1
|
Qaiser Z, Khalid N, Mahmood A, Rizvi ZF, Lee SY, Aqeel M. Spatial distribution and impacts of microplastics on potato growth and yield in agroecosystems in Sialkot, Pakistan. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136262. [PMID: 39471612 DOI: 10.1016/j.jhazmat.2024.136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Microplastic (MP) pollution is a growing concern, yet its impacts on agroecosystems remain poorly understood. This study investigates MP contamination in the agroecosystems of Sialkot, Pakistan, and its potential effects on the growth, physio-biochemical attributes, and yield of potato (Solanum tuberosum L.). Plant and soil samples from 10 diverse agricultural fields were collected and analyzed for MP contamination. FTIR analysis revealed widespread MP presence in the soil across all sites. Fragment, film, and fiber types dominated, with low-density polyethylene (22.42 %), high-density polyethylene (18.05 %), and polystyrene (12.3 %) being the most prevalent polymers. A significant variation in plant growth parameters was observed. The number of tubers per plant also exhibited a significant difference, as evidenced by the decline in potato yield with increasing levels of MP contamination. Potato yield showed a negative correlation with MP contamination levels. The nutrients (Zn, Cu, Ni, and Na) uptake in plant shoots was also observed to be decreased except for Mg and Mn at all sites. This study showed that MPs are contaminating our agricultural lands and they may affect growth and yield of potato. Additional research is needed to understand the underlying mechanisms and develop mitigation strategies to improve agricultural productivity and food security.
Collapse
Affiliation(s)
- Zonaira Qaiser
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, Pakistan
| | - Zarrin Fatima Rizvi
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| |
Collapse
|
2
|
Xiao N, Wang Y, Guo Z, Shao T, Dong Z, Xing B. Tire plastic and road-wear particles on Yujing Expressway in the restoration area of Mu Us Sandy Land: Occurrence characteristics and ecological risk screening. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133860. [PMID: 38402682 DOI: 10.1016/j.jhazmat.2024.133860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Tire plastic and road-wear particles (TPR-WP) are a current research priority as one of the main environmental sources of microplastics. We selected a unique land use type - desert restoration area, collected soil and dust samples from the Yujing Expressway and its service areas, and analyzed TPR-WP abundance, type, size and morphology by laser direct infrared (LDIR). The abundance of TPR-WP in expressway dust (14,446.87 ± 10,234.24 n/kg) was higher than that in soil (7500 ± 3253.64 n/kg). Random forest model showed that the source of TPR-WP was highly correlated with economic factors and natural climate. Overall, the proportion of small and medium-sized TPR-WP in dust was higher than soil, more than half of the TPR-WP in dust were in 20 - 50 µm range. The proportion of small particle size TPR-WP increased with the rise of elevation. The pollution load index suggested that the survey region was generally at level I risk zone, while the ecological risk index indicated that the pollution level of expressway was III and IV, and the service area was IV. In general, the study was of great significance for clarifying the distribution and risk of TPR-WP in soil and dust of expressways and service areas.
Collapse
Affiliation(s)
- Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Ziyi Guo
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tianjie Shao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhibao Dong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
3
|
Shafi M, Lodh A, Khajuria M, Ranjan VP, Gani KM, Chowdhury S, Goel S. Are we underestimating stormwater? Stormwater as a significant source of microplastics in surface waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133445. [PMID: 38198866 DOI: 10.1016/j.jhazmat.2024.133445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Stormwater represent a critical pathway for transporting microplastics (MPs) to surface waters. Due to complex dynamics of MPs in stormwater, its dispersion, weathering, risk, and transport are poorly understood. This review bridges those gaps by summarizing the latest findings on sources, abundance, characteristics, and dynamics involved in stormwater MP pollution. Weathering starts before or after MPs enter stormwater and is more pronounced on land due to continuous heat and mechanical stress. Land use patterns, rainfall intensity, MPs size and density, and drainage characteristics influence the transport of MPs in stormwater. Tire and road wear particles (TRWPs), littering, and road dust are major sources of MPs in stormwater. The concentrations of MPs varies from 0.38-197,000 particles/L globally. Further MP concentrations showed regional variations, highlighting the importance of local monitoring efforts needed to understand local pollution sources. We observed unique signatures associated with the shape and color of MPs. Fibers and fragments were widely reported, with transparent and black being the predominant colors. We conclude that the contribution of stormwater to MP pollution in surface waters is significantly greater than wastewater treatment plant effluents and demands immediate attention. Field and lab scale studies are needed to understand its behavior in stormwater and the risk posed to the downstream water bodies.
