1
|
Kim HJ, Oh YH, Park SJ, Song J, Kim K, Choi D, Jeong S, Park SM. Combined Effects of Air Pollution and Changes in Physical Activity With Cardiovascular Disease in Patients With Dyslipidemia. J Am Heart Assoc 2024:e035933. [PMID: 39604032 DOI: 10.1161/jaha.124.035933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Sedentary behavior elevates cardiovascular disease (CVD) risk in patients with dyslipidemia. Increasing physical activity (PA) is recommended alongside pharmacological therapy to prevent CVD, though benefits across environmental conditions are unclear. METHODS AND RESULTS We analyzed data from 113 918 newly diagnosed patients with dyslipidemia (2009-2012) without prior CVD, sourced from the Korea National Health Insurance Service. Ambient particulate matter (PM) 2.5 and PM10 levels were collected from the National Ambient Air Monitoring System in South Korea. Changes in PA, measured in metabolic equivalents of task-min/wk before and after dyslipidemia diagnosis, were evaluated for associations with air pollution levels and CVD risk using Cox proportional hazards regression. Patients were followed from January 1, 2013, until CVD onset, death, or December 31, 2021. Among patients exposed to low to moderate PM2.5 levels (≤25 μg/m3), increasing PA from inactive to ≥1000 metabolic equivalents of tasks-min/wk was associated with a lower risk of CVD (adjusted hazard ratio, 0.82 [95% CI, 0.70-0.97]; P for trend=0.022). In high PM2.5 (>25 μg/m3) conditions, increasing PA from inactive and decreasing PA from ≥1000 metabolic equivalents of task-min/wk was associated with reduced (P for trend=0.010) and elevated (P for trend=0.028) CVD risks, respectively. For PM10, increased PA was linked to reduced CVD risk (P for trend=0.002) and decreased PA to elevated risk (P for trend=0.042) in low to moderate PM10 (≤50 μg/m3) conditions, though benefits diminished at high PM10 (>50 μg/m3) exposures. CONCLUSIONS Promoting PA, while considering the high potential cardiovascular risk associated with air pollution, may be an effective intervention against CVD in patients with dyslipidemia.
Collapse
Affiliation(s)
- Hye Jun Kim
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Yun Hwan Oh
- Department of Family Medicine Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine Gwangmyeong South Korea
| | - Sun Jae Park
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Jihun Song
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
| | - Kyuwoong Kim
- National Cancer Control Institute, National Cancer Center Goyang South Korea
- Graduate School of Cancer Science and Policy, National Cancer Center Goyang South Korea
| | - Daein Choi
- Department of Medicine Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel New York City NY
- Metabolism and Lipids Unit Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Medical Center, Icahn School of Medicine at Mount Sinai New York NY
| | - Seogsong Jeong
- Department of Biomedical Informatics Korea University College of Medicine Seoul South Korea
- Biomedical Research Center Korea University Guro Hospital, Korea University College of Medicine Seoul South Korea
| | - Sang Min Park
- Department of Biomedical Sciences Seoul National University College of Medicine Seoul South Korea
- Department of Family Medicine Seoul National University Hospital Seoul South Korea
| |
Collapse
|
2
|
Sundas A, Contreras I, Mujahid O, Beneyto A, Vehi J. The Effects of Environmental Factors on General Human Health: A Scoping Review. Healthcare (Basel) 2024; 12:2123. [PMID: 39517336 PMCID: PMC11545045 DOI: 10.3390/healthcare12212123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Background/Objectives: The external environment constantly influences human health through many factors, including air quality, access to green spaces, exposure to pollutants, and climate change. Contamination poses a substantial threat to human well-being; conversely, environmental factors also positively impact health. The purpose of this study is to provide a comprehensive review of the complex relationship between various environmental factors and human health. While individual studies have explored specific aspects, a broader integrative understanding is lacking. Methods: Through databases (PubMed, Cochrane, Copernicus), 4888 papers were identified, with 166 selected for detailed analysis. Results: We summarized recent research, identifying multiple associations between environmental factors such as air pollution, climate change, solar radiation, and meteorological conditions and their impact on various health outcomes, including respiratory, cardiovascular, metabolic and gastrointestinal, renal and urogenital, neurological and psychological health, infectious and skin diseases, and major cancers. We use chord diagrams to illustrate these links. We also show the interaction between different environmental factors. Findings begin with exploring the direct impact of environmental factors on human health; then, the interplay and combined effects of environmental factors, elucidating their (often indirect) interaction and collective contribution to human health; and finally, the implications of climate change on human health. Conclusions: Researchers and policymakers need to consider that individuals are exposed to multiple pollutants simultaneously, the "multipollutant exposure phenomenon". It is important to study and regulate environmental factors by considering the combined impact of various pollutants rather than looking at each pollutant separately. We emphasize actionable recommendations and solutions.
