1
|
Carmona N, Seto E, Hayward L, Tan S, Lee S, Kemperman B, Truong J, Austin E. Use of Portable Air Cleaners in Washington State Schools: A Qualitative Analysis Based on the Technology Acceptance Model. THE JOURNAL OF SCHOOL HEALTH 2024. [PMID: 38890148 DOI: 10.1111/josh.13482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/07/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The US government allocated over $2.5 billion in "Elementary and Secondary School Emergency Relief (ESSER)" funds to Washington State for COVID-19 response and ventilation improvements. Despite available funding, gaps persist in supporting schools to successfully use portable air cleaners (PACs). We evaluated PAC needs within King County, Washington and characterized factors influencing schools' purchase and use of PACs. METHODS Public Health-Seattle & King County (PHSKC) assessed school's ventilation systems and IAQ improvements through a survey (N = 17). Separately, semi-structured interviews (N = 13) based on the technology acceptance model (TAM) were conducted with school personnel. A thematic analysis using inductive and deductive coding was conducted and logistic regression models assessed the predictive capability of the TAM. RESULTS The PHSKC survey findings informed our recommendations. Positive attitudes, knowledge, and beliefs in ease of use and effectiveness of PACs were facilitators to PAC use. While barriers included a lack of training, education, and concerns about PAC maintenance and sustainability. TAM constructs of perceived usefulness (PU) and perceived ease of use (PEU) were predictive of having the intention to use PACs in schools. CONCLUSIONS There is a critical need for solutions to circumvent challenges to implementing PACs in schools. This characterization provides insight for promoting PAC use in IAQ-impacted schools.
Collapse
Affiliation(s)
- Nancy Carmona
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Edmund Seto
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Lisa Hayward
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Shirlee Tan
- Department of Public Health - Seattle and King County, Environmental Health Services Division, Seattle, 98104, WA, USA
| | - Sinang Lee
- Department of Public Health - Seattle and King County, Environmental Health Services Division, Seattle, 98104, WA, USA
| | - Brandon Kemperman
- Department of Public Health - Seattle and King County, Environmental Health Services Division, Seattle, 98104, WA, USA
| | - Jenna Truong
- Department of Public Health - Seattle and King County, Environmental Health Services Division, Seattle, 98104, WA, USA
| | - Elena Austin
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
2
|
Ebrahimifakhar A, Poursadegh M, Hu Y, Yuill DP, Luo Y. A systematic review and meta-analysis of field studies of portable air cleaners: Performance, user behavior, and by-product emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168786. [PMID: 38008326 DOI: 10.1016/j.scitotenv.2023.168786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Indoor air quality is important for the health of building occupants, and public interest in controlling indoor airborne pathogens increased dramatically with the COVID-19 pandemic. Pollutant concentrations can be controlled locally using portable air cleaners (sometimes called air purifiers), which allow occupants to apply air cleaning technology to meet their needs in the location and times that they find appropriate. This paper provides a systematic review of scientific literature that describes field studies of the effectiveness of portable air cleaners. Over 500 papers were considered, and 148 were reviewed in detail, to extract 35 specific research results (e.g., particulate removal performance) or characteristics (e.g., type of building). These were aggregated to provide an overview of results and approaches to this type of research, and to provide meta-analyses of the results. The review includes: descriptions of the geographical location of the research; rate of publications over time; types of buildings and occupants in the field study; types of air cleaner technology being tested; pollutants being measured; resulting pollutant removal effectiveness; patterns of usage and potential barriers to usage by occupants; and the potential for by-product emissions in some air cleaner technologies. An example result is that 83 of the 148 papers measured reductions in fine particulates (PM2.5) and found a mean reduction of 49 % with standard deviation of 20 %. The aggregated results were approximately normally distributed, ranging from finding no significant reduction up to a maximum above 90 % reduction. Sixteen of the 148 papers considered gaseous pollutants, such as volatile organic compounds, nitrogen dioxide, and ozone; 36 papers considered biological pollutants, such as bacteria, viruses, pollen, fungi, etc. An important challenge, common to several studies, is that occupants run the air cleaners for shorter periods and on low airflow rate settings, because of concerns about noise, drafts, and electricity cost, which significantly reduces air cleaning effectiveness.
