1
|
Hu Q, Wang S, Zhang W, Qu J, Liu GH. Unraveling brain aging through the lens of oral microbiota. Neural Regen Res 2025; 20:1930-1943. [PMID: 38993126 DOI: 10.4103/nrr.nrr-d-23-01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
The oral cavity is a complex physiological community encompassing a wide range of microorganisms. Dysbiosis of oral microbiota can lead to various oral infectious diseases, such as periodontitis and tooth decay, and even affect systemic health, including brain aging and neurodegenerative diseases. Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration, indicating potential avenues for intervention strategies. In this review, we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases, and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration. We also highlight advances in therapeutic development grounded in the realm of oral microbes, with the goal of advancing brain health and promoting healthy aging.
Collapse
Affiliation(s)
- Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Aging Biomarker Consortium, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
2
|
Wu YF, Han BC, Lin WY, Wang SY, Linn TY, Hsu HW, Wen CC, Liu HY, Chen YH, Chang WJ. Efficacy of antimicrobial peptide P113 oral health care products on the reduction of oral bacteria number and dental plaque formation in a randomized clinical assessment. J Dent Sci 2024; 19:2367-2376. [PMID: 39347072 PMCID: PMC11437278 DOI: 10.1016/j.jds.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/10/2024] [Indexed: 10/01/2024] Open
Abstract
Background/purpose Dental plaque is the main cause leading to the dental caries and periodontal diseases. The main purpose of this study was to test the efficacy of oral spray containing the antimicrobial peptide P-113 on the reduction of oral bacteria number and dental plaque formation in a randomized clinical assessment. Materials and methods This study was divided into two parts. In Part A, we investigated the user experiences with the P-113 containing oral spray. In part B, 14 subjects in the experimental group used the P-113-containing oral spray, while 14 subjects in the control group used a placebo without the P-113 in a 4-week clinical trial. Participants were asked to use the P-113-containing oral spray or placebo 3 times per day and 5 times per use. Moreover, 3 check-ups and 2 washouts were carried out to evaluate the DMFT score, dental plaque weight, dental plaque index, and gingival index. Results In part A, up to 91.8% of the subjects in the experimental group were satisfied with the use of the P-113-containing oral spray. In part B, based on our PacBio SMRT sequencing platform and DADA2 analysis, the numbers of Streptococcus and Porphyromonas in the experimental group were lower than those in the control group. In addition, decreased dental plaque weight, dental plaque index, and gingival index were all observed in the experimental group. Conclusion The P-113-containing oral spray has the potential to reduce the dental caries and periodontal disease-related bacteria and to control the dental plaque formation.
Collapse
Affiliation(s)
- Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Bor-Cheng Han
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Yi Lin
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Sin-Yu Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thu Ya Linn
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsueh- Wen Hsu
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Chih-Chieh Wen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yi Liu
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Research Center of Health Equity, College of Public Health, Taipei Medical University, New Taipei City, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, New Taipei City, Taiwan
| |
Collapse
|
3
|
Kerstens R, Ng YZ, Pettersson S, Jayaraman A. Balancing the Oral-Gut-Brain Axis with Diet. Nutrients 2024; 16:3206. [PMID: 39339804 PMCID: PMC11435118 DOI: 10.3390/nu16183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The oral microbiota is the second largest microbial community in humans. It contributes considerably to microbial diversity and health effects, much like the gut microbiota. Despite physical and chemical barriers separating the oral cavity from the gastrointestinal tract, bidirectional microbial transmission occurs between the two regions, influencing overall host health. Method: This review explores the intricate interplay of the oral-gut-brain axis, highlighting the pivotal role of the oral microbiota in systemic health and ageing, and how it can be influenced by diet. Results: Recent research suggests a relationship between oral diseases, such as periodontitis, and gastrointestinal problems, highlighting the broader significance of the oral-gut axis in systemic diseases, as well as the oral-gut-brain axis in neurological disorders and mental health. Diet influences microbial diversity in the oral cavity and the gut. While certain diets/dietary components improve both gut and oral health, others, such as fermentable carbohydrates, can promote oral pathogens while boosting gut health. Conclusions: Understanding these dynamics is key for promoting a healthy oral-gut-brain axis through dietary interventions that support microbial diversity and mitigate age-related health risks.
Collapse
Affiliation(s)
- Rebecca Kerstens
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yong Zhi Ng
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Duke-NUS Medical School, 8 College Rd., Singapore 169857, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Faculty of Medical Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
4
|
Chen JT, Tsai S, Chen MH, Pitiphat W, Matangkasombut O, Chiou JM, Han ML, Chen JH, Chen YC. Association between oral health and cognitive impairment in older adults: Insights from a Six-year prospective cohort study. J Dent 2024; 147:105088. [PMID: 38801941 DOI: 10.1016/j.jdent.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE This study aims to investigate the relationships between four baseline oral conditions (periodontal status, dental caries, tooth wear, and dentition) and repeated global cognition or domain-specific cognition (memory, executive function, attention, and verbal fluency) in non-demented older adults over time. METHODS This prospective cohort study (2011-2019) enrolled 516 non-demented community-dwelling older adults (age ≥ 65) to explore the association between oral health and cognitive function. Global and domain-specific cognition were assessed biennially (four repeats) using a battery of neuropsychological tests. The baseline oral health conditions were examined, including periodontal status, dental caries, tooth wear, and dentition. The association of these oral conditions with cognition was evaluated by generalized linear mixed models. Stratified analyses were performed by important covariates. RESULTS Over time, dental caries was associated with poor memory in two different logical memory tests (β^= -0.06 and β^= -0.04). Incomplete dentition with less than 28 teeth was associated with poor performance in attention (β^= -0.05) and verbal fluency (β^= -0.03). These associations became more evident in those with an elevated inflammatory marker (IL-6, β^= -0.11 to -0.08). In contrast, tooth wear was associated with better memory in two different logical memory tests (β^= 0.33 and β^= 0.36) and better executive function (β^= 0.06) over time, and this association became more evident in those with the lowest inflammatory marker (IL-6, β^= 0.10). CONCLUSIONS Dental caries and incomplete dentition were associated with poor memory, attention, and verbal fluency performance. Conversely, tooth wear was associated with better memory performance and executive function. CLINICAL SIGNIFICANCE For early prevention of dementia, an evaluation of multiple dental and periodontal status in older adults helps predict the risk of dementia in the preclinical phase. Maintaining intact tooth structure without caries progression and eventually tooth loss may help prevent the worsening of memory, attention, and verbal fluency over time.
Collapse
Affiliation(s)
- Jung-Tsu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No.1, Changde St., Taipei 100229, Taiwan; Department of Dentistry, National Taiwan University Hospital, No.1, Changde St., Taipei 100229, Taiwan
| | - Stephanie Tsai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No.1, Changde St., Taipei 100229, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No.1, Changde St., Taipei 100229, Taiwan; Department of Dentistry, National Taiwan University Hospital, No.1, Changde St., Taipei 100229, Taiwan
| | - Waranuch Pitiphat
- Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Oranart Matangkasombut
- Department of Microbiology and Center of Excellence on Oral Microbiology, Chulalongkorn University, Henri Dunant Road, Pathumwan, Bangkok 10330, Thailand; Research Laboratory of Biotechnology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Jeng-Min Chiou
- Institute of Statistics and Data Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106216, Taiwan
| | - Ming-Lun Han
- Department of Internal Medicine, College of Medicine, National Taiwan University, No.1, Jen Ai Road Section 1, Taipei 100233, Taiwan
| | - Jen-Hau Chen
- Department of Internal Medicine, National Taiwan University Hospital, No.1, Changde St., Taipei 100229, Taiwan; Department of Geriatrics and Gerontology, National Taiwan University Hospital, No.1, Changde St., Taipei 100229, Taiwan.