Collapse
Affiliation(s)
- Amina Sundas
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Ivan Contreras
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Omer Mujahid
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Aleix Beneyto
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
| | - Josep Vehi
- Modeling & Intelligent Control Engineering Laboratory, Institut d’Informatica i Applicacions, Universitat de Girona, 17003 Girona, Spain; (A.S.); (O.M.); (A.B.); (J.V.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 17003 Girona, Spain
| |
Collapse
|
3
|
Leonetti A, Peansukwech U, Charnnarong J, Cha'on U, Suttiprapa S, Anutrakulchai S. Effects of particulate matter (PM2.5) concentration and components on mortality in chronic kidney disease patients: a nationwide spatial-temporal analysis. Sci Rep 2024; 14:16810. [PMID: 39039106 PMCID: PMC11263396 DOI: 10.1038/s41598-024-67642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
Chronic kidney disease (CKD) is a major global public health issue and the leading cause of death in Thailand. This study investigated the spatial-temporal association between PM2.5 and its components (organic carbon, black carbon, dust, sulfate, and sea salt) and CKD mortality in Thailand from 2012 to 2021. The Modern-Era Retrospective analysis for Research and Application version 2 (MERRA-2), a NASA atmospheric satellite model, was assessed for the temporal data of PM2.5 concentration and aerosol components. Spatial resources of 77 provinces were integrated using the Geographical Information System (GIS). Multivariate Poisson regression and Bayesian inference analyses were conducted to explore the effects of PM2.5 on CKD mortality across the provinces. Our analysis included 718,686 CKD-related deaths, resulting in a mortality rate of 1107 cases per 100,000 population where was the highest rate in Northeast region. The average age of the deceased was 72.43 ± 13.10 years, with males comprising 50.46% of the cases. Adjusting for age, sex, underlying diseases, co-morbidities, CKD complications, replacement therapy, population density, and income, each 1 µg/m3 increase in PM2.5, black carbon, dust, sulfate, and organic carbon was significantly associated with increased CKD mortality across 77 provinces. Incidence rate ratios were 1.04 (95% CI 1.03-1.04) for PM2.5, 1.11 (95% CI 1.10-1.13) for black carbon, 1.24 (95% CI 1.22-1.25) for dust, 1.16 (95% CI 1.16-1.17) for sulfate, and 1.05 (95% CI 1.04-1.05) for organic carbon. These findings emphasize the significant impact of PM2.5 on CKD mortality and underscore the need for strategies to reduce PM emissions and manage CKD co-morbidities effectively.
Collapse
Affiliation(s)
- Alessia Leonetti
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Udomlack Peansukwech
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen, Thailand
| | | | - Ubon Cha'on
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| | - Sirirat Anutrakulchai
- Chronic Kidney Disease Prevention in the Northeast of Thailand (CKDNET), Khon Kaen University, Khon Kaen, Thailand.
- Anandamahidol Foundation, Bangkok, Thailand.
- Division of Nephrology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
4
|
Cesaroni G, Jaensch A, Renzi M, Marino C, Ferraro PM, Kerschbaum J, Haller P, Brozek W, Michelozzi P, Stafoggia M, de Hoogh K, Brunekreef B, Hoek G, Zitt E, Forastiere F, Nagel G, Weinmayr G. Association of air pollution with incidence of end-stage kidney disease in two large European cohorts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174796. [PMID: 39032743 DOI: 10.1016/j.scitotenv.2024.174796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
End-stage kidney disease (ESKD) poses a high burden on patients and health systems. While numerous studies indicate an association between air pollution and chronic kidney disease, studies on ESKD are rare. We investigated the association of long-term exposure to nitrogen dioxide (NO₂), fine particulate matter (PM2.5), black carbon (BC) and ozone (O3) with ESKD incidence in two large population-based European cohorts. We followed individuals in the Austrian Vorarlberg Health Monitoring and Promotion Program (VHM&PP) and the Italian Rome Longitudinal Study (RoLS) using dialysis and kidney transplant registries. Long-term exposure to pollutants was estimated at the home address using Europe-wide land use regression models at 100x100m scale. Hazard ratios (HR) were determined from Cox-proportional hazard models adjusted for individual and neighbourhood level confounders. We observed 501 events among 136,823 individuals in VHM&PP (mean age 42.1 years; crude incidence rate (IR) 0.14 per 1000 person-years) and 3231 events among 1,939,461 individuals in RoLS (mean age 52.4 years; IR 0.22 per 1000 person-years). In VHM&PP, there was no evidence of an association between PM2.5 or O3 and ESKD. There were elevated HRs but with large confidence intervals for BC (HR 1.17 [95 % confidence interval (CI): 0.98, 1.39] for 0.5*10-5/m), and for NO₂ (HR 1.14 [95%CI: 0.96, 1.35] for 10 μg/m3). In RoLS, ESKD was associated with PM2.5 (HR 1.37 [95 % CI: 1.06, 1.76] for an increase of 5 μg/m3), while there was no evidence of association with BC, NO2, or O3 exposure. Our study suggests an association of air pollution with ESKD incidence, which differed between the two cohorts and may possibly be influenced by respective air pollution mixtures.
