1
|
Ly YT, Leuko S, Moeller R. An overview of the bacterial microbiome of public transportation systems-risks, detection, and countermeasures. Front Public Health 2024; 12:1367324. [PMID: 38528857 PMCID: PMC10961368 DOI: 10.3389/fpubh.2024.1367324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
When we humans travel, our microorganisms come along. These can be harmless but also pathogenic, and are spread by touching surfaces or breathing aerosols in the passenger cabins. As the pandemic with SARS-CoV-2 has shown, those environments display a risk for infection transmission. For a risk reduction, countermeasures such as wearing face masks and distancing were applied in many places, yet had a significant social impact. Nevertheless, the next pandemic will come and additional countermeasures that contribute to the risk reduction are needed to keep commuters safe and reduce the spread of microorganisms and pathogens, but also have as little impact as possible on the daily lives of commuters. This review describes the bacterial microbiome of subways around the world, which is mainly characterized by human-associated genera. We emphasize on healthcare-associated ESKAPE pathogens within public transport, introduce state-of-the art methods to detect common microbes and potential pathogens such as LAMP and next-generation sequencing. Further, we describe and discuss possible countermeasures that could be deployed in public transportation systems, as antimicrobial surfaces or air sterilization using plasma. Commuting in public transport can harbor risks of infection. Improving the safety of travelers can be achieved by effective detection methods, microbial reduction systems, but importantly by hand hygiene and common-sense hygiene guidelines.
Collapse
Affiliation(s)
| | | | - Ralf Moeller
- Department of Radiation Biology, Institute for Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|
2
|
Jonsdottir HR, Zysset D, Lenz N, Siegrist D, Ruedin Y, Ryter S, Züst R, Geissmann Y, Ackermann-Gäumann R, Engler OB, Weber B. Virucidal activity of three standard chemical disinfectants against Ebola virus suspended in tripartite soil and whole blood. Sci Rep 2023; 13:15718. [PMID: 37735604 PMCID: PMC10514052 DOI: 10.1038/s41598-023-42376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Proper disinfection and inactivation of highly pathogenic viruses is an essential component of public health and prevention. Depending on environment, surfaces, and type of contaminant, various methods of disinfection must be both efficient and available. To test both established and novel chemical disinfectants against risk group 4 viruses in our maximum containment facility, we developed a standardized protocol and assessed the chemical inactivation of the two Ebola virus variants Mayinga and Makona suspended in two different biological soil loads. Standard chemical disinfectants ethanol and sodium hypochlorite completely inactivate both Ebola variants after 30 s in suspension at 70% and 0.5% v/v, respectively, concentrations recommended for disinfection by the World Health Organization. Additionally, peracetic acid is also inactivating at 0.2% v/v under the same conditions. Continued vigilance and optimization of current disinfection protocols is extremely important due to the continuous presence of Ebola virus on the African continent and increased zoonotic spillover of novel viral pathogens. Furthermore, to facilitate general pandemic preparedness, the establishment and sharing of standardized protocols is very important as it allows for rapid testing and evaluation of novel pathogens and chemical disinfectants.
Collapse
Affiliation(s)
- Hulda R Jonsdottir
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
- Department of Rheumatology, Immunology, and Allergology, Inselspital University Hospital, Bern, Switzerland.
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
| | - Daniel Zysset
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.
| | - Nicole Lenz
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, 1011, Lausanne, Switzerland
- Agroscope, Federal Office for Agriculture, Bern, Switzerland
| | - Denise Siegrist
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Yelena Ruedin
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Sarah Ryter
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Roland Züst
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Yannick Geissmann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
- ADMED Microbiologie, La Chaux-de-Fonds, Switzerland
| | - Olivier B Engler
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | - Benjamin Weber
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| |
Collapse
|
3
|
Calderón Peralvo F, Cazorla Vanegas P, Avila-Ordóñez E. A systematic review of COVID-19 transport policies and mitigation strategies around the globe. TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES 2022; 15:100653. [PMID: 35873107 PMCID: PMC9289094 DOI: 10.1016/j.trip.2022.100653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 05/10/2023]
Abstract
This paper reports a Scopus-based systematic literature review of a wide variety of transportation policies and mitigation strategies that have been conducted around the world to minimize COVID-19 contagion risk in transportation systems. The review offers a representative coverage of countries across all continents of the planet, as well as among representative climate regions - as weather is an important factor to consider. The readership interested in policies and mitigation strategies is expected to involve a wide range of actors, each involving a particular application context; hence, the literature is also characterized by key attributes such as: transportation mode; actor (users, operators, government, industry); jurisdiction (national, provincial, city, neighborhood); and area of application (planning, regulation, operations, research, incentives). An in-depth analysis of the surveyed literature is then reported, focusing first on condensing the literature into 151 distinct policies and strategies, which are subsequently categorized into 25 broad categories that are discussed at length. The compendium and discussion of strategies and policies reported not only provide comprehensive guidelines to inform various courses of action for decision-makers, planners, and social communicators, but also emphasize on future work and the potential of some of these strategies to be the precursors of meaningful, more sustainable behavioral changes in future mobility patterns.
Collapse
Affiliation(s)
- Francisco Calderón Peralvo
- Research Group "Models, Analysis and Simulation (MAS) Applied to Transport Systems", Computer Science Department, University of Cuenca, Ecuador
| | - Patricia Cazorla Vanegas
- Research Group "Models, Analysis and Simulation (MAS) Applied to Transport Systems", Computer Science Department, University of Cuenca, Ecuador
| | - Elina Avila-Ordóñez
- Research Group "Models, Analysis and Simulation (MAS) Applied to Transport Systems", Computer Science Department, University of Cuenca, Ecuador
| |
Collapse
|