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17, Xuzhou Road, Taipei 100025, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Road, Taipei 100025, Taiwan.
| |
Collapse
|
5
|
Lin TY, Wang PY, Lin CY, Hung SC. Association of the oral microbiome with cognitive function among older adults: NHANES 2011-2012. J Nutr Health Aging 2024; 28:100264. [PMID: 38772098 DOI: 10.1016/j.jnha.2024.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND An association between the gut microbiome and cognitive function has been demonstrated in prior studies. However, whether the oral microbiome, the second largest microbial habitant in humans, has a role in cognition remains unclear. DESIGN, SETTING, PARTICIPANTS Using weighted data from the 2011 to 2012 National Health and Nutrition Examination Survey, we examined the association between oral microbial composition and cognitive function in older adults. The oral microbiome was characterized by 16S ribosomal RNA gene sequencing. Cognitive status was assessed using the Consortium to Establish a Registry for Alzheimer's Disease immediate recall and delayed recall, Animal Fluency Test, and Digit Symbol Substitution Test (DSST). Subjective memory changes over 12 months were also assessed. Linear and logistic regression models were conducted to quantify the association of α-diversity with different cognitive measurements controlling for potential confounding variables. Differences in β-diversity were analyzed using permutational analysis of variance. RESULTS A total of 605 participants aged 60-69 years were included in the analysis. Oral microbial α-diversity was significantly and positively correlated with DSST (β, 2.92; 95% CI, 1.01-4.84). Participants with higher oral microbial α-diversity were more likely to have better cognitive performance status based on DSST (adjusted odds ratio, 2.35; 95% CI, 1.28-4.30) and were less likely to experience subjective memory changes (adjusted odds ratio, 0.43; 95% CI, 0.25-0.74). In addition, β-diversity was statistically significant for the cognitive performance status based on DSST (P = 0.031) and subjective memory changes (P = 0.023). CONCLUSIONS Oral microbial composition was associated with executive function and subjective memory changes among older adults among older U.S. adults in a nationally representative population sample. Oral dysbiosis is a potential biomarker or therapeutic target for cognitive decline. Further work is needed to elucidate the mechanisms underpinning the association between the oral microbiome and cognitive function.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan; PhD Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan; PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan; Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu, Taiwan; and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
6
|
Chen L, Li X, Liu J, Hou Z, Wei Y, Chen M, Wang B, Cao H, Qiu R, Zhang Y, Ji X, Zhang P, Xue M, Qiu L, Wang L, Li H. Distinctive subgingival microbial signatures in older adults with different levels of cognitive function. J Clin Periodontol 2024; 51:1066-1080. [PMID: 38769711 DOI: 10.1111/jcpe.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
AIM To examine association between subgingival microbial signatures and levels of cognitive impairment in older adults. MATERIALS AND METHODS We analysed subgingival plaque samples and 16S ribosomal RNA sequences for microbiota among 165 participants (normal controls [NCs]: 40, subjective cognitive decline [SCD]: 40, mild cognitive impairment [MCI]: 49 and dementia: 36). RESULTS The bacterial richness was lower among individuals with worse cognitive function, and subgingival microbial communities differed significantly among the four groups. Declining cognitive function was associated with decreasing relative abundance of genera Capnocytophaga, Saccharibacteria_genera_incertae_sedis, Lautropia and Granulicatella, and increasing abundance of genus Porphyromonas. Moreover, there were differentially abundant genera among the groups. Random forest model based on subgingival microbiota could distinguish between cognitive impairment and NC (AUC = 0.933, 95% confidence interval 0.873-0.992). Significant correlations were observed between oral microbiota and sex, Montreal Cognitive Assessment (MoCA) score and Mini-Mental State Examination score. Partial correlation analysis showed that Leptotrichia and Burkholderia were closely negatively associated with the MoCA score after adjusting for multiple covariates. Gene function was not significantly different between SCD and NC groups, whereas three homozygous genes were altered in MCI patients and two in dementia patients. CONCLUSIONS This is the first study to demonstrate an association between the composition, function and metabolic pathways of subgingival microbiota and different levels of cognitive function among older individuals. Future cohort studies should assess its diagnostic usefulness for cognitive impairment.
Collapse
Affiliation(s)
- Lili Chen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Nursing, Fujian Provincial Hospital, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Yongbao Wei
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Mingfeng Chen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Huizhen Cao
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongyan Qiu
- Department of Surgery, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Yuping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Mianxiang Xue
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Linlin Qiu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Linlin Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Teng Y, Feng S, Gu Z, Hou C, Xu H, Li Z, Zhao J, Fang Y, Ma X, Liu H, Guo J, Wang J, Ding H, Lu W. Comparison of microbiota structure in reproductive tract of Yanbian cattle and Yanhuang cattle. Front Microbiol 2024; 15:1419914. [PMID: 39144224 PMCID: PMC11322576 DOI: 10.3389/fmicb.2024.1419914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
Microbiota in the reproductive tract of cattle play a vital role in maintaining normal reproduction. However, the information on microbiota in different parts of reproductive tracts with different genetic background is few. The aim of the present study was to describe and compare the microbiota in vagina, cervix and uterus of Yanbian cattle and Yanhuang cattle. The results showed that microbial diversity increases from the vagina to the uterus. The top three bacterial phyla in bovine reproductive tract were Proteobacteria, Firmicutes and Bacteroidetes, accounting for more than 85%. From the vagina to the uterus, the relative abundance of Proteobacteria gradually decreased, while that of Firmicutes gradually increased. Phylum-level Firmicutes and genus-level UCG_010 were significantly enriched in the uterus of Yanbian cattle and Yanhuang cattle. Comparing the same parts of the two breeds, it was found that there was no significant difference in alpha diversity, but significant differences in beta diversity. In addition, microbiota with significant differences in the relative abundance of the reproductive tract were found. These findings lay a foundation for a comprehensive understanding of the structure of the genital tract microbiota of cows and its regulatory mechanisms.
Collapse
Affiliation(s)
- Yunkun Teng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Shuai Feng
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuoxuan Gu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chunqi Hou
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haoran Xu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhiqiang Li
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yi Fang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xin Ma
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Guo
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - He Ding
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
8
|
Dai X, Liang R, Dai M, Li X, Zhao W. Smoking Impacts Alzheimer's Disease Progression Through Oral Microbiota Modulation. Mol Neurobiol 2024:10.1007/s12035-024-04241-1. [PMID: 38795302 DOI: 10.1007/s12035-024-04241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
Alzheimer's disease (AD) is an important public health challenge with a limited understanding of its pathogenesis. Smoking is a significant modifiable risk factor for AD progression, and its specific mechanism is often interpreted from a toxicological perspective. However, microbial infections also contribute to AD, with oral microbiota playing a crucial role in its progression. Notably, smoking alters the ecological structure and pathogenicity of the oral microbiota. Currently, there is no systematic review or summary of the relationship between these three factors; thus, understanding this association can help in the development of new treatments. This review summarizes the connections between smoking, AD, and oral microbiota from existing research. It also explores how smoking affects the occurrence and development of AD through oral microbiota, and examines treatments for oral microbiota that delay the progression of AD. Furthermore, this review emphasizes the potential of the oral microbiota to act as a biomarker for AD. Finally, it considers the feasibility of probiotics and oral antibacterial therapy to expand treatment methods for AD.
Collapse
Affiliation(s)
- Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Liang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Manqiong Dai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyu Li
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanghong Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Buetas E, Jordán-López M, López-Roldán A, D'Auria G, Martínez-Priego L, De Marco G, Carda-Diéguez M, Mira A. Full-length 16S rRNA gene sequencing by PacBio improves taxonomic resolution in human microbiome samples. BMC Genomics 2024; 25:310. [PMID: 38528457 DOI: 10.1186/s12864-024-10213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Sequencing variable regions of the 16S rRNA gene (≃300 bp) with Illumina technology is commonly used to study the composition of human microbiota. Unfortunately, short reads are unable to differentiate between highly similar species. Considering that species from the same genus can be associated with health or disease it is important to identify them at the lowest possible taxonomic rank. Third-generation sequencing platforms such as PacBio SMRT, increase read lengths allowing to sequence the whole gene with the maximum taxonomic resolution. Despite its potential, full length 16S rRNA gene sequencing is not widely used yet. The aim of the current study was to compare the sequencing output and taxonomic annotation performance of the two approaches (Illumina short read sequencing and PacBio long read sequencing of 16S rRNA gene) in different human microbiome samples. DNA from saliva, oral biofilms (subgingival plaque) and faeces of 9 volunteers was isolated. Regions V3-V4 and V1-V9 were amplified and sequenced by Illumina Miseq and by PacBio Sequel II sequencers, respectively. RESULTS With both platforms, a similar percentage of reads was assigned to the genus level (94.79% and 95.06% respectively) but with PacBio a higher proportion of reads were further assigned to the species level (55.23% vs 74.14%). Regarding overall bacterial composition, samples clustered by niche and not by sequencing platform. In addition, all genera with > 0.1% abundance were detected in both platforms for all types of samples. Although some genera such as Streptococcus tended to be observed at higher frequency in PacBio than in Illumina (20.14% vs 14.12% in saliva, 10.63% vs 6.59% in subgingival plaque biofilm samples) none of the differences were statistically significant when correcting for multiple testing. CONCLUSIONS The results presented in the current manuscript suggest that samples sequenced using Illumina and PacBio are mostly comparable. Considering that PacBio reads were assigned at the species level with higher accuracy than Illumina, our data support the use of PacBio technology for future microbiome studies, although a higher cost is currently required to obtain an equivalent number of reads per sample.