Collapse
Affiliation(s)
- Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Claudia Marino
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | | | - Julia Kerschbaum
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Austria; Austrian Dialysis and Transplant Registry (OEDTR), Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Haller
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Wolfgang Brozek
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| | - Paola Michelozzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emanuel Zitt
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria; Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Francesco Forastiere
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK; National Research Council, IFT, Palermo, Italy
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| |
Collapse
|
5
|
Nagai K, Araki S, Sairenchi T, Ueda K, Yamagishi K, Shima M, Yamamoto K, Iso H, Irie F. Particulate Matter and Incident Chronic Kidney Disease in Japan: The Ibaraki Prefectural Health Study (IPHS). JMA J 2024; 7:334-341. [PMID: 39114627 PMCID: PMC11301005 DOI: 10.31662/jmaj.2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/29/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Global health hazards caused by air pollution, such as chronic kidney disease (CKD), have been gaining attention; however, air pollution-associated CKD has not been explored in Japan. Methods We examined 77,770 men and women with estimated glomerular filtration rate (eGFR) ≥60 ml/min/1.73 m2 in the Ibaraki Prefecture who participated in annual community-based health checkups from 1993 at 40-75 years old and were followed up through December 2020. The outcome was newly developed kidney dysfunction with eGFR of <60 ml/min/1.73 m2 during follow-up. To assess air pollution, a PM2.5 exposure model was employed to estimate yearly means at 1 × 1-km resolution, converted into means at the municipal level. Hazard modeling was employed to examine PM2.5 concentrations in residential areas as a risk factor for outcomes. Results Participants were distributed across 23 municipalities in the Ibaraki Prefecture, with PM2.5 concentrations between 16.2 and 33.4 μg/m3 (mean, 22.7 μg/m3) in 1987-1995 as the exposure period. There were 942 newly developed kidney dysfunctions during follow-up. Based on 1987-1995 PM2.5 concentrations as the baseline exposure, the multivariate-adjusted hazard ratio per 10-μg/m3 increase in PM2.5 for newly developed kidney dysfunction was 1.02 (95%CI, 0.80-1.24) in men and 1.19 (95%CI, 0.95-1.44) in women. Conclusions Elevated PM2.5 did not represent a significant risk factor for incident CKD in a prefecture in Japan.
Collapse
Affiliation(s)
- Kei Nagai
- Department of Nephrology, Hitachi General Hospital, Hitachi, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shin Araki
- Graduate School of Engineering, Osaka University, Suita, Japan
| | - Toshimi Sairenchi
- Medical Science of Nursing, Dokkyo Medical University School of Nursing, Shimotsuga, Japan
- Department of Public Health, Institute of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Kazumasa Yamagishi
- Department of Public Health, Institute of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Kouhei Yamamoto
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroyasu Iso
- Institute of Global Health Policy Research (iGHP), National Center for Global Health and Medicine, Tokyo, Japan
| | - Fujiko Irie
- Tsuchiura Public Health Center of Ibaraki Prefectural Government, Tsuchiura, Japan
| |
Collapse
|
6
|
Kadelbach P, Weinmayr G, Chen J, Jaensch A, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Ljungman P, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen R, Peters A, Wolf K, Raaschou-Nielsen O, Brunekreef B, Hoek G, Zitt E, Nagel G. Long-term exposure to air pollution and chronic kidney disease-associated mortality-Results from the pooled cohort of the European multicentre ELAPSE-study. ENVIRONMENTAL RESEARCH 2024; 252:118942. [PMID: 38649012 DOI: 10.1016/j.envres.2024.118942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 μm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 μg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 μg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 μg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.
Collapse
Affiliation(s)
- Pauline Kadelbach
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Cardiology, Danderyd University Hospital, 182 88, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| |
Collapse
|
7
|
Dillon D, Ward-Caviness C, Kshirsagar AV, Moyer J, Schwartz J, Di Q, Weaver A. Associations between long-term exposure to air pollution and kidney function utilizing electronic healthcare records: a cross-sectional study. Environ Health 2024; 23:43. [PMID: 38654228 PMCID: PMC11036746 DOI: 10.1186/s12940-024-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) affects more than 38 million people in the United States, predominantly those over 65 years of age. While CKD etiology is complex, recent research suggests associations with environmental exposures. METHODS Our primary objective is to examine creatinine-based estimated glomerular filtration rate (eGFRcr) and diagnosis of CKD and potential associations with fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) using a random sample of North Carolina electronic healthcare records (EHRs) from 2004 to 2016. We estimated eGFRcr using the serum creatinine-based 2021 CKD-EPI equation. PM2.5 and NO2 data come from a hybrid model using 1 km2 grids and O3 data from 12 km2 CMAQ grids. Exposure concentrations were 1-year averages. We used linear mixed models to estimate eGFRcr per IQR increase of pollutants. We used multiple logistic regression to estimate associations between pollutants and first appearance of CKD. We adjusted for patient sex, race, age, comorbidities, temporality, and 2010 census block group variables. RESULTS We found 44,872 serum creatinine measurements among 7,722 patients. An IQR increase in PM2.5 was associated with a 1.63 mL/min/1.73m2 (95% CI: -1.96, -1.31) reduction in eGFRcr, with O3 and NO2 showing positive associations. There were 1,015 patients identified with CKD through e-phenotyping and ICD codes. None of the environmental exposures were positively associated with a first-time measure of eGFRcr < 60 mL/min/1.73m2. NO2 was inversely associated with a first-time diagnosis of CKD with aOR of 0.77 (95% CI: 0.66, 0.90). CONCLUSIONS One-year average PM2.5 was associated with reduced eGFRcr, while O3 and NO2 were inversely associated. Neither PM2.5 or O3 were associated with a first-time identification of CKD, NO2 was inversely associated. We recommend future research examining the relationship between air pollution and impaired renal function.
