1
|
Liu S, Liu J, Xiang J, Yan R, Li S, Fan Q, Lu L, Wu J, Xue Y, Fu T, Liu J, Li Z. Restorative Effects of Short-Chain Fatty Acids on Corneal Homeostasis Disrupted by Antibiotic-Induced Gut Dysbiosis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:770-796. [PMID: 39732390 DOI: 10.1016/j.ajpath.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/02/2024] [Accepted: 11/14/2024] [Indexed: 12/30/2024]
Abstract
The gut microbiota plays a crucial regulatory role in various physiological processes, yet its impact on corneal homeostasis remains insufficiently understood. Here, the effects of antibiotic-induced gut dysbiosis (AIGD) and germ-free conditions were investigated on circadian gene expression, barrier integrity, nerve density, and immune cell activity in the corneas of mice. Both AIGD and germ-free conditions significantly disrupted the overall transcriptomic profile and circadian transcriptomic oscillations in the cornea, as indicated by RNA sequencing. These molecular disturbances were accompanied by a reduction in corneal epithelial thickness, nerve density, corneal sensitivity, and compromised barrier function. Notably, supplementation with short-chain fatty acids (SCFAs) significantly restored corneal integrity in AIGD mice. Further single-cell sequencing revealed that SCFA receptors G-protein-coupled receptor 109A (Hcar2), olfactory receptor 78 (Olfr78), and G-protein-coupled receptor 43 (Ffar2) are expressed in corneal epithelial basal cells, embryonically derived macrophages, perivascular cells, and γδ T cells, respectively. In conclusion, this study demonstrated that the gut microbiota plays a critical role in corneal physiology by regulating circadian gene expression and maintaining barrier function. These findings enhance our understanding of the gut-eye axis, highlighting the cornea as a target for microbiota-derived metabolic signals and underlining the potential therapeutic value of SCFAs in treating corneal dysfunction.
Collapse
Affiliation(s)
- Sijing Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiangman Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiayan Xiang
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Senmao Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiwei Fan
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiaxin Wu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijie Li
- International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Jung KM, Yu GR, Kim DH, Lim DW, Park WH. Massa Medicata Fermentata, a Functional Food for Improving the Metabolic Profile via Prominent Anti-Oxidative and Anti-Inflammatory Effects. Antioxidants (Basel) 2024; 13:1271. [PMID: 39456523 PMCID: PMC11504248 DOI: 10.3390/antiox13101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Massa Medicata Fermentata (MMF) is a naturally fermented product used to treat indigestion and increase stomach activity in traditional medicine. This study examined the ability of the hydrothermal extract of MMF to scavenge free radicals corresponding to biological oxidative stresses, further protecting essential biomolecules. The anti-inflammatory effects of MMF were evaluated in LPS-induced RAW264.7 macrophages and zebrafish. In addition, the effects of MMF on the body mass index (BMI) and cholesterol accumulation in adult zebrafish fed a high-cholesterol diet (HCD) for three weeks were examined. MMF prevented the DNA and lipid damage caused by oxidative stress, inhibited LDL oxidation, and reduced the expression of cytokines and related proteins (MAPK and NFÎşB), with prominent anti-oxidative pathway (NRF2-HO-1) activation properties. LPS-induced NO production was reduced, and the increase in BMI and TC caused by the HCD diet was suppressed by MMF in zebrafish embryos or adult zebrafish. The bioactive aglycone of quercetin may be contributing to the mechanisms of systemic effects. MMF has excellent antioxidant properties and is useful for improving inflammation status and metabolic profile, thus highlighting its potential as a healthy, functional food.