Collapse
Affiliation(s)
- Elena Buetas
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
| | - Marta Jordán-López
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Andrés López-Roldán
- Department of Periodontics, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Giuseppe D'Auria
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Llucia Martínez-Priego
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | - Griselda De Marco
- Sequencing and Bioinformatics Service, Fundació Per Al Foment de La Investigació Sanitària I Biomèdica de La Comunitat Valenciana (FISABIO-Salut Pública), València, Spain
| | | | - Alex Mira
- Genomics & Health Department, FISABIO Foundation, Valencia, Spain
- CIBER Center for Epidemiology and Public Health, Madrid, Spain
| |
Collapse
|
10
|
Qiu C, Zhou W, Shen H, Wang J, Tang R, Wang T, Xie X, Hong B, Ren R, Wang G, Song Z. Profiles of subgingival microbiomes and gingival crevicular metabolic signatures in patients with amnestic mild cognitive impairment and Alzheimer's disease. Alzheimers Res Ther 2024; 16:41. [PMID: 38373985 PMCID: PMC10875772 DOI: 10.1186/s13195-024-01402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The relationship between periodontitis and Alzheimer's disease (AD) has attracted more attention recently, whereas profiles of subgingival microbiomes and gingival crevicular fluid (GCF) metabolic signatures in AD patients have rarely been characterized; thus, little evidence exists to support the oral-brain axis hypothesis. Therefore, our study aimed to characterize both the microbial community of subgingival plaque and the metabolomic profiles of GCF in patients with AD and amnestic mild cognitive impairment (aMCI) for the first time. METHODS This was a cross-sectional study. Clinical examinations were performed on all participants. The microbial community of subgingival plaque and the metabolomic profiles of GCF were characterized using the 16S ribosomal RNA (rRNA) gene high-throughput sequencing and liquid chromatography linked to tandem mass spectrometry (LC-MS/MS) analysis, respectively. RESULTS Thirty-two patients with AD, 32 patients with aMCI, and 32 cognitively normal people were enrolled. The severity of periodontitis was significantly increased in AD patients compared with aMCI patients and cognitively normal people. The 16S rRNA gene sequencing results showed that the relative abundances of 16 species in subgingival plaque were significantly correlated with cognitive function, and LC-MS/MS analysis identified a total of 165 differentially abundant metabolites in GCF. Moreover, multiomics Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) analysis revealed that 19 differentially abundant metabolites were significantly correlated with Veillonella parvula, Dialister pneumosintes, Leptotrichia buccalis, Pseudoleptotrichia goodfellowii, and Actinomyces massiliensis, in which galactinol, sn-glycerol 3-phosphoethanolamine, D-mannitol, 1 h-indole-1-pentanoic acid, 3-(1-naphthalenylcarbonyl)- and L-iditol yielded satisfactory accuracy for the predictive diagnosis of AD progression. CONCLUSIONS This is the first combined subgingival microbiome and GCF metabolome study in patients with AD and aMCI, which revealed that periodontal microbial dysbiosis and metabolic disorders may be involved in the etiology and progression of AD, and the differential abundance of the microbiota and metabolites may be useful as potential markers for AD in the future.
Collapse
Affiliation(s)
- Che Qiu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Wei Zhou
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Jinzun Road No.115, Pudong District, Shanghai, 200125, People's Republic of China
| | - Hui Shen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Jintao Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Ran Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Tao Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, South Wanping Road No.600, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Xinyi Xie
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China
| | - Bo Hong
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, South Wanping Road No.600, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Rujing Ren
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Ruijin 2nd Road No.197, Huangpu District, Shanghai, 200025, People's Republic of China.
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China.
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Zhizaoju Road No.639, Huangpu District, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
11
|
Pruntel SM, van Munster BC, de Vries JJ, Vissink A, Visser A. Oral Health as a Risk Factor for Alzheimer Disease. J Prev Alzheimers Dis 2024; 11:249-258. [PMID: 38230738 PMCID: PMC10994994 DOI: 10.14283/jpad.2023.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 01/18/2024]
Abstract
In patients with Alzheimer's disease pathophysiological changes of the brain that initiate the onset of Alzheimer's disease include accumulation of amyloid-β plaques and phosphorylation of tau-tangles. A rather recently considered risk factor for the onset of Alzheimer's disease is poor oral health. The aim of this systematic review of the literature was to assess the potential association(s) of oral health as a risk factor for the onset of Alzheimer's disease. After a systematic search of Pubmed, Embase and Web of Science. A total of 1962 studies were assessed, of which 17 studies demonstrated possible associations between oral health diseases and Alzheimer's disease. 4 theories could be distinguished that describe the possible links between oral health and the development or onset of Alzheimer's disease; 1) role of pathogens, 2) role of inflammatory mediators, 3) role of APOE alleles and 4) role of Aβ peptide. The main common denominator of all the theories is the neuroinflammation due to poor oral health. Yet, there is insufficient evidence to prove a link due to the diversity of the designs used and the quality of the study design of the included studies. Therefore, further research is needed to find causal links between oral health and neuroinflammation that possibly can lead to the onset of Alzheimer's disease with the future intention to prevent cognitive decline by better dental care.
Collapse
Affiliation(s)
- S M Pruntel
- Anita Visser, Department of Gerodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, Groningen, Groningen, 9713 AV, The Netherlands, Tel: 050 361 3840, E-mail:
| | | | | | | | | |
Collapse
|
12
|
Moghadam MT, Mojtahedi A, Bakhshayesh B, Babakhani S, Ajorloo P, Shariati A, Mirzaei M, Heidarzadeh S, Jazi FM. The Effect of Bacterial Composition Shifts in the Oral Microbiota on Alzheimer's Disease. Curr Mol Med 2024; 24:167-181. [PMID: 35986539 DOI: 10.2174/1566524023666220819140748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD), a neurological disorder, despite significant advances in medical science, has not yet been definitively cured, and the exact causes of the disease remain unclear. Due to the importance of AD in the clinic, large expenses are spent annually to deal with this neurological disorder, and neurologists warn of an increase in this disease in elderly in the near future. It has been believed that microbiota dysbiosis leads to Alzheimer's as a multi-step disease. In this regard, the presence of footprints of perturbations in the oral microbiome and the predominance of pathogenic bacteria and their effect on the nervous system, especially AD, is a very interesting topic that has been considered by researchers in the last decade. Some studies have looked at the mechanisms by which oral microbiota cause AD. However, many aspects of this interaction are still unclear as to how oral microbiota composition can contribute to this disease. Understanding this interaction requires extensive collaboration by interdisciplinary researchers to explore all aspects of the issue. In order to reveal the link between the composition of the oral microbiota and this disease, researchers from various domains have sought to explain the mechanisms of shift in oral microbiota in AD in this review.
Collapse
Affiliation(s)
- Majid Taati Moghadam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Babak Bakhshayesh
- Department of Neurology, Neuroscience Research Center, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sajad Babakhani
- Department of Microbiology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Parisa Ajorloo
- Department of Biology, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mehrnaz Mirzaei
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Heidarzadeh
- Department of Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Masjedian Jazi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Bell V, Rodrigues AR, Antoniadou M, Peponis M, Varzakas T, Fernandes T. An Update on Drug-Nutrient Interactions and Dental Decay in Older Adults. Nutrients 2023; 15:4900. [PMID: 38068758 PMCID: PMC10708094 DOI: 10.3390/nu15234900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the global demographic landscape has undergone a discernible shift that has been characterised by a progressive increase in the proportion of elderly individuals, indicative of an enduring global inclination toward extended lifespans. The aging process, accompanied by physiological changes and dietary patterns, contributes to detrimental deviations in micronutrient consumption. This vulnerable aging population faces heightened risks, including dental caries, due to structural and functional modifications resulting from insufficient nutritional sustenance. Factors such as physiological changes, inadequate nutrition, and the prevalence of multiple chronic pathologies leading to polypharmacy contribute to the challenge of maintaining an optimal nutritional status. This scenario increases the likelihood of drug interactions, both between medications and with nutrients and the microbiome, triggering complications such as dental decay and other pathologies. Since the drug industry is evolving and new types of food, supplements, and nutrients are being designed, there is a need for further research on the mechanisms by which drugs interfere with certain nutrients that affect homeostasis, exemplified by the prevalence of caries in the mouths of older adults. Infectious diseases, among them dental caries, exert serious impacts on the health and overall quality of life of the elderly demographic. This comprehensive review endeavours to elucidate the intricate interplay among drugs, nutrients, the microbiome, and the oral cavity environment, with the overarching objective of mitigating the potential hazards posed to both the general health and dental well-being of older adults. By scrutinising and optimising these multifaceted interactions, this examination aims to proactively minimise the susceptibility of the elderly population to a spectrum of health-related issues and the consequences associated with dental decay.