Collapse
Affiliation(s)
- David Dillon
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Cavin Ward-Caviness
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Abhijit V Kshirsagar
- Division of Nephrology and Hypertension, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua Moyer
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joel Schwartz
- T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Qian Di
- Research Center for Public Health, School of Medicine, Tsinghua University, Beijing, China
| | - Anne Weaver
- Center for Public Health and Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
8
|
Chen R, Yang C, Guo Y, Chen G, Li S, Li P, Wang J, Meng R, Wang HY, Peng S, Sun X, Wang F, Kong G, Zhang L. Association between ambient PM 1 and the prevalence of chronic kidney disease in China: A nationwide study. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133827. [PMID: 38377899 DOI: 10.1016/j.jhazmat.2024.133827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Particulate of diameter ≤ 1 µm (PM1) presents a novel risk factor of adverse health effects. Nevertheless, the association of PM1 with the risk of chronic kidney disease (CKD) in the general population is not well understood, particularly in regions with high PM1 levels like China. Based on a nationwide representative survey involving 47,204 adults and multi-source ambient air pollution inversion data, the present study evaluated the association of PM1 with CKD prevalence in China. The two-year average PM1, particulate of diameter ≤ 2.5 µm (PM2.5), and PM1-2.5 values were accessed using a satellite-based random forest approach. CKD was defined as estimated glomerular filtration rate < 60 ml/min/1.73 m2 or albuminuria. The results suggested that a 10 μg/m3 rise in PM1 was related to a higher CKD risk (odds ratio [OR], 1.13; 95% confidence interval [CI] 1.08-1.18) and albuminuria (OR, 1.11; 95% CI, 1.05-1.17). The association between PM1 and CKD was more evident among urban populations, older adults, and those without comorbidities such as diabetes or hypertension. Every 1% increase in the PM1/PM2.5 ratio was related to the prevalence of CKD (OR, 1.03; 95% CI, 1.03-1.04), but no significant relationship was found for PM1-2.5. In conclusion, the present study demonstrated long-term exposure to PM1 was associated with an increased risk of CKD in the general population and PM1 might play a leading role in the observed relationship of PM2.5 with the risk of CKD. These findings provide crucial evidence for developing air pollution control strategies to reduce the burden of CKD.
Collapse
Affiliation(s)
- Rui Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Pengfei Li
- Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Jinwei Wang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruogu Meng
- National Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Huai-Yu Wang
- National Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Suyuan Peng
- National Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Xiaoyu Sun
- Advanced Institute of Information Technology, Peking University, Hangzhou, China; National Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Fulin Wang
- National Institute of Health Data Science at Peking University, Beijing 100191, China; Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China
| | - Guilan Kong
- Advanced Institute of Information Technology, Peking University, Hangzhou, China; National Institute of Health Data Science at Peking University, Beijing 100191, China
| | - Luxia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China; Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China; National Institute of Health Data Science at Peking University, Beijing 100191, China.
| |
Collapse
|
9
|
Lye LF, Chou RH, Wu TK, Chuang WL, Tsai SCS, Lin HJ, Tsai FJ, Chang KH. Administration of Bevacizumab and the Risk of Chronic Kidney Disease Development in Taiwan Residents: A Population-Based Retrospective Cohort Study. Int J Mol Sci 2023; 25:340. [PMID: 38203509 PMCID: PMC10778964 DOI: 10.3390/ijms25010340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a significant role as a pro-angiogenic and pro-permeability factor within the kidney. Bevacizumab is a pharmaceutical monoclonal anti-VEGF antibody that inhibits the growth of new blood vessels, which blocks blood supply and thereby restricts tumor growth. Thus, we conducted a nationwide study to explore the risk of chronic kidney disease (CKD) development in Taiwan residents after bevacizumab therapy. We drew data from the extensive National Health Insurance Research Database (NHIRD), which encompasses data from >99% of Taiwan's population from 1995 onwards. Individuals who received bevacizumab between 2012-2018 were identified as the bevacizumab cohort, with the index date set at the first usage. We randomly selected dates within the study period for the control group to serve as index dates. We excluded patients with a history of CKD prior to the index date or those <20 years old. In both cohorts, patients' propensity scores matched in a 1:1 ratio based on sex, age, index year, income, urbanization level, comorbidities, and medications. We found patients treated with bevacizumab had a significantly higher risk of contracting CKD than patients without bevacizumab (adjusted hazard ratio = 1.35, 95% confidence interval = 1.35-1.73). The risk of CKD was 1.35-fold higher in participants with bevacizumab treatment than those in the control group. These findings suggest that close monitoring of CKD development after bevacizumab administration is needed.