Collapse
Affiliation(s)
- Kyung-Mi Jung
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Ga-Ram Yu
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Da-Hoon Kim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
- Institute of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea
| | - Won-Hwan Park
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Goyang-si 10326, Republic of Korea; (K.-M.J.); (G.-R.Y.); (D.-H.K.)
| |
Collapse
|
3
|
Zhang X, Wang J, Fu J, Hu J, Zhang H, Ye M, Yang X, Yu H, Xu H, Lu J, Zhai Z, Zuo H, Hui X, Song J, Zhao Y, Tong Q, Wang Y. Dissecting the antitumor effects of Scutellaria barbata: Initial insights into the metabolism of scutellarin and luteolin by gut microbiota. J Pharm Biomed Anal 2024; 248:116325. [PMID: 38959755 DOI: 10.1016/j.jpba.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
The high prevalence of cancer and detrimental side effects associated with many cancer treatments necessitate the search for effective alternative therapies. Natural products are increasingly being recognized and investigated for their potential therapeutic benefits. Scutellaria barbata D. Don (SBD), a plant with potent antitumor properties, has attracted significant interest from oncology researchers. Its primary flavonoid components-scutellarin and luteolin-which have limited oral bioavailability due to poor absorption. This hinders its application for cancer treatment. The gut microbiota, which is considered a metabolic organ, can modulate the biotransformation of compounds, thereby altering their bioavailability and efficacy. In this study, we employed liquid chromatography tandem mass spectrometry (LC-MS/MS 8060) and ion trap-time of flight (LC-MSn-IT-TOF) analysis to investigate the ex vivo metabolism of scutellarin and luteolin by the gut microbiota. Five metabolites and one potential metabolite were identified. We summarized previous studies on their antitumor effects and performed in vitro tumor cell line studies to prove their antitumor activities. The possible key pathway of gut microbiota metabolism in vitro was validated using molecular docking and pure enzyme metabolic experiments. In addition, we explored the antitumor mechanisms of the two components of SBD through network pharmacology, providing a basis for subsequent target identification. These findings expand our understanding of the antitumor mechanisms of SBD. Notably, this study contributes to the existing body of knowledge regarding flavonoid biotransformation by the gut microbiota, highlighting the therapeutic potential of SBD in cancer treatment. Moreover, our results provide a theoretical basis for future in vivo pharmacokinetic studies, aiming to optimize the clinical efficacy of SBD in oncological applications.
Collapse
Affiliation(s)
- Xianfeng Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Jingyue Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China; Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun 130000, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jiachun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Haojian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Mengliang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xinyu Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jinyue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hengtong Zuo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xiang Hui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jianye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Qian Tong
- Department of Cardiovascular Medicine, The First Hospital of Jilin University, Changchun 130000, China.
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
4
|
Wang JH, Choi Y, Lee JS, Hwang SJ, Gu J, Son CG. Clinical evidence of the link between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: a retrospective review. Eur J Med Res 2024; 29:148. [PMID: 38429822 PMCID: PMC10908121 DOI: 10.1186/s40001-024-01747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a heterogeneous disorder with elusive causes, but most likely because of clinical and other biological factors. As a vital environmental factor, the gut microbiome is increasingly emphasized in various refractory diseases including ME/CFS. The present study is aimed to enhance our understanding of the relationship between the gut microbiome and ME/CFS through data analysis of various clinical studies. We conducted a literature search in four databases (PubMed, Cochrane Library, Web of Science, and Google Scholar) until May 31, 2023. Our analysis encompassed 11 clinical studies with 553 ME/CFS patients and 480 healthy controls. A comparative analysis of meta data revealed a significant decrease in α-diversity and a noticeable change in β-diversity in the gut microbiome of ME/CFS patients compared to healthy controls. The notable ratio of Firmicutes and Bacteroides was 2.3 times decreased, and also, there was a significant reduction in the production of microbial metabolites such as acetate, butyrate, isobutyrate, and some amino acids (alanine, serine, and hypoxanthine) observed in ME/CFS patients. The lack of comparison under similar conditions with various standardized analytical methods has impeded the optimal calculation of results in ME/CFS patients and healthy controls. This review provides a comprehensive overview of the recent advancements in understanding the role of the gut microbiome in ME/CFS patients. Additionally, we have also discussed the potentials of using microbiome-related interventions and associated challenges to alleviate ME/CFS.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-Daero 176, Seo-gu, Daejeon, 35235, Republic of Korea
| | - Yujin Choi
- Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Jecheon-si, 27136, Republic of Korea
| | - Jin-Seok Lee
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-Daero 176, Seo-gu, Daejeon, 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-Daero 176, Seo-gu, Daejeon, 35235, Republic of Korea
| | - Jiyeon Gu
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-Daero 176, Seo-gu, Daejeon, 35235, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-Daero 176, Seo-gu, Daejeon, 35235, Republic of Korea.