Collapse
Affiliation(s)
- Victoria Bell
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.B.)
| | - Ana Rita Rodrigues
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (V.B.)
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, GR-15772 Athens, Greece; (M.A.); (M.P.)
- CSAP Executive Mastering Program in Systemic Management, University of Piraeus, GR-18534 Piraeus, Greece
| | - Marios Peponis
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, GR-15772 Athens, Greece; (M.A.); (M.P.)
| | - Theodoros Varzakas
- Food Science and Technology, University of the Peloponnese, GR-22100 Kalamata, Greece
| | - Tito Fernandes
- CIISA, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| |
Collapse
|
14
|
Fu KL, Chiu MJ, Wara-Aswapati N, Yang CN, Chang LC, Guo YL, Ni YH, Chen YW. Oral microbiome and serological analyses on association of Alzheimer's disease and periodontitis. Oral Dis 2023; 29:3677-3687. [PMID: 35950713 DOI: 10.1111/odi.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To investigate the association between Alzheimer's disease (AD) and periodontitis in the aspects of periodontal status, serological markers, and oral microbiome. MATERIALS AND METHODS Twenty AD and 20 healthy subjects were enrolled in this age- and gender-matched case-control study. Clinical periodontal parameters and serum biomarkers, including amyloid β42 (Aβ42 ), Tau, phosphorylated Tau (pTau), triglyceride, pro-inflammatory cytokines, and anti-Porphyromonas gingivalis lipopolysaccharide (LPS) antibody were examined. The saliva samples were analyzed for oral microbiome composition. RESULTS Alzheimer's disease patients with Clinical Dementia Rating (CDR) ≥1 exhibited significantly more clinical attachment loss (CAL) than those with lower CDR. The levels of serum Tau protein, hsCRP and anti-P. gingivalis LPS antibody were markedly elevated in the AD group compared with the control group. Serum pTau protein level was positively correlated with anti-P. gingivalis LPS antibody titer. Moreover, the increased abundances of Capnocytophaga sp ora clone DZ074, Eubacterium infirmum, Prevotella buccae, and Selenomonas artemidis were detected in the AD group. Interestingly, serum levels of Aβ42, pTau, and anti-P. gingivalis LPS antibody were strongly related to the gene upregulation in human pathogen septicemia. CONCLUSIONS Our study suggested the association of periodontal infection and oral microbiome with AD. Further large-scale studies with longitudinal follow-up are warranted.
Collapse
Affiliation(s)
- Kuan-Lun Fu
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nawarat Wara-Aswapati
- Department of Periodontology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Cheng-Ning Yang
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| | - Li-Chun Chang
- Department of Internal Medicine, National Taiwan University Hospital and Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yue Leon Guo
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Children's Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital and Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
16
|
Liao Q, Li SZ, Tian FF, Huang K, Bi FF. No genetic causal association between dental caries and Alzheimer's disease: a bidirectional two-sample Mendelian randomization analysis. PeerJ 2023; 11:e15936. [PMID: 37637178 PMCID: PMC10460150 DOI: 10.7717/peerj.15936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background An increasing number of observational studies have suggested an association between dental caries and Alzheimer's disease (AD). The association between dental caries and Alzheimer's disease may be mediated by confounders or reverse causality. In this study, we conducted bidirectional two-sample Mendelian randomization (MR) to estimate the bidirectional causality between dental caries and AD. Materials and Methods Genome-wide association study (GWAS) summary statistics of dental caries were extracted from a published meta-analysis which included a total of 487,823 participants. GWAS datasets of AD and AD onset age were obtained from the FinnGen bank. A bidirectional two-sample analysis was performed to explore the causality between dental caries and AD. Results For the dental caries-AD causality estimation, there was no significant association between dental caries and AD, neither with the AD GWASs from the FinnGen database (OR: 1.041, p = 0.874) nor with those from the International Genomics of Alzheimer's Project (OR: 1.162, p = 0.409). In addition, the genetic susceptibility to dental caries was not related to the onset age of AD. No causality existed between dental caries and early-onset AD (OR: 0.515, p = 0.302) or late-onset AD (OR: 1.329, p = 0.347). For the AD-dental caries relationship, no causality was detected by the IVW method (OR: 1.000, p = 0.717). Findings from other MR methods were consistent. The pleiotropy test and sensitivity analysis confirmed the validity of these MR results. Conclusions In this bidirectional MR study, robust evidence to support a bidirectional causal effect between dental caries and AD from the GWAS results within large-scale European-descent populations was absent. Having dental caries would not alter the onset age of AD.
Collapse
Affiliation(s)
- Qiao Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si-Zhuo Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fa-Fa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang-Fang Bi
- Department of Neurology, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| |
Collapse
|
17
|
Weber C, Dilthey A, Finzer P. The role of microbiome-host interactions in the development of Alzheimer´s disease. Front Cell Infect Microbiol 2023; 13:1151021. [PMID: 37333848 PMCID: PMC10272569 DOI: 10.3389/fcimb.2023.1151021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer`s disease (AD) is the most prevalent cause of dementia. It is often assumed that AD is caused by an aggregation of extracellular beta-amyloid and intracellular tau-protein, supported by a recent study showing reduced brain amyloid levels and reduced cognitive decline under treatment with a beta-amyloid-binding antibody. Confirmation of the importance of amyloid as a therapeutic target notwithstanding, the underlying causes of beta-amyloid aggregation in the human brain, however, remain to be elucidated. Multiple lines of evidence point towards an important role of infectious agents and/or inflammatory conditions in the etiology of AD. Various microorganisms have been detected in the cerebrospinal fluid and brains of AD-patients and have thus been hypothesized to be linked to the development of AD, including Porphyromonas gingivalis (PG) and Spirochaetes. Intriguingly, these microorganisms are also found in the oral cavity under normal physiological conditions, which is often affected by multiple pathologies like caries or tooth loss in AD patients. Oral cavity pathologies are mostly accompanied by a compositional shift in the community of oral microbiota, mainly affecting commensal microorganisms and referred to as 'dysbiosis'. Oral dysbiosis seems to be at least partly mediated by key pathogens such as PG, and it is associated with a pro-inflammatory state that promotes the destruction of connective tissue in the mouth, possibly enabling the translocation of pathogenic microbiota from the oral cavity to the nervous system. It has therefore been hypothesized that dysbiosis of the oral microbiome may contribute to the development of AD. In this review, we discuss the infectious hypothesis of AD in the light of the oral microbiome and microbiome-host interactions, which may contribute to or even cause the development of AD. We discuss technical challenges relating to the detection of microorganisms in relevant body fluids and approaches for avoiding false-positives, and introduce the antibacterial protein lactoferrin as a potential link between the dysbiotic microbiome and the host inflammatory reaction.
Collapse
|
18
|
Mosaddad SA, Mahootchi P, Safari S, Rahimi H, Aghili SS. Interactions between systemic diseases and oral microbiota shifts in the aging community: A narrative review. J Basic Microbiol 2023. [PMID: 37173818 DOI: 10.1002/jobm.202300141] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
As a gateway to general health and a diverse microbial habitat, the oral cavity is colonized by numerous microorganisms such as bacteria, fungi, viruses, and archaea. Oral microbiota plays an essential role in preserving oral health. Besides, the oral cavity also significantly contributes to systemic health. Physiological aging influences all body systems, including the oral microbial inhabitants. The cited effect can cause diseases by forming dysbiotic communities. Since it has been demonstrated that microbial dysbiosis could disturb the symbiosis state between the host and the resident microorganism, shifting the condition toward a more pathogenic one, this study investigated how the oral microbial shifts in aging could associate with the development or progression of systemic diseases in older adults. The current study focused on the interactions between variations in the oral microbiome and prevalent diseases in older adults, including diabetes mellitus, Sjögren's syndrome, rheumatoid arthritis, pulmonary diseases, cardiovascular diseases, oral candidiasis, Parkinson's disease, Alzheimer's disease, and glaucoma. Underlying diseases can dynamically modify the oral ecology and the composition of its resident oral microbiome. Clinical, experimental, and epidemiological research suggests the associations of systemic disorders with bacteremia and inflammation after oral microbial changes in older adults.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mahootchi
- Department of Oral and Maxillofacial Diseases, School of Dentistry, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Sajedeh Safari
- Department of Prosthodontics, Islamic Azad University, Tehran, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Kazarina A, Kuzmicka J, Bortkevica S, Zayakin P, Kimsis J, Igumnova V, Sadovska D, Freimane L, Kivrane A, Namina A, Capligina V, Poksane A, Ranka R. Oral microbiome variations related to ageing: possible implications beyond oral health. Arch Microbiol 2023; 205:116. [PMID: 36920536 PMCID: PMC10016173 DOI: 10.1007/s00203-023-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
The global population is getting older due to a combination of longer life expectancy and declining birth rates. Growing evidence suggests that the oral microbiota composition and distribution may have a profound effect on how well we age. The purpose of this study was to investigate age-related oral microbiome variations of supragingival plaque and buccal mucosa samples in the general population in Latvia. Our results indicated significant difference between supragingival plaque bacterial profiles of three age groups (20-40; 40-60; 60 + years). Within supragingival plaque samples, age group 20-40 showed the highest bacterial diversity with a decline during the 40-60 age period and uprise again after the age of 60. Among other differences, the important oral commensal Neisseria had declined after the age of 40. Additionally, prevalence of two well-documented opportunistic pathogens Streptococcus anginosus and Gemella sanguinis gradually rose with age within our samples. Furthermore, supragingival plaque and buccal mucosa samples significantly differed in overall bacterial composition.
