae), with a View to the Development of Bioinsecticides and Acaricides. PLANTS (BASEL, SWITZERLAND) 2022; 11:2721. [PMID: 36297745 PMCID: PMC9608073 DOI: 10.3390/plants11202721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Human pathologies, environmental pollution, and resistance phenomena caused by the intensive use of chemical pesticides have shifted the attention of the agrochemical industries towards eco-friendly insecticides and acaricides. Acmella oleracea (L.) R. K. Jansen (jambù) is a plant native to South America, widely distributed and cultivated in many countries due to its numerous pharmacological properties. This review analyzes literature about the plant, its uses, and current knowledge regarding insecticidal and acaricidal activity. Acmella oleracea has proven to be a potential pesticide candidate against several key arthropod pest and vector species. This property is inherent to its essential oil and plant extract, which contain spilanthol, the main representative of N-alkylamides. As a result, there is a scientific basis for the industrial exploitation of jambù in the preparation of green insecticides. However, studies related to its toxicity towards non-target species and those aimed at formulating and developing marketable products are lacking.
Collapse
Affiliation(s)
- Eleonora Spinozzi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Marta Ferrati
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Cecilia Baldassarri
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Margherita Marmugi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 856124 Pisa, Italy
| | - Alice Caselli
- Centre of Plant Sciences, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 856124 Pisa, Italy
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
17
|
Lim AC, Tang SGH, Zin NM, Maisarah AM, Ariffin IA, Ker PJ, Mahlia TMI. Chemical Composition, Antioxidant, Antibacterial, and Antibiofilm Activities of Backhousia citriodora Essential Oil. Molecules 2022; 27:4895. [PMID: 35956846 PMCID: PMC9370046 DOI: 10.3390/molecules27154895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil of Backhousia citriodora, commonly known as lemon myrtle oil, possesses various beneficial properties due to its richness in bioactive compounds. This study aimed to characterize the chemical profile of the essential oil isolated from leaves of Backhousia citriodora (BCEO) and its biological properties, including antioxidant, antibacterial, and antibiofilm activities. Using gas chromatography-mass spectrometry, 21 compounds were identified in BCEO, representing 98.50% of the total oil content. The isomers of citral, geranial (52.13%), and neral (37.65%) were detected as the main constituents. The evaluation of DPPH radical scavenging activity and ferric reducing antioxidant power showed that BCEO exhibited strong antioxidant activity at IC50 of 42.57 μg/mL and EC50 of 20.03 μg/mL, respectively. The antibacterial activity results showed that BCEO exhibited stronger antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus epidermidis) than against Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). For the agar disk diffusion method, S. epidermidis was the most sensitive to BCEO with an inhibition zone diameter of 50.17 mm, followed by S. aureus (31.13 mm), E. coli (20.33 mm), and K. pneumoniae (12.67 mm). The results from the microdilution method showed that BCEO exhibited the highest activity against S. epidermidis and S. aureus, with the minimal inhibitory concentration (MIC) value of 6.25 μL/mL. BCEO acts as a potent antibiofilm agent with dual actions, inhibiting (85.10% to 96.44%) and eradicating (70.92% to 90.73%) of the biofilms formed by the four tested bacteria strains, compared with streptomycin (biofilm inhibition, 67.65% to 94.29% and biofilm eradication, 49.97% to 89.73%). This study highlights that BCEO can potentially be a natural antioxidant agent, antibacterial agent, and antibiofilm agent that could be applied in the pharmaceutical and food industries. To the best of the authors' knowledge, this is the first report, on the antibiofilm activity of BCEO against four common nosocomial pathogens.
Collapse
Affiliation(s)
- Ann Chie Lim
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Shirley Gee Hoon Tang
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Noraziah Mohamad Zin
- Center of Diagnostics, Therapeutics & Investigations, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Abdul Mutalib Maisarah
- School of Graduate Studies, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (A.C.L.); (A.M.M.)
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Indang Ariati Ariffin
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia;
| | - Pin Jern Ker
- Institute of Sustainable Energy, Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Teuku Meurah Indra Mahlia
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia;
| |
Collapse
|
18
|
Abdul Rahim R, Jayusman PA, Lim V, Ahmad NH, Abdul Hamid ZA, Mohamed S, Muhammad N, Ahmad F, Mokhtar N, Mohamed N, Shuid AN, Naina Mohamed I. Phytochemical Analysis, Antioxidant and Bone Anabolic Effects of Blainvillea acmella (L.) Philipson. Front Pharmacol 2022; 12:796509. [PMID: 35111063 PMCID: PMC8802550 DOI: 10.3389/fphar.2021.796509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Blainvillea acmella (L.) Philipson [Asteraceae] (B. acmella) is an important medicinal plant native to Brazil, and it is widely known as a toothache plant. A plethora of studies have demonstrated the antioxidant activities of B. acmella and few studies on the stimulatory effects on alkaline phosphatase (ALP) secretion from bone cells; however, there is no study on its antioxidant and anabolic activity on bone cells. The study aimed to evaluate the phytochemical contents of aqueous and ethanol extracts of B. acmella using gas chromatography mass spectrometry (GCMS) and liquid chromatography time of flight mass spectrometry (LCTOFMS) along with the total phenolic (TPC) and flavonoid (TFC) contents using Folin-Ciocalteu and aluminum colorimetric methods. The extracts of B. acmella leaves were used to scavenge synthetic-free radicals such as 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays. The bone anabolic effects of B. acmella extracts on MC3T3-E1 cells were measured with 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoium bromide (MTT) at 1, 3, 5, and 7 days, Sirius-red and ALP at 7 and 14 days, and Alizarin Red S at 14 and 21 days. Comparatively, ethanol extract of B. acmella (BaE) contributed higher antioxidant activities (IC50 of 476.71 µg/ml and 56.01 ± 6.46 mg L-ascorbic acid/g against DPPH and FRAP, respectively). Anabolic activities in bone proliferation, differentiation, and mineralization were also higher in B. acmella of ethanol (BaE) than aqueous (BaA) extracts. Positive correlations were observed between phenolic content (TPC and TFC) to antioxidant (ABTS and FRAP) and anabolic activities. Conversely, negative correlations were present between phenolic content to antioxidant (DPPH) activity. These potential antioxidant and bone anabolic activities in BaE might be due to the phytochemicals confirmed through GCMS and LCTOFMS, revealed that terpenoids of α-cubebene, cryophyllene, cryophyllene oxide, phytol and flavonoids of pinostrobin and apigenin were the compounds contributing to both antioxidant and anabolic effects in BaE. Thus, B. acmella may be a valuable antioxidant and anti-osteoporosis agent. Further study is needed to isolate, characterize and elucidate the underlying mechanisms responsible for the antioxidant and bone anabolic effects.
