1
|
Mó I, da Silva GJ. Tackling Carbapenem Resistance and the Imperative for One Health Strategies-Insights from the Portuguese Perspective. Antibiotics (Basel) 2024; 13:557. [PMID: 38927223 PMCID: PMC11201282 DOI: 10.3390/antibiotics13060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenemases, a class of enzymes specialized in the hydrolysis of carbapenems, represent a significant threat to global public health. These enzymes are classified into different Ambler's classes based on their active sites, categorized into classes A, D, and B. Among the most prevalent types are IMI/NMC-A, KPC, VIM, IMP, and OXA-48, commonly associated with pathogenic species such as Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The emergence and dissemination of carbapenemase-producing bacteria have raised substantial concerns due to their ability to infect humans and animals (both companion and food-producing) and their presence in environmental reservoirs. Adopting a holistic One Health approach, concerted efforts have been directed toward devising comprehensive strategies to mitigate the impact of antimicrobial resistance dissemination. This entails collaborative interventions, highlighting proactive measures by global organizations like the World Health Organization, the Center for Disease Control and Prevention, and the Food and Agriculture Organization. By synthesizing the evolving landscape of carbapenemase epidemiology in Portugal and tracing the trajectory from initial isolated cases to contemporary reports, this review highlights key factors driving antibiotic resistance, such as antimicrobial use and healthcare practices, and underscores the imperative for sustained vigilance, interdisciplinary collaboration, and innovative interventions to curb the escalating threat posed by antibiotic-resistant pathogens. Finally, it discusses potential alternatives and innovations aimed at tackling carbapenemase-mediated antibiotic resistance, including new therapies, enhanced surveillance, and public awareness campaigns.
Collapse
Affiliation(s)
- Inês Mó
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Gabriela Jorge da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC, Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| |
Collapse
|
2
|
Tanabe M, Sugawara Y, Denda T, Sakaguchi K, Takizawa S, Koide S, Hayashi W, Yu L, Kayama S, Sugai M, Nagano Y, Nagano N. Municipal wastewater monitoring revealed the predominance of bla GES genes with diverse variants among carbapenemase-producing organisms: high occurrence and persistence of Aeromonas caviae harboring the new bla GES variant bla GES-48. Microbiol Spectr 2023; 11:e0218823. [PMID: 37811969 PMCID: PMC10715227 DOI: 10.1128/spectrum.02188-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The emergence and spread of carbapenemase-producing organisms (CPOs) represent a global health threat because they are associated with limited treatment options and poor clinical outcomes. Wastewater is considered a hotspot for the evolution and dissemination of antimicrobial resistance. Thus, analyses of municipal wastewater are critical for understanding the circulation of these CPOs and carbapenemase genes in local communities, which remains scarcely known in Japan. This study resulted in several key observations: (i) the vast majority of bla GES genes, including six new bla GES variants, and less frequent bla IMP genes were carbapenemase genes encountered exclusively in wastewater influent; (ii) the most dominant CPO species were Aeromonas spp., in which a remarkable diversity of new sequence types was observed; and (iii) CPOs were detected from combined sewer wastewater, but not from separate sewer wastewater, suggesting that the load of CPOs from unrecognized environmental sources could greatly contribute to their detection in influent wastewater.
Collapse
Affiliation(s)
- Mizuki Tanabe
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Tomohiro Denda
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Kanae Sakaguchi
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Shino Takizawa
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Shota Koide
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| | - Wataru Hayashi
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Shizuo Kayama
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Yukiko Nagano
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| | - Noriyuki Nagano
- Department of Health and Medical Sciences, Graduate School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
- Department of Medical Sciences, Shinshu University, Graduate School of Medicine, Science and Technology, Matsumoto, Nagano, Japan
| |
Collapse
|
3
|
Ota Y, Prah I, Mahazu S, Gu Y, Nukui Y, Koike R, Saito R. Novel insights into genetic characteristics of blaGES-encoding plasmids from hospital sewage. Front Microbiol 2023; 14:1209195. [PMID: 37664110 PMCID: PMC10469963 DOI: 10.3389/fmicb.2023.1209195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.
Collapse
Affiliation(s)
- Yusuke Ota
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Isaac Prah
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Samiratu Mahazu
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiaki Gu
- Department of Infectious Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoko Nukui
- Department of Infection Control and Laboratory Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryuji Koike
- Clinical Research Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology and Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Fu P, Luo X, Shen J, He L, Rong H, Li C, Chen S, Zhang L, Wang A, Wang C. The molecular and epidemiological characteristics of carbapenemase-producing Enterobacteriaceae isolated from children in Shanghai, China, 2016-2021. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:48-56. [PMID: 35987725 DOI: 10.1016/j.jmii.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/02/2022] [Accepted: 07/30/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND We isolated the carbapenemase-producing Enterobacteriaceae (CPE) strains from children during 2016-2021 in Shanghai, China and investigated the antimicrobial resistance, molecular and epidemiological features of these isolates. METHODS Antimicrobial susceptibility tests were performed to confirm the carbapenem resistance. Carbapenemase production was assessed by the rapid phenotypic identification of five major carbapenemases (KPC, NDM, VIM, IMP, and OXA-48), which were further confirmed by PCR amplification and sequencing. Multilocus sequence typing (MLST) was conducted for phylogenetic analyses. RESULTS A total of 320 CPE strains were collected from 2016 to 2021, consisting of carbapenemase-producing Klebsiella pneumoniae (CP-Kpn, 55.0%), Escherichia coli (CP-Eco, 24.5%) and Enterobacter cloacae (CP-Ecl, 20.4%) and others (2, 0.1%). NDM was the primary carbapenemase (67.6%) in children, followed by KPC(26.4%), IMP(5.3%) and OXA-48 (0.6%). The minimum inhibitory concentration (MIC) for imipenem has been increasing from 2016 to 2021. NDM and KPC isolates are high resistant while IMP strains show the lower resistant to imipenem. Invasive infection accounted for 10.7% of CPE-related infections and was mainly caused by CP-Kpn (70.6%). NDM-Kpn was detected in 51.8% of infants (70.8% of neonates), while KPC-Kpn was mainly isolated from non-infants (56.3%∼64.3%). ST11 was the primary clone (64.6%) of KPC-Kpn and presented an increasing trend from 2016 to 2021. CONCLUSION NDM is widely prevalent and transfers among CPE strains in children. NDM-Kpn shows the most serious threat to infants, especially to neonates. High-risk clone of ST11 KPC-Kpn should be paid more attention and monitored continuously in children.
Collapse
Affiliation(s)
- Pan Fu
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Xinpeng Luo
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jun Shen
- Department of Infectious Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Leiyan He
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hua Rong
- Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chunling Li
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Saige Chen
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lei Zhang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Aimin Wang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chuanqing Wang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|