Collapse
Affiliation(s)
- Alisa Kazarina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia.
| | | | - Santa Bortkevica
- Riga Stradins University, 16 Dzirciema Str., Riga, LV-1007, Latvia
| | - Pawel Zayakin
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Janis Kimsis
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Viktorija Igumnova
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Darja Sadovska
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Lauma Freimane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agnija Kivrane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Agne Namina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Valentina Capligina
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Alise Poksane
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| | - Renate Ranka
- Laboratory of Molecular Biology, Latvian Biomedical Research and Study Centre, 1 Ratsupites Str., Riga, LV-1067, Latvia
| |
Collapse
|
20
|
Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut Microbiota, an Additional Hallmark of Human Aging and Neurodegeneration. Neuroscience 2023; 518:141-161. [PMID: 36893982 DOI: 10.1016/j.neuroscience.2023.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 03/09/2023]
Abstract
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. Among them, Alzheimeŕs disease (AD) is probably the one where its association with a state of dysbiosis of the gut microbiota has been most studied. In particular, intestinal microbial-derived metabolites have been associated with β-amyloid formation and brain amyloid deposition, tau phosphorylation, as well as neuroinflammation in AD patients. Moreover, it has been suggested that some oral bacteria increase the risk of developing AD. However, the causal connections among microbiome, amyloid-tau interaction, and neurodegeneration need to be addressed. This paper summarizes the emerging evidence in the literature regarding the link between the oral and gut microbiome and neurodegeneration with a focus on AD. Taxonomic features of bacteria as well as microbial functional alterations associated with AD biomarkers are the main points reviewed. Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
Collapse
Affiliation(s)
- Natalia Molinero
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - Alejandro Antón-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM. c/ Nicolás Cabrera, 1. 28049 Madrid, Spain
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. c/ Nicolás Cabrera, 9. 28049 Madrid, Spain.
| |
Collapse
|
21
|
Gancz AS, Weyrich LS. Studying ancient human oral microbiomes could yield insights into the evolutionary history of noncommunicable diseases. F1000Res 2023; 12:109. [PMID: 37065506 PMCID: PMC10090864 DOI: 10.12688/f1000research.129036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/31/2023] Open
Abstract
Noncommunicable diseases (NCDs) have played a critical role in shaping human evolution and societies. Despite the exceptional impact of NCDs economically and socially, little is known about the prevalence or impact of these diseases in the past as most do not leave distinguishing features on the human skeleton and are not directly associated with unique pathogens. The inability to identify NCDs in antiquity precludes researchers from investigating how changes in diet, lifestyle, and environments modulate NCD risks in specific populations and from linking evolutionary processes to modern health patterns and disparities. In this review, we highlight how recent advances in ancient DNA (aDNA) sequencing and analytical methodologies may now make it possible to reconstruct NCD-related oral microbiome traits in past populations, thereby providing the first proxies for ancient NCD risk. First, we review the direct and indirect associations between modern oral microbiomes and NCDs, specifically cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease. We then discuss how oral microbiome features associated with NCDs in modern populations may be used to identify previously unstudied sources of morbidity and mortality differences in ancient groups. Finally, we conclude with an outline of the challenges and limitations of employing this approach, as well as how they might be circumvented. While significant experimental work is needed to verify that ancient oral microbiome markers are indeed associated with quantifiable health and survivorship outcomes, this new approach is a promising path forward for evolutionary health research.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
| | - Laura S Weyrich
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
22
|
Liu S, Dashper SG, Zhao R. Association Between Oral Bacteria and Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2023; 91:129-150. [PMID: 36404545 DOI: 10.3233/jad-220627] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pre-clinical evidence implicates oral bacteria in the pathogenesis of Alzheimer's disease (AD), while clinical studies show diverse results. OBJECTIVE To comprehensively assess the association between oral bacteria and AD with clinical evidence. METHODS Studies investigating the association between oral bacteria and AD were identified through a systematic search of six databases PubMed, Embase, Cochrane Central Library, Scopus, ScienceDirect, and Web of Science. Methodological quality ratings of the included studies were performed. A best evidence synthesis was employed to integrate the results. When applicable, a meta-analysis was conducted using a random-effect model. RESULTS Of the 16 studies included, ten investigated periodontal pathobionts and six were microbiome-wide association studies. Samples from the brain, serum, and oral cavity were tested. We found over a ten-fold and six-fold increased risk of AD when there were oral bacteria (OR = 10.68 95% CI: 4.48-25.43; p < 0.00001, I2 = 0%) and Porphyromonas gingivalis (OR = 6.84 95% CI: 2.70-17.31; p < 0.0001, I2 = 0%) respectively in the brain. While AD patients exhibited lower alpha diversity of oral microbiota than healthy controls, the findings of bacterial communities were inconsistent among studies. The best evidence synthesis suggested a moderate level of evidence for an overall association between oral bacteria and AD and for oral bacteria being a risk factor for AD. CONCLUSION Current evidence moderately supports the association between oral bacteria and AD, while the association was strong when oral bacteria were detectable in the brain. Further evidence is needed to clarify the interrelationship between both individual species and bacterial communities and the development of AD.
Collapse
Affiliation(s)
- Sixin Liu
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Stuart G Dashper
- Centre for Oral Health Research, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Rui Zhao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Wei T, Du Y, Hou T, Zhai C, Li Y, Xiao W, Liu K. Association between adverse oral conditions and cognitive impairment: A literature review. Front Public Health 2023; 11:1147026. [PMID: 37089515 PMCID: PMC10117837 DOI: 10.3389/fpubh.2023.1147026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/02/2023] [Indexed: 04/25/2023] Open
Abstract
Oral environment deterioration results from a lack of self-cleaning ability in patients with cognitive dysfunction but is also a risk factor for cognitive dysfunction. Adverse oral conditions can be alleviated and improved through a self-management and medical examination. In this review, the epidemiological evidence of previous studies is integrated to highlight the relationship between periodontitis, tooth loss, oral flora, oral dysfunction and cognitive dysfunction, emphasizing the importance of oral health for cognition. The results show that poor oral condition is associated with cognitive impairment. Although many previous studies have been conducted, there is a lack of higher-level research evidence, different judgment criteria, and conflicting research results. There is a bidirectional relationship between oral health and cognitive dysfunction. A comprehensive analysis of the relationship between oral health and cognitive dysfunction that explores the relationship and takes measures to prevent cognitive dysfunction and control the progression of such diseases is warranted in the future.
Collapse
Affiliation(s)
- Tianhao Wei
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunjuan Zhai
- Department of Cardiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuqi Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Xiao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Keke Liu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Infection Control, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
24
|
Gancz AS, Weyrich LS. Studying ancient human oral microbiomes could yield insights into the evolutionary history of noncommunicable diseases. F1000Res 2023; 12:109. [PMID: 37065506 PMCID: PMC10090864 DOI: 10.12688/f1000research.129036.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/19/2023] Open
Abstract
Noncommunicable diseases (NCDs) have played a critical role in shaping human evolution and societies. Despite the exceptional impact of NCDs economically and socially, little is known about the prevalence or impact of these diseases in the past as most do not leave distinguishing features on the human skeleton and are not directly associated with unique pathogens. The inability to identify NCDs in antiquity precludes researchers from investigating how changes in diet, lifestyle, and environments modulate NCD risks in specific populations and from linking evolutionary processes to modern health patterns and disparities. In this review, we highlight how recent advances in ancient DNA (aDNA) sequencing and analytical methodologies may now make it possible to reconstruct NCD-related oral microbiome traits in past populations, thereby providing the first proxies for ancient NCD risk. First, we review the direct and indirect associations between modern oral microbiomes and NCDs, specifically cardiovascular disease, diabetes mellitus, rheumatoid arthritis, and Alzheimer's disease. We then discuss how oral microbiome features associated with NCDs in modern populations may be used to identify previously unstudied sources of morbidity and mortality differences in ancient groups. Finally, we conclude with an outline of the challenges and limitations of employing this approach, as well as how they might be circumvented. While significant experimental work is needed to verify that ancient oral microbiome markers are indeed associated with quantifiable health and survivorship outcomes, this new approach is a promising path forward for evolutionary health research.