Collapse
Affiliation(s)
- Lon-Fye Lye
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
| | - Ruey-Hwang Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Department of Medical Laboratory and Biotechnology, Asia University, Taichung 413, Taiwan
| | - Tsai-Kun Wu
- Division of Renal Medicine, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Department of Post Baccalaureate Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Wu-Lung Chuang
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Lukang Christian Hospital, Changhua 505, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Heng-Jun Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Division of Medical Genetics, China Medical University Children’s Hospital, Taichung 404, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung 413, Taiwan
| | - Kuang-Hsi Chang
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan;
- Department of Post Baccalaureate Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| |
Collapse
|
10
|
Zhang Y, Tang C, Liu Y, Jiang H, Lu J, Lu Z, Xu L, Zhang S, Zhou L, Ye J, Xuan X, Wu T, Cao X, Zhao B, Lin L, Wang Y, Zhang J. Long-term ozone exposure is negatively associated with estimated glomerular filtration rate in Chinese middle-aged and elderly adults. CHEMOSPHERE 2023; 341:140040. [PMID: 37673188 DOI: 10.1016/j.chemosphere.2023.140040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) is an inflammatory disease characterized by the deterioration of renal function, which imposes a significant burden on the healthcare system. In the recent decades, the ageing of the population and the increase of ozone pollution have accelerated. However, epidemiological associations between long-term ozone exposure and renal function in susceptible populations are understudied. In this study, we aimed to investigate the association of 1 y ozone exposure with renal function among the older adults in Xiamen City, China. We recruited 6024 eligible participants with a median age of 65.00 years, estimated their ozone exposure data, and collected questionnaires on demographic status and lifestyle factors as well as information on healthcare access. A generalized linear model was used to assess the association. An increase of 10 μg/m3 of 1 y ozone exposure was negatively associated with the estimated glomerular filtration rate (eGFR) [-3.12 (95% CI: -4.76, -1.48)]. The associations were stronger in men, non-smokers, and those with hypertension or T2DM. Clinical indicators of high-density lipoprotein, low-density lipoprotein, triglycerides, and total cholesterol were the main mediators to regulate the ozone-renal function association. Our results suggested that long-term ozone exposure is a potential risk factor for renal function in Chinese middle-aged and elderly adults.
Collapse
Affiliation(s)
- Yiqin Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Chen Tang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Yuwen Liu
- Xiamen Municipal Center for Disease Control and Prevention, Xiamen, Fujian, China
| | | | | | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Liping Xu
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Siyu Zhang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Lina Zhou
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Jing Ye
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Xianfa Xuan
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Ting Wu
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Xia Cao
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China
| | - Benhua Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Liangquan Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Yuxin Wang
- Department of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, Fujian, China.
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
11
|
Zhang Y, Xia Y, Chang Q, Ji C, Zhao Y, Zhang H. Exposure to ambient air pollution and metabolic kidney diseases: evidence from the Northeast China Biobank. Nephrol Dial Transplant 2023; 38:2222-2231. [PMID: 36866507 DOI: 10.1093/ndt/gfad042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND At present, there is no epidemiological evidence of the association between metabolic kidney diseases (MKD) and exposure to air pollution. METHODS We investigated the association between exposure to long-term air pollution and the risk of developing MKD using samples from the Northeast China Biobank. RESULTS Data from 29 191 participants were analyzed. MKD prevalence was 3.23%. Every standard deviation increment in PM2.5 increased the risk of MKD [odds ratio (OR) = 1.37, 95% confidence interval (CI) 1.19-1.58), diabetic kidney disease (DKD) (OR = 2.03, 95% CI 1.52-2.73), hypertensive kidney disease (BKD) (OR = 1.31, 95% CI 1.11-1.56), hyperlipidemic kidney disease (PKD) (OR = 1.39, 95% CI 1.19-1.63) and obese kidney disease (OKD) (OR = 1.34, 95% CI 1.00-1.81). PM10 increased the risk of MKD (OR = 1.42, 95% CI 1.20-1.67), DKD (OR = 1.38, 95% CI 1.03-1.85), BKD (OR = 1.30, 95% CI 1.07-1.58) and PKD (OR = 1.50, 95% CI 1.26-1.80). Sulfur dioxide increased the risk of MKD (OR = 1.57, 95% CI 1.34-1.85), DKD (OR = 1.81, 95% CI 1.36-2.40), BKD (OR = 1.44, 95% CI 1.19-1.74) and PKD (OR = 1.72, 95% CI 1.44-2.04). Ozone decreased the risk of PKD (OR = 0.83, 95% CI 0.70-0.99). Age, ethnicity and air pollution interacted to affect the risk of MKD, BKD and PKD. Associations between air pollution and CKD or metabolic disease were weaker than those with MKD. The association between air pollution and MKD became stronger when compared with participants with non-metabolic disease. CONCLUSIONS Air pollution may cause MKD or facilitate the progression from metabolic disease to renal failure.