Collapse
Affiliation(s)
- Amir Ebrahimifakhar
- Delos Labs, Delos, New York, NY 10014, USA; Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Mehrdad Poursadegh
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yifeng Hu
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA; Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - David P Yuill
- Durham School of Architectural Engineering and Construction, University of Nebraska - Lincoln, 1110 S. 67th Street, Omaha, NE 68182, USA.
| | - Yu Luo
- Department of Applied Physics and Applied Mathematics, Columbia University, 500 W. 120th Street, New York, NY 10027, USA.
| |
Collapse
|
3
|
Badami MM, Tohidi R, Sioutas C. Los Angeles Basin's air quality transformation: a long-term investigation on the impacts of PM regulations on the trends of ultrafine particles and co-pollutants. JOURNAL OF AEROSOL SCIENCE 2024; 176:106316. [PMID: 38223364 PMCID: PMC10783618 DOI: 10.1016/j.jaerosci.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigates the long-term trends of ambient ultrafine particles (UFPs) and associated airborne pollutants in the Los Angeles Basin from 2007 to 2022, focusing on the indirect effects of regulations on UFP levels. The particle number concentration (PNC) of UFPs was compiled from previous studies in the area, and associated co-pollutant data, including nitrogen oxides (NOx), carbon monoxide (CO), elemental carbon (EC), organic carbon (OC), and ozone (O3), were obtained from the chemical speciation network (CSN) database. Over the study period, a general decrease was noted in the PNC of UFPs, NOx, EC, and OC, except for CO, the concentration trends of which did not exhibit a consistent pattern. UFPs, NOx, EC, and OC were positively correlated, while O3 had a negative correlation, especially with NOx. Our analysis discerned two distinct subperiods in pollutant trends: 2007-2015 and 2016-2022. For example, there was an overall decrease in the PNC of UFPs at an annual rate of -850.09 particles/cm3/year. This rate was more pronounced during the first sub-period (2007-2015) at -1814.9 particles/cm3/year and then slowed to -227.21 particles/cm3/year in the second sub-period (2016-2023). The first sub-period (2007-2015) significantly influenced pollutant level changes, exhibiting more pronounced and statistically significant changes than the second sub-period (2016-2022). Since 2016, almost all primary pollutants have stabilized, indicating a reduced impact of current regulations, and emphasizing the need for stricter standards. In addition, the study included an analysis of Vehicle Miles Traveled (VMT) trends from 2007 to 2022 within the Los Angeles Basin. Despite the general increase in VMT, current regulations and cleaner technologies seem to have successfully mitigated the potential increase in increase in PNC. Overall, while a decline in UFPs and co-pollutant levels was observed, the apparent stabilization of these levels underscores the need for more stringent regulatory measures and advanced emission standards.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
4
|
Braggion A, Dugerdil A, Wilson O, Hovagemyan F, Flahault A. Indoor Air Quality and COVID-19: A Scoping Review. Public Health Rev 2024; 44:1605803. [PMID: 38273885 PMCID: PMC10810127 DOI: 10.3389/phrs.2023.1605803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Objectives: The COVID-19 pandemic has been a major public health concern for the past 3 years. Scientific evidence on the relationship between SARS-CoV-2 infection and indoor air quality still needs to be demonstrated. This scoping review aims to study the association between air quality indoors and COVID-19. Methods: A scoping review analyzing the association between indoor air quality and epidemiological outcomes was conducted. Papers published between 1 January 2020 and 31 October 2022 were included. Hospital settings were excluded from the study. Results: Eight relevant articles met the inclusion criteria. Indoor settings included workplaces, schools, restaurants, and public transport. Types of ventilation used to improve indoor air quality were dilution methods (opening windows) and mechanical systems with or without filtration or purifier. CO2 sensors were employed in one study. All the studies showed a positive association between indoor air quality and its improvement and epidemiological indicators. Conclusion: The findings of this scoping review indicate that indoor air quality, which can be improved with ventilation methods, may reduce the risk of developing COVID-19. Ventilation could thus be viewed as a possible effective mitigating method.
Collapse
Affiliation(s)
- Axelle Braggion
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | - Adeline Dugerdil
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | - Olwen Wilson
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
- School of Public Policy, London School of Economics, London, United Kingdom
| | - Francesca Hovagemyan
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | - Antoine Flahault
- Institut de Santé Globale, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| |
Collapse
|