Collapse
Affiliation(s)
- Abigail S Gancz
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
| | - Laura S Weyrich
- Department of Anthropology, Pennsylvania State University, State College, PA, 16802, USA
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
25
|
Chen L, Xu X, Wu X, Cao H, Li X, Hou Z, Wang B, Liu J, Ji X, Zhang P, Li H. A comparison of the composition and functions of the oral and gut microbiotas in Alzheimer’s patients. Front Cell Infect Microbiol 2022; 12:942460. [PMID: 36093178 PMCID: PMC9448892 DOI: 10.3389/fcimb.2022.942460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Alterations in the oral or gut microbiotas have been reported in patients with subjective and mild cognitive impairment or AD dementia. However, whether these microbiotas change with the severity of the AD spectrum (mild, moderate, and severe AD) remains unknown. Thus, we compared alterations in the composition and gene functions of the oral and gut microbiota between different phases of AD. Methods We recruited 172 individuals and classified these into three groups: healthy controls (n = 40), a mild AD group (n = 43) and a moderate AD group (n = 89). Subgingival plaques and fecal samples were collected from all individuals. Then, we conducted 16S ribosomal RNA. sequencing to analyze the microbiotas. Results In order of the severity of cognition impairment (from normal to mild and to moderate AD), the oral abundances of the phyla Firmicutes and Fusobacteria showed a gradual upwards trend, while the abundance of the Proteobacteria phylum gradually decreased. In contrast, the abundance of the Firmicutes and Bacteroidetes phyla in the gut decreased progressively, while that of the Proteobacteria, Verrucomicrobia and Actinobacteria phyla increased gradually. Key differences were identified in the microbiomes when compared between the mild AD and moderate AD groups when applying the linear discriminant analysis effect size (LEfSe) algorithm. LEfSe analysis revealed alterations that were similar to those described above; furthermore, different bacterial taxa were associated with MMSE scores and age. KEGG analysis showed that the functional pathways associated with the oral microbiota were mainly involved in membrane transport and carbohydrate metabolism, while the gene functions of the fecal microbiota related to metabolism of amino acids, energy, cofactors and vitamins; identified significant differences among the three groups. Venn diagram analysis revealed that the number of genera that were present in both the oral and gut microbiota increased progressively from NC to mild AD and then to moderate AD. Conclusions This study is the first to report a comparative analysis of the oral and fecal microbiota of patients with mild and moderate AD. The compositions and functions of the oral and gut microbiotas differed when compared between different stages of AD.
Collapse
Affiliation(s)
- Lili Chen
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Nursing Department, Fujian Provincial Hospital, Fuzhou, China
| | - Xinhua Xu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xiaoqi Wu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huizhen Cao
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Nursing Department, Fujian Provincial Hospital South Branch, Fuzhou, China
| | - Xiuli Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Zhaoyi Hou
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Jinxiu Liu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- The School of Nursing, Fujian Medical University, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Nursing Department, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Hong Li,
| |
Collapse
|
26
|
Jeon JH, Lourenco JM, Fagan MM, Welch CB, Sneed SE, Dubrof S, Duberstein KJ, Callaway TR, West FD, Park HJ. Changes in Oral Microbial Diversity in a Piglet Model of Traumatic Brain Injury. Brain Sci 2022; 12:brainsci12081111. [PMID: 36009173 PMCID: PMC9405691 DOI: 10.3390/brainsci12081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Dynamic changes in the oral microbiome have gained attention due to their potential diagnostic role in neurological diseases such as Alzheimer's disease and Parkinson's disease. Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, but no studies have examined the changes in oral microbiome during the acute stage of TBI using a clinically translational pig model. Crossbred piglets (4-5 weeks old, male) underwent either a controlled cortical impact (TBI, n = 6) or sham surgery (sham, n = 6). The oral microbiome parameters were quantified from the upper and lower gingiva, both buccal mucosa, and floor of the mouth pre-surgery and 1, 3, and 7 days post-surgery (PS) using the 16S rRNA gene. Faith's phylogenetic diversity was significantly lower in the TBI piglets at 7 days PS compared to those of sham, and beta diversity at 1, 3, and 7 days PS was significantly different between TBI and sham piglets. However, no significant changes in the taxonomic composition of the oral microbiome were observed following TBI compared to sham. Further studies are needed to investigate the potential diagnostic role of the oral microbiome during the chronic stage of TBI with a larger number of subjects.
Collapse
Affiliation(s)
- Julie Heejin Jeon
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA
| | - Jeferson M. Lourenco
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Madison M. Fagan
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Christina B. Welch
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sydney E. Sneed
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Stephanie Dubrof
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA
| | - Kylee J. Duberstein
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Franklin D. West
- Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Hea Jin Park
- Department of Nutritional Sciences, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
27
|
Lin SK, Wu YF, Chang WJ, Feng SW, Huang HM. The Treatment Efficiency and Microbiota Analysis of Sapindus mukorossi Seed Oil on the Ligature-Induced Periodontitis Rat Model. Int J Mol Sci 2022; 23:8560. [PMID: 35955695 PMCID: PMC9369273 DOI: 10.3390/ijms23158560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a common oral disease mainly caused by bacterial infection and inflammation of the gingiva. In the prevention or treatment of periodontitis, anti-bacterial agents are used to inhibit pathogen growth, despite increasing levels of bacterial resistance. Sapindus mukorossi Gaertn (SM) seed oil has proven anti-bacterial and anti-inflammation properties. However, the possibility of using this plant to prevent or treat periodontitis has not been reported previously. The aim of this study was to evaluate the effects of SM oil on experimental periodontitis in rats by using micro-CT and microbiota analysis. The distance between cementoenamel junction (CEJ) and alveolar bone crest (ABC) on the sagittal micro-CT slide showed that total bone loss (TBL) was significantly lower in CEJ-ABC distances between SM oil and SM oil-free groups on Day 14. Histology data also showed less alveolar bone resorption, a result consistent result with micro-CT imaging. The microbiota analyzed at phylum and class levels were compared between the SM oil and SM oil-free groups on Day 7 and Day 14. At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant bacterium. Firmicutes in box plot analysis was significantly less in the SM oil group than in the SM oil-free group on Day 7. At the class level, Bacteroidia, Gammaproteobacteria, Bacilli, Clostridia, and Erysipelotrichia were the dominant bacteria. The bacteria composition proportion of Bacilli, Clostridiay, and Erysipelotrichia could be seen in the SM oil group significantly less than in t SM oil-free group on Day 7. Overall, the present results show that topical application of SM oil can reduce bone resorption and change bacteria composition in the ligature-induced periodontitis model. According to these results, it is reasonable to suggest SM oil as a potential material for preventing oral disease.