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Xia
- Department of Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical Universtiy, Shenyang, China
| | - Chao Ji
- Department of Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhao
- Department of Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical Universtiy, Shenyang, China
| | - Hehua Zhang
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical Universtiy, Shenyang, China
| |
Collapse
|
12
|
Paoin K, Pharino C, Vathesatogkit P, Phosri A, Buya S, Saranburut K, Ueda K, Seposo XT, Ingviya T, Kitiyakara C, Thongmung N, Sritara P. Residential greenness and kidney function: A cohort study of Thai employees. Health Place 2023; 80:102993. [PMID: 36791509 DOI: 10.1016/j.healthplace.2023.102993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Higher residential greenness is associated with a lower risk of chronic kidney disease, but evidence on the association between greenness exposure and kidney function has not been conducted. Using cohort data from Electricity Generating Authority of Thailand (EGAT) employees, we investigated the association between long-term exposure to greenness and kidney function using estimated glomerular filtration rate (eGFR) in Bangkok Metropolitan Region (BMR), Thailand. We analyzed data from 2022 EGAT workers (aged 25-55 years at baseline) from 2009 to 2019. The level of greenness was calculated using the satellite-derived Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI). From 2008 to 2019, the average concentration of each air pollutant (PM10, O3, NO2, SO2, and CO) at the sub-district level in BMR was generated using the Kriging method. Long-term exposure for each participant was defined as the 1-year average concentrations before the date of the physical examination in 2009, 2014, and 2019. We employed linear mixed effects models to evaluate associations of NDVI and EVI with eGFR. The robustness of the results was also tested by including air pollutants in the models. After relevant confounders were controlled, the interquartile range increase in NDVI was associated with higher eGFR [1.03% (95%CI: 0.33, 1.74)]. After PM10 and SO2 were included in the models, the associations between NDVI and eGFR became weaker. The additions of O3, NO2, and CO strengthened the associations between them. In contrast, we did not find any association between EVI and eGFR. In conclusion, there was a positive association between NDVI and eGFR, but not for EVI. Air pollutants had a significant impact on the relationship between NDVI and eGFR. Additional research is needed to duplicate this result in various settings and populations to confirm our findings.
Collapse
Affiliation(s)
- Kanawat Paoin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Chanathip Pharino
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| | - Prin Vathesatogkit
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arthit Phosri
- Department of Environmental Health Sciences, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Suhaimee Buya
- School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand; School of Knowledge Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Krittika Saranburut
- Cardiovascular and Metabolic Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Graduate School of Global Environmental Sciences, Kyoto University, Kyoto, Japan
| | - Xerxes Tesoro Seposo
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Thammasin Ingviya
- Air Pollution and Health Effect Research Center, Prince of Songkla University, Songkhla, Thailand; Medical Data Center for Research and Innovation, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Chagriya Kitiyakara
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nisakron Thongmung
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyamitr Sritara
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
13
|
Liu L, Tian X, Zhao Y, Zhao Z, Luo L, Luo H, Han Z, Kang X, Wang X, Liu X, Guo X, Tao L, Luo Y. Long-term exposure to PM 2.5 and PM 10 and chronic kidney disease: the Beijing Health Management Cohort, from 2013 to 2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17817-17827. [PMID: 36203044 DOI: 10.1007/s11356-022-23251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Long-term exposure to ambient particulate pollutants (PM2.5 and PM10) may increase the risk of chronic kidney disease (CKD), but the results of previous research were limited and inconsistent. The purpose of this study was to assess the relationships of PM2.5 and PM10 with CKD. This study was a cohort study based on the physical examination data of 2082 Beijing residents from 2013 to 2018 in the Beijing Health Management Cohort (BHMC). A land-use regression model was used to estimate the individual exposure concentration of air pollution based on the address provided by each participant. CKD events were identified based on self-report or medical evaluation (estimated glomerular filtration rate, eGFR less than 60 ml/min/1.73 m2). Finally, the associations of PM2.5 and PM10 with CKD were calculated using univariate and multivariate logistic regression models. During the research period, we collected potentially confounding information. After adjusting for confounders, each 10 μg/m3 increase in PM2.5 and PM10 exposure was associated with an 84% (OR: 1.84; 95% CI: 1.45, 2.33) and 37% (OR: 1.37; 95% CI: 1.15, 1.63) increased risk of CKD. Adjusting for the four common gaseous air pollutants (CO, NO2, SO2, O3), the effect of PM2.5 and PM10 on CKD was significantly enhanced, but the effect of PM10 was no longer significant in the multi-pollutant model. The results of the stratified analysis showed that PM2.5 and PM10 were more significant in males, middle-aged and elderly people over 45 years old, smokers, drinkers, BMI ≥ 24 kg/m2, and abnormal metabolic components. In conclusion, long-term exposure to ambient PM2.5 and PM10 was associated with an increased risk of CKD.