| |
Collapse
|
5
|
Singhal S, Rani V. Cardioprotective Role of Tinospora cordifolia against Trimethylamine-N-Oxide and Glucose Induced Stress in Rat Cardiomyocytes. Cardiovasc Hematol Agents Med Chem 2024; 22:475-494. [PMID: 37907489 DOI: 10.2174/0118715257270512231013064533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 09/15/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Type 2 diabetes has become a concern issue that affects the quality of life and can increase the risk of cardiac insufficiency elevating the threat to the life safety of patients. A recognized cause of cardiac insufficiency is diabetic cardiomyopathy, chronic hyperglycemia, and myocardial lipotoxicity which can reduce the myocardial contractile performance, and enhance the cardiomyocyte hypertrophy and interstitial fibrosis. The cause of diabetic cardiomyopathy is multi-factorial which includes oxidative stress, insulin resistance, inflammation, apoptosis, and autophagy. Recent clinical studies have suggested the dysbiosis of gut microbiota, secretion of metabolites, and their diffusion in to the host as to have direct detrimental effects on the cardiac contractility. MATERIALS AND METHODS In the present paper, we have done in silico studies including molecular interaction of phytoconstituents of Tinospora cordifolia against reactive oxygen species producing proteins. Whereas, in vitro studies were conducted on H9C2 cardiac cells including cell morphological examination, level of reactive oxygen species, cell count-viability, apoptotic status, in the presence of high glucose, trimethylamine-n-oxide, and plant extracts which were determined through cell analyzer and microscopic assays. RESULTS The treatment of high glucose and trimethylamine-n-oxide was found to be increase the cardiac stress approximately two fold by attenuating hypertrophic conditions, oxidative stress, and apoptosis in rat cardiomyocytes, and Tinospora cordifolia was found to be a cardioprotective agent. CONCLUSION Conclusively, our study has reported that the Indian medicinal plant Tinospora cordifolia has the ability to treat diabetic cardiomyopathy. Our study can open up a new herbal therapeutic strategy against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shivani Singhal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| | - Vibha Rani
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector- 62, Noida, 201307, Uttar Pradesh, India
| |
Collapse
|
6
|
Pantazi AC, Kassim MAK, Nori W, Tuta LA, Mihai CM, Chisnoiu T, Balasa AL, Mihai L, Lupu A, Frecus CE, Lupu VV, Chirila SI, Badescu AG, Hangan LT, Cambrea SC. Clinical Perspectives of Gut Microbiota in Patients with Chronic Kidney Disease and End-Stage Kidney Disease: Where Do We Stand? Biomedicines 2023; 11:2480. [PMID: 37760920 PMCID: PMC10525496 DOI: 10.3390/biomedicines11092480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) plays a vital role in human health, with increasing evidence linking its imbalance to chronic kidney disease and end-stage kidney disease. Although the exact methods underlying kidney-GM crosstalk are not fully understood, interventions targeting GM were made and lay in three aspects: diagnostic, predictive, and therapeutic interventions. While these interventions show promising results in reducing uremic toxins and inflammation, challenges remain in the form of patient-specific GM variability, potential side effects, and safety concerns. Our understanding of GMs role in kidney disease is still evolving, necessitating further research to elucidate the causal relationship and mechanistic interactions. Personalized interventions focusing on specific GM signatures could enhance patient outcomes. However, comprehensive clinical trials are needed to validate these approaches' safety, efficacy, and feasibility.