Collapse
Affiliation(s)
- Shih-Kai Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235041, Taiwan
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
28
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
29
|
Huang C, Gao F, Zhou H, Zhang L, Shang D, Ji Y, Duan Z. Oral Microbiota Profile in a Group of Anti-AChR Antibody–Positive Myasthenia Gravis Patients. Front Neurol 2022; 13:938360. [PMID: 35873770 PMCID: PMC9301194 DOI: 10.3389/fneur.2022.938360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies directed against the postsynaptic membrane at the neuromuscular junction. Perturbation of gut microbiota is thought to contribute to the development of MG, as reflected by fecal metabolomic signatures in humans, but there have been few studies on the relationship between oral microbiota profile and MG. The current study evaluated the correlation between oral microbiota composition and diversity and anti-acetylcholinereceptor (AChR) antibody–positive MG by comparing oral microbiota communities of patients (n = 20) and healthy controls (HCs; n = 20) by 16S rRNA gene sequencing. Principal coordinate analysis and Adonis analysis revealed significant differences in oral microflora profile between the twogroups. Compared to HCs, the abundance of the phyla Firmicutes and Actinobacteria and genera Streptococcus, Rothia, and Lachnoanerobaculum was significantly increased whereas that of phyla Proteobacteria and Spirochaetotaand genera Neisseria, Haemophilus, and Treponema was significantly decreased in MG patients. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the biosynthesis of ansamycins and amino acid metabolism pathways were altered in MG. These results indicate that oral microbiota composition is perturbed in patients with anti-AChR antibody–positive MG, providing new potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chao Huang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haitao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Li Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Dandan Shang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Ying Ji
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihui Duan
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
- *Correspondence: Zhihui Duan
| |
Collapse
|
30
|
Mao S, Huang CP, Lan H, Lau HG, Chiang CP, Chen YW. Association of periodontitis and oral microbiomes with Alzheimer’s disease: A narrative systematic review. J Dent Sci 2022; 17:1762-1779. [PMID: 36299333 PMCID: PMC9588805 DOI: 10.1016/j.jds.2022.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background/purpose Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia. The etiology for AD includes age, genetic susceptibility, neuropathology, and infection. Periodontitis is an infectious and inflammatory disease which mainly causes alveolar bone destruction and tooth loss. The evidence of a link between AD and periodontitis remains controversial. Thus far, studies reviewing the association between AD and periodontal disease have been insufficient from the viewpoint of the oral microbiome. The aim of this review was to focus on studies that have explored the relationship between the oral microbiome and AD development by using the next-generation sequencing technique. Materials and methods A comprehensive electronic search of MEDLINE via PubMed, EMBASE, Scopus, and Google Scholar was conducted. The keywords included dementia, Alzheimer’s disease, cognitive impairment, periodontitis, periodontal disease, and oral microbiome. Results This review included 26 articles based on the eligibility criteria. Epidemiologic researches and post-mortem studies showed that the presence of periodontitis is associated with cognitive decline, suggesting a possible role of periodontal pathogens in the pathogenesis of AD. The reported microbiome was inconsistent with those in gene sequencing studies. Nevertheless, Gram-negative species may be possible candidates. Conclusion This review suggests that periodontal infection is associated with AD. The contributing microbiome remains unconfirmed, possibly because of different microbiome sampling sites or methods. Additional large-scale studies with periodontal intervention and longitudinal follow-up are warranted to clarify the relationship between periodontal disease and AD.
Collapse
|
31
|
Wu YF, Salamanca E, Chen IW, Su JN, Chen YC, Wang SY, Sun YS, Teng NC, Chang WJ. Xylitol-Containing Chewing Gum Reduces Cariogenic and Periodontopathic Bacteria in Dental Plaque—Microbiome Investigation. Front Nutr 2022; 9:882636. [PMID: 35634392 PMCID: PMC9131035 DOI: 10.3389/fnut.2022.882636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
BackgroundDental caries and periodontal disease remain the most prevalent oral health problems in the world. Chewing xylitol gum may help reduce the risk of caries and periodontitis for dental health benefits. However, little evidence has shown healthy food estimation by sequencing 16S rDNA in oral microbial communities. This study investigated the clinical effect of xylitol chewing gum on dental plaque accumulation and microbiota composition using the PacBio full-length sequencing platform in 24 young adults (N = 24). The participants were randomly assigned to xylitol chewing gum and control (no chewing gum) groups. Participants in the chewing gum group chewed ten pieces of gum (a total of 6.2 g xylitol/day). Dental plaque from all teeth was collected for weighing, measuring the pH value, and analysis of microbial communities at the beginning (baseline, M0) and end of the 2-week (effect, M1) study period.ResultsThe results suggested a 20% reduction in dental plaque accumulation (p < 0.05) among participants chewing xylitol gum for 2 weeks, and the relative abundance of Firmicutes (a type of pathogenic bacteria associated with caries) decreased by 10.26% (p < 0.05) and that of Bacteroidetes and Actinobacteria (two types of pathogenic bacteria associated with periodontitis) decreased by 6.32% (p < 0.001) and 1.66% (p < 0.05), respectively. Moreover, the relative abundance of Fusobacteria was increased by 9.24% (p < 0.001), which has been proven to have a higher proportion in dental plaque of healthy adults. However, the dental plaque pH value stayed in a healthy range for the two groups.ConclusionIn conclusion, chewing xylitol gum would benefit cariogenic and periodontal bacterial reduction in the oral cavity, which could help to prevent the diseases related to these bacteria.
Collapse
Affiliation(s)
- Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - I-Wen Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jo-Ning Su
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Che Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Sin Yu Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, Taipei Medical University, Taipei, Taiwan
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Oral Rehabilitation and Center of Pediatric Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- *Correspondence: Nai-Chia Teng,
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
- Wei-Jen Chang,
| |
Collapse
|
32
|
Jungbauer G, Stähli A, Zhu X, Auber Alberi L, Sculean A, Eick S. Periodontal microorganisms and Alzheimer disease - A causative relationship? Periodontol 2000 2022; 89:59-82. [PMID: 35244967 PMCID: PMC9314828 DOI: 10.1111/prd.12429] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 01/10/2023]
Abstract
In the initiation or exacerbation of Alzheimer disease, the dissemination of oral microorganisms into the brain tissue or the low‐level systemic inflammation have been speculated to play a role. However, the impact of oral microorganisms, such as Porphyromonas gingivalis, on the pathogenesis of Alzheimer disease and the potential causative relationship is still unclear. The present review has critically reviewed the literature by examining the following aspects: (a) the oral microbiome and the immune response in the elderly population, (b) human studies on the association between periodontal and gut microorganisms and Alzheimer disease, (c) animal and in vitro studies on microorganisms and Alzheimer disease, and (d) preventive and therapeutic approaches. Factors contributing to microbial dysbiosis seem to be aging, local inflammation, systemic diseases, wearing of dentures, living in nursing homes and no access to adequate oral hygiene measures. Porphyromonas gingivalis was detectable in post‐mortem brain samples. Microbiome analyses of saliva samples or oral biofilms showed a decreased microbial diversity and a different composition in Alzheimer disease compared to cognitively healthy subjects. Many in‐vitro and animal studies underline the potential of P gingivalis to induce Alzheimer disease‐related alterations. In animal models, recurring applications of P gingivalis or its components increased pro‐inflammatory mediators and β‐amyloid in the brain and deteriorated the animals' cognitive performance. Since periodontitis is the result of a disturbed microbial homoeostasis, an effect of periodontal therapy on the oral microbiome and host response related to cognitive parameters may be suggested and should be elucidated in further clinical trials.
Collapse
Affiliation(s)
- Gert Jungbauer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Private Dental Practice, Straubing, Germany
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Diversity and dynamics of bacteria at the Chrysomya megacephala pupal stage revealed by third-generation sequencing. Sci Rep 2022; 12:2006. [PMID: 35132164 PMCID: PMC8821589 DOI: 10.1038/s41598-022-06311-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
Characterization of the microbial community is essential for understanding the symbiotic relationships between microbes and host insects. Chrysomya megacephala is a vital resource, a forensic insect, a pollinator, and a vector for enteric bacteria, protozoa, helminths, and viruses. However, research on its microbial community is incomprehensive, particularly at the pupal stage, which comprises approximately half of the entire larval development stage and is important entomological evidence in forensic medicine. For the first time, this study investigated the bacterial communities of C. megacephala pupae at different ages using third-generation sequencing technology. The results showed that C. megacephala has a diverse and dynamic bacterial community. Cluster analysis at ≥ 97% similarity produced 154 operational taxonomic units (OTUs) that belonged to 10 different phyla and were distributed into 15 classes, 28 orders, 50 families, 88 genera, and 130 species. Overall, the number of bacterial OTUs increased with the development of pupae, and the relative abundance of Wolbachia in the Day5 group was significantly lower than that in the other groups. Within the pupal stage, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla of bacteria. At the genus level, Wolbachia and Ignatzschineria coexisted, a rarely known feature. In addition, we found Erysipelothrix rhusiopathiae, the etiological agent of swine erysipelas, which is rarely identified in insects. This study enriches the understanding of the microbial community of C. megacephala and provides a reference for better utilization and control of C. megacephala.