Collapse
Affiliation(s)
- Rohanizah Abdul Rahim
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Nor Hazwani Ahmad
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sharlina Mohamed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Norliza Muhammad
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Anatomy Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norfilza Mokhtar
- Physiology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norazlina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Isa Naina Mohamed
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Anti-Osteoporotic Mechanisms of Polyphenols Elucidated Based on In Vivo Studies Using Ovariectomized Animals. Antioxidants (Basel) 2022; 11:antiox11020217. [PMID: 35204100 PMCID: PMC8868308 DOI: 10.3390/antiox11020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/27/2022] Open
Abstract
Polyphenols are widely known for their antioxidant activity, i.e., they have the ability to suppress oxidative stress, and this behavior is mediated by the autoxidation of their phenolic hydroxyl groups. Postmenopausal osteoporosis is a common health problem that is associated with estrogen deficiency. Since oxidative stress is thought to play a key role in the onset and progression of osteoporosis, it is expected that polyphenols can serve as a safe and suitable treatment in this regard. Therefore, in this review, we aimed to elucidate the anti-osteoporotic mechanisms of polyphenols reported by in vivo studies involving the use of ovariectomized animals. We categorized the polyphenols as resveratrol, purified polyphenols other than resveratrol, or polyphenol-rich substances or extracts. Literature data indicated that resveratrol activates sirtuin 1, and thereafter, suppresses osteoclastogenic pathways, such as the receptor activator of the nuclear factor kappa B (RANK) ligand (RANKL) pathway, and promotes osteoblastogenic pathways, such as the wingless-related MMTV integration site pathway. Further, we noted that purified polyphenols and polyphenol-rich substances or extracts exert anti-inflammatory and/or antioxidative effects, which inhibit RANKL/RANK binding via the NF-κB pathway, resulting in the suppression of osteoclastogenesis. In conclusion, antioxidative and anti-inflammatory polyphenols, including resveratrol, can be safe and effective for the treatment of postmenopausal osteoporosis based on their ability to regulate the imbalance between bone formation and resorption.
Collapse
|
20
|
Lin B, Xu D, Wu S, Qi S, Xu Y, Liu X, Zhang X, Chen C. Antioxidant Effects of Sophora davidi (Franch.) Skeels on d-Galactose-Induced Aging Model in Mice via Activating the SIRT1/p53 Pathway. Front Pharmacol 2021; 12:754554. [PMID: 34938181 PMCID: PMC8687624 DOI: 10.3389/fphar.2021.754554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
This study investigated the protective effect of Sophora davidi (Franch.) Skeels fruits extract (SDE) on d–galactose–induced acute aging in mice. Ultra performance liquid chromatography coupled with tine-of-flight mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the composition of compounds in SDE. KM mice were divided stochastically into the normal control group (NC, saline), d–galactose (D-gal) model group, vitamin C (Vc) group (positive control), low–, medium–and high–dose SDE treat groups. After 28 days administration and fasting overnight, the serum, liver, and brain samples of mice were collected. The levels of inducible nitric oxide synthase (iNOS), acetylcholinesterase (AChE) activity in the brain, malondialdehyde (MDA) and reduced glutathione (GSH) content, superoxide dismutase (SOD) and total antioxidant capacity (T–AOC) activity in the liver and brain were measured. Immunohistochemistry was applied to detect silent information regulator 1 (SIRT1) and p53 protein expression in the liver and brain, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of nuclear factor κB (NF–κB), tumor necrosis factor (TNF–α), interleukin–6 (IL–6), interleukin-1β (IL–1β), and anti-aging factor Klotho in the liver and brain. The results showed that UPLC-Q-TOF/MS identified 78 compounds in SDE. SDE could reduce the iNOS activity in serum and AChE activity in the brain, upregulate the levels of SOD, T–AOC and GSH in liver and brain, and debase the MDA content in liver and brain. SDE could downregulate the mRNA expressions of TNF–α, NF–kB, IL–1β, and IL–6 in the liver and brain, and elevate the mRNA expression of Klotho. SDE improved the pathological changes of the liver and brain induced by D–gal, increased the expression of SIRT1 protein in the liver and brain, and inhibited the expression of p53 protein induced by D–gal. To summarize, SDE demonstrated clear anti–aging effect, and its mechanism may be relevant to the activation of the SIRT1/p53 signal pathway.
Collapse
Affiliation(s)
- Beibei Lin
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Sanqiao Wu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Shanshan Qi
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Youmei Xu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xiang Liu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China.,Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China
| |
Collapse
|