Collapse
Affiliation(s)
- Mozim Shafi
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Ayan Lodh
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Medha Khajuria
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Ved Prakash Ranjan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu and Kashmir 190006, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Sudha Goel
- Environmental Engineering and Management Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India; School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|
4
|
Reethu M, Biswajit R, Aravind GH, Rafaz AK, Sandeep K, Sijinkumar AV, Warrier AK. A first report on the spatial and temporal variability of microplastics in coastal soils of an urban town in south-western India: Pre- and post-COVID scenario. MARINE POLLUTION BULLETIN 2023; 190:114888. [PMID: 37031557 DOI: 10.1016/j.marpolbul.2023.114888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
We present a first study on the temporal changes (2019-2021) in the microplastic abundance in the coastal soils of an urban town in the south-western part of India. All sampling stations exhibited higher abundances of microplastics in soils collected during 2021 (959.7 ± 277.7 particles/kg) compared to those collected in 2019 (515.1 ± 182.7 particles/kg). Morphologically, flakes, fibres, and films are the most abundant types documented in the soil environment. The microplastics of 0.3-5 mm size are relatively more abundant (60.6 %) compared to those of 0.03-0.3 mm size (39.4 %) in 2021. The three main types of polymers (polypropylene and high- and low-density polyethylene) in the soil exhibited an increase in abundance during an interval of 15 months (October 2019 to March 2021). In addition to packaging materials, the enhanced use of surgical masks during the COVID-19 period might have acted as a source of microplastic contamination in the soils.
Collapse
Affiliation(s)
- M Reethu
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - R Biswajit
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - G H Aravind
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - A K Rafaz
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - K Sandeep
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India.
| | - A V Sijinkumar
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - Anish Kumar Warrier
- Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
5
|
Liu Y, Gui D, Yin C, Zhang L, Xue D, Liu Y, Ahmed Z, Zeng F. Effects of Human Activities on Evapotranspiration and Its Components in Arid Areas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2795. [PMID: 36833495 PMCID: PMC9956289 DOI: 10.3390/ijerph20042795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
With the increasing impact of human activities on the environment, evapotranspiration (ET) has changed in arid areas, which further affects the water resources availability in the region. Therefore, understanding the impact of human activities on ET and its components is helpful to the management of water resources in arid areas. This study verified the accuracy of Fisher's model (PT-JPL model) for ET estimation in southern Xinjiang, China by using the evaporation complementarity theory dataset (AET dataset). The ET and the evapotranspiration components (T:E) of six land-use types were estimated in southern Xinjiang from 1982 to 2015, and the impact of human activities on ET was analyzed. In addition, the impact of four environmental factors (temperature (Temp), net radiation (Rn), relative humidity (RH), and NDVI) on ET were evaluated. The results showed that the calculated ET values of the PT-JPL model were close to the ET values of the AET dataset. The correlation coefficient (R2) was more than 0.8, and the NSE was close to 1. In grassland, water area, urban industrial and mining land, forest land, and cultivated land, the ET values were high, and in unused land types, the ET values were the lowest. The T:E values varied greatly in urban industrial and mining land, forest land, and cultivated land, which was due to the intensification of human activities, and the values were close to 1 in summer in recent years. Among the four environmental factors, temperature largely influenced the monthly ET. These findings suggest that human activities have significantly reduced soil evaporation and improved water use efficiency. The impact of human activities on environmental factors has caused changes in ET and its components, and appropriate oasis expansion is more conducive to regional sustainable development.
Collapse
Affiliation(s)
- Yunfei Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Resources and Environment, University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, China
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Changjun Yin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Resources and Environment, University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, China
| | - Lei Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Resources and Environment, University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, China
| | - Dongping Xue
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Resources and Environment, University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, China
| | - Yi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Zeeshan Ahmed
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| |
Collapse
|