Collapse
|
34
|
Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, Oppong A, Ricevuti G, Esposito C, Chirumbolo S, Pascale A. The Potential Role of Gut Microbiota in Alzheimer’s Disease: from Diagnosis to Treatment. Nutrients 2022; 14:nu14030668. [PMID: 35277027 PMCID: PMC8840394 DOI: 10.3390/nu14030668] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota is emerging as a key regulator of many disease conditions and its dysregulation is implicated in the pathogenesis of several gastrointestinal and extraintestinal disorders. More recently, gut microbiome alterations have been linked to neurodegeneration through the increasingly defined gut microbiota brain axis, opening the possibility for new microbiota-based therapeutic options. Although several studies have been conducted to unravel the possible relationship between Alzheimer’s Disease (AD) pathogenesis and progression, the diagnostic and therapeutic potential of approaches aiming at restoring gut microbiota eubiosis remain to be fully addressed. In this narrative review, we briefly summarize the role of gut microbiota homeostasis in brain health and disease, and we present evidence for its dysregulation in AD patients. Based on these observations, we then discuss how dysbiosis might be exploited as a new diagnostic tool in early and advanced disease stages, and we examine the potential of prebiotics, probiotics, fecal microbiota transplantation, and diets as complementary therapeutic interventions on disease pathogenesis and progression, thus offering new insights into the diagnosis and treatment of this devastating and progressive disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | | | - Claudia Alfano
- Department of Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway;
| | - Abigail Oppong
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy;
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
35
|
Wang Y, Wang M, Xu W, Wang Y, Zhang Y, Wang J. Estimating the Postmortem Interval of Carcasses in the Water Using the Carrion Insect, Brain Tissue RNA, Bacterial Biofilm, and Algae. Front Microbiol 2022; 12:774276. [PMID: 35058896 PMCID: PMC8765475 DOI: 10.3389/fmicb.2021.774276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/27/2022] Open
Abstract
The accurate estimation of postmortem interval (PMI) is crucial in the investigation of homicide cases. Unlike carcasses on land, various biological and abiotic factors affect the decomposition of carcasses in water. In addition, the insect evidence (e.g., blow flies) that is commonly used to estimate the PMI are unavailable before the carcasses float on water. Therefore, it is difficult to estimate the PMI of a carcass in water. This study aimed to explore an effective way of estimating the PMI of a carcass in water. Carrion insects, brain tissue RNA, bacterial biofilm on the skin surface, and algae in water with PMI were studied using 45 rat carcasses in a small river. The results showed that carrion insects might not be suitable for the estimation of PMI of a carcass in water since they do not have a regular succession pattern as a carcass on land, and the flies only colonized six of the carcasses. The target genes (β-actin, GAPDH, and 18S) in the brain tissue were associated with the PMI in a time-dependent manner within 1 week after death. A polynomial regression analysis was used to assess the relationship between the gene expression profiles and PMI. The correlation coefficient R2 of each regression equation was ≥ 0.924. A third-generation sequencing analysis showed that the bacteria on the skin surface of the carcass and the algae in the water samples around the carcass had a regular succession pattern, where Cryptomonas and Placoneis incased and decreased, respectively, within first 9 days. The results of this study provide a promising way to use the brain tissue RNA, bacterial biofilm, and algae to estimate the PMI of a carcass in water.
Collapse
Affiliation(s)
- Yu Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Man Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Wang Xu
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yinghui Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Yanan Zhang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| | - Jiangfeng Wang
- Department of Forensic Medicine, Soochow University, Suzhou, China
| |
Collapse
|
36
|
Yang B, Tao B, Yin Q, Chai Z, Xu L, Zhao Q, Wang J. Associations Between Oral Health Status, Perceived Stress, and Neuropsychiatric Symptoms Among Community Individuals With Alzheimer's Disease: A Mediation Analysis. Front Aging Neurosci 2022; 13:801209. [PMID: 35082659 PMCID: PMC8786079 DOI: 10.3389/fnagi.2021.801209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Community individuals with Alzheimer's disease (AD) experience oral disease alongside neuropsychiatric symptoms (NPS) with disease progression. Despite growing evidence for the link between oral health and cognitive status, few studies have investigated the associations between oral health and NPS, especially based on individuals' experience of AD. The primary aim of this study was to examine (a) the difference in oral health-related stressors among individuals with AD, mild cognitive impairment (MCI), and subjective cognitive decline (SCD); and (b) the associations of these stressors with NPS under the framework of the stress process model (SPM). A cross-sectional study was conducted among individuals diagnosed with AD (n = 35), MCI (n = 36) or SCD (n = 35), matched for age, sex education, and body mass index (BMI). Multiple regression and mediation model analyses were performed to explore predictors and their relationships with NPS based on the SPM. Data collection comprised four sections: (a) individual context; (b) oral health-related stressors, including dental caries, periodontal status, oral hygiene, the geriatric oral health assessment index (GOHAI), oral salivary microbiota, pro-inflammatory cytokines, and oral health behavior; (c) subjective stressors (i.e., perceived stress [PS]); and (d) NPS. Decayed, missing, and filled teeth (DMFT), missing teeth (MT), loss of attachment (LoA), plaque index (PLI), PS, oral health behavior, GOHAI, pro-inflammatory cytokines, and salivary bacterial composition were significantly different among the three groups; these parameters were poorer in the AD group than SCD and/or MCI group. LoA, PLI, PS, and pain or discomfort in the GOHAI were directly associated with NPS. PLI, LoA, and psychosocial function in the GOHAI indirectly affected NPS, and this relationship was mediated by PS. Individuals with AD reported greater oral health-related stressors. This study identifies direct and indirect associations linking oral health-related stressors and PS with NPS in individuals with AD. Our findings suggest that targeted dental care and oral-related stressor control may be valuable for managing NPS.
Collapse
Affiliation(s)
- Bing Yang
- Department of Nursing, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Binbin Tao
- Department of Nursing, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qianyu Yin
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaowu Chai
- Department of Nursing, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Xu
- Community Health Center of Daxigou, Chongqing, China
| | - Qinghua Zhao
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wang
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Li S, Su B, He QS, Wu H, Zhang T. Alterations in the oral microbiome in HIV infection: causes, effects and potential interventions. Chin Med J (Engl) 2021; 134:2788-2798. [PMID: 34670249 PMCID: PMC8667981 DOI: 10.1097/cm9.0000000000001825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
ABSTRACT A massive depletion of CD4+ T lymphocytes has been described in early and acute human immunodeficiency virus (HIV) infection, leading to an imbalance between the human microbiome and immune responses. In recent years, a growing interest in the alterations in gut microbiota in HIV infection has led to many studies; however, only few studies have been conducted to explore the importance of oral microbiome in HIV-infected individuals. Evidence has indicated the dysbiosis of oral microbiota in people living with HIV (PLWH). Potential mechanisms might be related to the immunodeficiency in the oral cavity of HIV-infected individuals, including changes in secretory components such as reduced levels of enzymes and proteins in saliva and altered cellular components involved in the reduction and dysfunction of innate and adaptive immune cells. As a result, disrupted oral immunity in HIV-infected individuals leads to an imbalance between the oral microbiome and local immune responses, which may contribute to the development of HIV-related diseases and HIV-associated non-acquired immunodeficiency syndrome comorbidities. Although the introduction of antiretroviral therapy (ART) has led to a significant decrease in occurrence of the opportunistic oral infections in HIV-infected individuals, the dysbiosis in oral microbiome persists. Furthermore, several studies with the aim to investigate the ability of probiotics to regulate the dysbiosis of oral microbiota in HIV-infected individuals are ongoing. However, the effects of ART and probiotics on oral microbiome in HIV-infected individuals remain unclear. In this article, we review the composition of the oral microbiome in healthy and HIV-infected individuals and the possible effect of oral microbiome on HIV-associated oral diseases. We also discuss how ART and probiotics influence the oral microbiome in HIV infection. We believe that a deeper understanding of composition and function of the oral microbiome is critical for the development of effective preventive and therapeutic strategies for HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Qiu-Shui He
- Institute of Biomedicine, Research Center for Infections and Immunity, University of Turku, Turku 20520, Finland
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
38
|
Huang Y, Zhao X, Cui L, Huang S. Metagenomic and Metatranscriptomic Insight Into Oral Biofilms in Periodontitis and Related Systemic Diseases. Front Microbiol 2021; 12:728585. [PMID: 34721325 PMCID: PMC8548771 DOI: 10.3389/fmicb.2021.728585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body and is closely related to oral and systemic health. Dental plaque biofilms are the primary etiologic factor of periodontitis, which is a common chronic oral infectious disease. The interdependencies that exist among the resident microbiota constituents in dental biofilms and the interaction between pathogenic microorganisms and the host lead to the occurrence and progression of periodontitis. Therefore, accurately and comprehensively detecting periodontal organisms and dissecting their corresponding functional activity characteristics are crucial for revealing periodontitis pathogenesis. With the development of metagenomics and metatranscriptomics, the composition and structure of microbial communities as well as the overall functional characteristics of the flora can be fully profiled and revealed. In this review, we will critically examine the currently available metagenomic and metatranscriptomic evidence to bridge the gap between microbial dysbiosis and periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Yi Huang
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Xinyuan Zhao
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| | - Li Cui
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
- School of Dentistry and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University and Guangdong Provincial Stomatological Hospital, Guangzhou, China
| |
Collapse
|