Collapse
Affiliation(s)
| | | | - Wassan Nori
- College of Medicine, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Liliana Ana Tuta
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Corina Elena Frecus
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Sergiu Ioachim Chirila
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | | | - Laurentiu-Tony Hangan
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | - Simona Claudia Cambrea
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| |
Collapse
|
7
|
Samiry I, Pinon A, Limami Y, Rais S, Zaid Y, Oudghiri M, Liagre B, Mtairag EM. Antitumoral activity of Caralluma europaea on colorectal and prostate cancer cell lines. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:230-240. [PMID: 36879544 DOI: 10.1080/15287394.2023.2181898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Caralluma europaea is a medicinal plant used in Moroccan popular medicine, which has been employed as a remedy attributed to its anti-inflammatory, antipyretic, antinociceptive, antidiabetic, neuroprotective, and antiparasitic properties. The aim of the present study was to investigate the antitumor activity of both the methanolic and aqueous extract of C. europaea. The effects of increasing concentrations of aqueous and methanolic extracts on human colorectal cancer HT-29 and HCT116 cell lines and human prostate cancer PC3 and DU145 cell lines were examined on cell proliferation using MTT assay and cell cycle analysis. The induction of apoptosis was also assessed by determining protein expression of caspase-3 and poly-ADP-ribose polymerase (PARP) cleavage by western blot. The methanolic extract of C. europaea exerted significant antiproliferative effects on HT-29 (IC50 values 73 µg/ml), HCT116 (IC50 values 67 µg/ml), PC3 (IC50 values 63 µg/ml) and DU145 cells (IC50 values 65 µg/ml) after 48 hr treatment. Further, incubation with methanolic extract of C. europaea induced cell cycle arrest in G1 phase and an apoptotic process for all treated cell lines. In conclusion, the present results suggest that C. europaea, exhibited that these natural compounds are significant apoptosis inducers which may have considerable potential for development of effective natural product anticancer agents.
Collapse
Affiliation(s)
- Inass Samiry
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Aline Pinon
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Samira Rais
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences Ben M'Sik, Hassan II University, Casablanca, Morocco
| | - Younes Zaid
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
- Department of Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, Faculté de Pharmacie, F-87000 Limoges, France
| | - El Mostafa Mtairag
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
8
|
A Taxonomy-Agnostic Approach to Targeted Microbiome Therapeutics-Leveraging Principles of Systems Biology. Pathogens 2023; 12:pathogens12020238. [PMID: 36839510 PMCID: PMC9959781 DOI: 10.3390/pathogens12020238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The study of human microbiomes has yielded insights into basic science, and applied therapeutics are emerging. However, conflicting definitions of what microbiomes are and how they affect the health of the "host" are less understood. A major impediment towards systematic design, discovery, and implementation of targeted microbiome therapeutics is the continued reliance on taxonomic indicators to define microbiomes in health and disease. Such reliance often confounds analyses, potentially suggesting associations where there are none, and conversely failing to identify significant, causal relationships. This review article discusses recent discoveries pointing towards a molecular understanding of microbiome "dysbiosis" and away from a purely taxonomic approach. We highlight the growing role of systems biological principles in the complex interrelationships between the gut microbiome and host cells, and review current approaches commonly used in targeted microbiome therapeutics, including fecal microbial transplant, bacteriophage therapies, and the use of metabolic toxins to selectively eliminate specific taxa from dysbiotic microbiomes. These approaches, however, remain wholly or partially dependent on the bacterial taxa involved in dysbiosis, and therefore may not capitalize fully on many therapeutic opportunities presented at the bioactive molecular level. New technologies capable of addressing microbiome-associated diseases as molecular problems, if solved, will open possibilities of new classes and categories of targeted microbiome therapeutics aimed, in principle, at all dysbiosis-driven disorders.
Collapse
|