1
|
Xue W, Zhang S, Younas F, Ma R, Yu X, Li J, Wu X, Liu W, Duan H, Wang K, Cui X, Cao X, Cui Z. The combined effects of tetracycline and glyphosate on growth and rhizosphere bacteria community in hulless barley over the whole growth period. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136706. [PMID: 39637791 DOI: 10.1016/j.jhazmat.2024.136706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The toxic effects of tetracycline and glyphosate on hulless barley and its environment, as well as their interrelationship, remain poorly understood. The present study aimed to identify biomarkers reflective of tetracycline and glyphosate toxicity, examine root damage and rhizosphere bacterial communities throughout the growth cycle, and assess the final grain quality. Results indicated that the hydrogen peroxide (H2O2) content in the underground parts of barley could serve as a sensitive biomarker for detecting tetracycline and glyphosate toxicity in barley. In addition, a synergistic effect between 5 mg/kg tetracycline and 5 mg/kg glyphosate was observed at the tillering stage, which not only induced H2O2 accumulation across all growth stages but also ultimately reduced seed quality. During the tillering phase, Proteobacteria dominanted, while Actinobacteria showed greater relative abundance during the jointing stage.By the ripening stage, Acidobacteria predominantly colonized the associated soils. Importantly, the study further identified metagenome-assembled genomes containing cytochrome P450 fragments capable of metabolizing these compounds. This study provides novel insights into the transformation of co-contaminants and the adaptive responses of rhizobacteria to tetracycline and glyphosate exposure, offering valuable information for agricultural practices.
Collapse
Affiliation(s)
- Wenxiu Xue
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Shuhao Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Ruwen Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Xingxu Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Jie Li
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Xiaocui Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Wenhan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Huitian Duan
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Kang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China
| | - Xiaowei Cui
- School of Municipal & Environmental Engineering, Shandong Jianzhu University,Jinan, Shandong 250101, China
| | - Xiufeng Cao
- School of Municipal & Environmental Engineering, Shandong Jianzhu University,Jinan, Shandong 250101, China.
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao,Shandong 266237, China.
| |
Collapse
|
2
|
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA). Molecules 2024; 29:3113. [PMID: 38999063 PMCID: PMC11243326 DOI: 10.3390/molecules29133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg-1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances-molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark-whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg-1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (M.Z.); (A.B.)
| | | | - Jan Kucharski
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (M.Z.); (A.B.)
| |
Collapse
|
3
|
Zang Akono AR, Blaise N, Valery HG. Preparation of a Carbon paste electrode with Active materials for the detection of Tetracycline. Heliyon 2024; 10:e28471. [PMID: 38560244 PMCID: PMC10981106 DOI: 10.1016/j.heliyon.2024.e28471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
The Electrochemical sensor based on carbon-clay paste electrode (CCPE) was constructed for sensitive determination of Tetracycline (Tc). The mineralogical composition, morphology, structure and performance of CCPE were characterized using X-ray diffraction powder, Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Cyclic Voltammetry analysis. The CCPE is constituted of two types of clay having the ratio 1/1 and 2/1 characteristic of kaolinite and montmorillonite clay respectively. Its porous structure is ascribed to the presence of graphite. The CCPE exhibited a good electrocatalytic activity towards the oxidation of Tc. The electrochemical kinetics and mechanism of Tc were proposed, showing that Tc electrocatalytic oxidation reaction was controlled by diffusion process and took place in three steps. A low concentration of Tc was detected by amperometry with the linear ranges of 0.5μM-0.8 μM (R2 = 0.98), the sensitivity was 8.01 μA/μM.cm2, the limit of detection and quantification were 5.16x10-3μM(S/N = 3) and 1.72x10-2μM respectively. Thus, the proposed electrode provides a promising and prospective CCPE sensing platform for the detection of Tc in the environment.
Collapse
Affiliation(s)
| | - Niraka Blaise
- Department of Textile and Leather Engineering, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - Hambate Gomdje Valery
- Department of Textile and Leather Engineering, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| |
Collapse
|
4
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. Microbial Diversity and Enzyme Activity as Indicators of Permethrin-Exposed Soil Health. Molecules 2023; 28:4756. [PMID: 37375310 DOI: 10.3390/molecules28124756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), β-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. The Impact of Permethrin and Cypermethrin on Plants, Soil Enzyme Activity, and Microbial Communities. Int J Mol Sci 2023; 24:ijms24032892. [PMID: 36769219 PMCID: PMC9917378 DOI: 10.3390/ijms24032892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.
Collapse
|
6
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Sensitivity of Zea mays and Soil Microorganisms to the Toxic Effect of Chromium (VI). Int J Mol Sci 2022; 24:178. [PMID: 36613625 PMCID: PMC9820705 DOI: 10.3390/ijms24010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.
Collapse
Affiliation(s)
- Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | | | | | | |
Collapse
|
7
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. MATERIALS 2022; 15:ma15155198. [PMID: 35955133 PMCID: PMC9369485 DOI: 10.3390/ma15155198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 02/02/2023]
Abstract
Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg−1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite—for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.
Collapse
|