Collapse
Affiliation(s)
- Lulu Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xue Tian
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yuhan Zhao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Zemeng Zhao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lili Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Hui Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Ze Han
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiaoping Kang
- Beijing Xiaotangshan Hospital, No. 390 Wenquan Street, Xiaotangshan Town, Changping District, Beijing, 102211, China
| | - Xiaonan Wang
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiangtong Liu
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Xiuhua Guo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Lixin Tao
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China
| | - Yanxia Luo
- School of Public Health, Capital Medical University & Beijing Municipal Key Laboratory of Clinical Epidemiology, No. 10 Xitoutiao, You'anmen Wai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
14
|
Chen C, Li T, Sun Q, Shi W, He MZ, Wang J, Liu J, Zhang M, Jiang Q, Wang M, Shi X. Short-term exposure to ozone and cause-specific mortality risks and thresholds in China: Evidence from nationally representative data, 2013-2018. ENVIRONMENT INTERNATIONAL 2023; 171:107666. [PMID: 36470122 DOI: 10.1016/j.envint.2022.107666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ambient ozone pollution is steadily increasing and becoming a major environmental risk factor contributing to the global disease burden. Although the association between short-term ozone exposure and mortality has been widely studied, results are mostly reported on deaths from non-accidental or total cardiopulmonary disease rather than a spectrum of causes. In particular, a knowledge gap still exists for the potential thresholds in mortality risks. METHODS This nationwide time-series study in China included 323 counties totaling 230,266,168 residents. Daily maximum 8-hour average was calculated as the ozone exposure metric. A two-stage statistical approach was adopted to assess ozone effects on 21 cause-specific deaths for 2013-2018. The subset approach and threshold approach were utilized to explore potential thresholds, and stratification analysis was used to evaluate population susceptibility. RESULTS On average, the annual mean ozone concentration was 93.4 μg/m3 across 323 counties. A 10-μg/m3 increase in lag 0-1 day of ozone was associated with increases of 0.12 % in mortality risk from non-accidental disease, 0.11 % from circulatory disease, 0.09 % from respiratory disease, 0.29 % from urinary system disease, and 0.20 % from nervous system disease. There may be a "safe" threshold in the ozone-mortality association, which may be between 60 and 100 μg/m3, and vary by cause of death. Women and older adults (especially those over 75) are more affected by short-term ozone exposure. Populations in North China had a higher risk of ozone-related circulatory mortality, while populations in South China had a higher risk of ozone-related respiratory mortality. CONCLUSIONS National findings link short-term ozone exposure to premature death from circulatory, respiratory, neurological, and urinary diseases, and provide evidence for a potential "safe" threshold in the association of ozone and mortality. These findings have important implications for helping policymakers tighten the relevant air quality standards and developing early warning systems for public health protection in China.
Collapse
Affiliation(s)
- Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mike Z He
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jing Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengxue Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qizheng Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Menghan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
15
|
Guo C, Chang LY, Wei X, Lin C, Zeng Y, Yu Z, Tam T, Lau AKH, Huang B, Lao XQ. Multi-pollutant air pollution and renal health in Asian children and adolescents: An 18-year longitudinal study. ENVIRONMENTAL RESEARCH 2022; 214:114144. [PMID: 35998701 DOI: 10.1016/j.envres.2022.114144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Few studies have examined the effects of multi-pollutant air pollution on renal health, especially in children and adolescents. This study investigated the association between long-term ambient air pollution exposure and renal health in Asian children and adolescents. METHODS This study included 10,942 children and adolescents from Taiwan and Hong Kong between 2000 and 2017. PM2.5, NO2 and O3 concentrations were estimated using satellite-based spatiotemporal regression models. Two-year average concentrations, those of the year of visit and the preceding year, were used. Linear mixed models were used to examine the association between air pollution and yearly changes in estimated glomerular filtration rate (eGFR). Cox regression models with time-dependent covariates were used to examine the association between air pollution and the development of chronic kidney disease (CKD). RESULTS Median age of the participants was 19 years (range: 2-25). The overall average concentration of PM2.5, NO2 and O3 was 26.7 μg/m3, 44.1 μg/m3 and 51.1 μg/m3, respectively. The mean yearly change in eGFR was 0.37 μL/min/1.73 m2 and the incidence rate of CKD was 6.8 per 1,000 person-years. In single-pollutant models, each 10 μg/m3 increase in PM2.5 was associated with a 0.45 μL/min/1.73 m2 [95% confidence interval (CI): 0.28-0.63] reduction in the yearly increase in eGFR and 53% [hazard ratio (HR): 1.53 (95%CI: 1.07-2.2)] greater risk of incident CKD. Each 10 μg/m3 increase in NO2 was associated with a 7% [HR (95%CI): 1.07 (1.00-1.15)] higher risk of incident CKD, while an equivalent increase in O3 was associated with a 19% [HR (95%CI): 0.81 (0.67-0.98)] lower risk. CONCLUSIONS Long-term exposure to ambient PM2.5 and NO2 was associated with a slower growth of eGFR and a higher risk of incident CKD in children and adolescents. Our findings suggest that air pollution control in early life is imperative to improve lifelong renal health and alleviate the CKD burden.
Collapse
Affiliation(s)
- Cui Guo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Xianglin Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Changqing Lin
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yiqian Zeng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Henan, China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bo Huang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; Shenzhen Research Institute of the Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
16
|
Liu H, Shao X, Jiang X, Liu X, Bai P, Lin Y, Chen J, Hou F, Cui Z, Zhang Y, Lu C, Liu H, Zhou S, Yu P. Joint exposure to outdoor ambient air pollutants and incident chronic kidney disease: A prospective cohort study with 90,032 older adults. Front Public Health 2022; 10:992353. [PMID: 36187661 PMCID: PMC9524146 DOI: 10.3389/fpubh.2022.992353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023] Open
Abstract
Objectives There is paucity of studies to investigate the association between combined and long-term exposure to air pollution and the risk of incident chronic kidney disease (CKD) in older adults. Methods A prospective cohort of 90,032 older adults who did not have CKD at baseline were followed up from January 1, 2017, to December 31, 2019. Various pollutant data, including particulate matter with diameters ≤ 2.5 mm (PM2.5), ≤ 10 mm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), Ozone (O3), and carbon monoxide (CO), from all monitoring stations in Binhai New Area, Tianjin were considered in calculating the mean exposure concentration of each pollutant over 2 years. By summing each pollutant concentration weighted by the regression coefficients, we developed an air pollution score that assesses the combined exposure of these air pollutants. Due to the strong correlation between air pollutants, Principal Component Analysis (PCA) score was also developed. The association between air pollutants and incident CKD in the elderly was analyzed. Results A total of 90,032 subjects participated in this study with a median follow-up of 545 days. Among them, 22,336 (24.8%) developed CKD. The HR (95% CI) for air pollution score and incidence of CKD was 1.062 (1.060-1.063) and p <0.001 after adjusting for all confounders. The adjusted HRs for the quartile subgroups of combined air pollution score were: Q2: 1.064 (1.013-1.117); Q3: 1.141 (1.088-1.198); and Q4: 3.623 (3.482-3.770), respectively (p for trend <0.001). The adjusted HRs for the quartile subgroups of air quality index (AQI) were: Q2: 1.035 (0.985-1.086); Q3: 1.145 (1.091-1.201); and Q4: 3.603 (3.463-3.748), respectively (p for trend <0.001). When the risk score was over 86.9, it significantly rose in a steep curve. The subgroup analysis showed that male, younger or exercise were more likely to develop CKD. Conclusion Combined air pollution score, AQI, and PCA score were associated with an increased risk of CKD in an exposure-response relationship. Our current results might also provide evidence for developing environmental protection policies.
Collapse
Affiliation(s)
- Hongyan Liu
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xian Shao
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xi Jiang
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Xiaojie Liu
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pufei Bai
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Yao Lin
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Jiamian Chen
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Fang Hou
- Community Health Service Center, Tianjin, China
| | - Zhuang Cui
- Department of Epidemiology and Health Statistics, Tianjin Medical University, Tianjin, China
| | | | - Chunlan Lu
- Community Health Service Center, Tianjin, China
| | - Hao Liu
- Community Health Service Center, Tianjin, China
| | - Saijun Zhou
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China
| | - Pei Yu
- National Health Commission (NHC) Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, China,*Correspondence: Pei Yu
| |
Collapse
|
17
|
Hill C, Avila-Palencia I, Maxwell AP, Hunter RF, McKnight AJ. Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease. FRONTIERS IN NEPHROLOGY 2022; 2:923068. [PMID: 37674991 PMCID: PMC10479694 DOI: 10.3389/fneph.2022.923068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/30/2022] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) was the 12th leading cause of death globally in 2017 with the prevalence of CKD estimated at ~9%. Early detection and intervention for CKD may improve patient outcomes, but standard testing approaches even in developed countries do not facilitate identification of patients at high risk of developing CKD, nor those progressing to end-stage kidney disease (ESKD). Recent advances in CKD research are moving towards a more personalised approach for CKD. Heritability for CKD ranges from 30% to 75%, yet identified genetic risk factors account for only a small proportion of the inherited contribution to CKD. More in depth analysis of genomic sequencing data in large cohorts is revealing new genetic risk factors for common diagnoses of CKD and providing novel diagnoses for rare forms of CKD. Multi-omic approaches are now being harnessed to improve our understanding of CKD and explain some of the so-called 'missing heritability'. The most common omic analyses employed for CKD are genomics, epigenomics, transcriptomics, metabolomics, proteomics and phenomics. While each of these omics have been reviewed individually, considering integrated multi-omic analysis offers considerable scope to improve our understanding and treatment of CKD. This narrative review summarises current understanding of multi-omic research alongside recent experimental and analytical approaches, discusses current challenges and future perspectives, and offers new insights for CKD.
Collapse
Affiliation(s)
| | | | | | | | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
18
|
Chen Y, Cao F, Xiao JP, Fang XY, Wang XR, Ding LH, Wang DG, Pan HF. Emerging role of air pollution in chronic kidney disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52610-52624. [PMID: 34448134 DOI: 10.1007/s11356-021-16031-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Chronic kidney disease (CKD), a global disease burden related to high rates of incidence and mortality, manifests as progressive and irretrievable nephron loss and decreased kidney regeneration capacity. Emerging studies have suggested that exposure to air pollution is closely relevant to increased risk of CKD, CKD progression and end-stage kidney disease (ESKD). Inhaled airborne particles may cause vascular injury, intraglomerular hypertension, or glomerulosclerosis through non-hemodynamic and hemodynamic factors with multiple complex interactions. The mechanisms linking air pollutants exposure to CKD include elevated blood pressure, worsening oxidative stress and inflammatory response, DNA damage and abnormal metabolic changes to aggravate kidney damage. In the present review, we will discuss the epidemiologic observations linking air pollutants exposure to the incidence and progression of CKD. Then, we elaborate the potential roles of several air pollutants including particulate matter and gaseous co-pollutants, environmental tobacco smoke, and gaseous heavy metals in its pathogenesis. Finally, this review outlines the latent effect of air pollution in ESKD patients undergoing dialysis or renal transplant, kidney cancer and other kidney diseases. The information obtained may be beneficial for further elucidating the pathogenesis of CKD and making proper preventive strategies for this disease.
Collapse
Affiliation(s)
- Yue Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, China
| | - Jian-Ping Xiao
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| |
Collapse
|