1
|
Fernández-Martínez R, Corrochano N, Álvarez-Quintana J, Ordóñez A, Álvarez R, Rucandio I. Assessment of the ecological risk and mobility of arsenic and heavy metals in soils and mine tailings from the Carmina mine site (Asturias, NW Spain). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:90. [PMID: 38367139 PMCID: PMC10874346 DOI: 10.1007/s10653-023-01848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 12/27/2023] [Indexed: 02/19/2024]
Abstract
An evaluation of the pollution, distribution, and mobility of arsenic and heavy metals in spoil heaps and soils surrounding the abandoned Carmina lead-zinc mine (Asturias, northern Spain) was carried out. Fractionation of arsenic was performed by an arsenic-specific sequential extraction method; while, heavy metal fractionations was carried out using the protocol of the Bureau Community of Reference (BCR) (now renamed Standards, Measurements and Testing Programme). Arsenic appeared predominantly associated with amorphous iron oxyhydroxides. Among the heavy metals, lead and zinc showed high availability since significant amounts were extracted in the nonresidual fractions; whereas, chromium, copper and nickel showed very low availability, indicating their lithogenic origins. The results showed that the extractability of heavy metals in soils is influenced mainly by the presence of iron and manganese oxides as well as by pH and Eh. Multiple pollution indices, including the enrichment factor (EF), geoaccumulation index (Igeo), ecological risk index (Er) and potential ecological risk index (PERI), were used to assess the degree of soil pollution in the mine area. All results showed that lead was the key factor causing the pollution and ecological risk in the studied area, and copper, zinc and arsenic also had significant contributions. Notably, the sites at higher risk coincided with those with high availability of arsenic and heavy metals. This study provides an integrative approach that serves as a powerful tool to evaluate the metal pollution status and potential threats to the local environment of abandoned mining areas, and the results are useful for making management decisions in these areas.
Collapse
Affiliation(s)
- Rodolfo Fernández-Martínez
- Departamento de Tecnología, División de Química, Unidad de Espectroscopía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain.
| | - Noelia Corrochano
- Departamento de Tecnología, División de Química, Unidad de Espectroscopía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain
| | - Jessica Álvarez-Quintana
- Escuela de Ingeniería de Minas, Energía y Materiales, Dpto. de Explotación y Prospección de Minas, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain
| | - Almudena Ordóñez
- Escuela de Ingeniería de Minas, Energía y Materiales, Dpto. de Explotación y Prospección de Minas, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain
| | - Rodrigo Álvarez
- Escuela de Ingeniería de Minas, Energía y Materiales, Dpto. de Explotación y Prospección de Minas, Universidad de Oviedo, Independencia, 13, 33004, Oviedo, Spain
| | - Isabel Rucandio
- Departamento de Tecnología, División de Química, Unidad de Espectroscopía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense, 40, 28040, Madrid, Spain
| |
Collapse
|
2
|
Rahman S, Rahman IMM, Hasegawa H. Management of arsenic-contaminated excavated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118943. [PMID: 37748284 DOI: 10.1016/j.jenvman.2023.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Ongoing global sustainable development and underground space utilization projects have inadvertently exposed many excavated soils naturally contaminated with geogenic arsenic (As). Recent investigations have revealed that As in certain excavated soils, especially those originating from deep construction projects, has exceeded regulatory limits, threatening the environment and human health. While numerous remediation techniques exist for treating As-contaminated soil, the unique characteristics of geogenic As contamination in excavated soil require specific measures when leachable As content surpasses established regulatory limits. Consequently, several standard leaching tests have been developed globally to assess As leaching from contaminated soil. However, a comprehensive comparative analysis of these methods and their implementation in contaminated excavated soils remains lacking. Furthermore, the suitability and efficacy of most conventional and advanced techniques for remediating As-contaminated excavated soils remained unexplored. Therefore, this study critically reviews relevant literature and summarize recent research findings concerning the management and mitigation of geogenic As in naturally contaminated excavated soil. The objective of this study was to outline present status of excavated soil globally, the extent and mode of As enrichment, management and mitigation approaches for As-contaminated soil, global excavated soil recycling strategies, and relevant soil contamination countermeasure laws. Additionally, the study provides a concise overview and comparison of standard As leaching tests developed across different countries. Furthermore, this review assessed the suitability of prominent and widely accepted As remediation techniques based on their applicability, acceptability, cost-effectiveness, duration, and overall treatment efficiency. This comprehensive review contributes to a more profound comprehension of the challenges linked to geogenic As contamination in excavated soils.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Moses A, Ramírez-Andreotta MD, McLain JET, Obergh V, Rutin E, Sandhaus S, Kilungo AP. The efficacy of hydrogen sulfide (H 2S) tests for detecting microbial contamination in rooftop-harvested rainwater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1398. [PMID: 37910273 PMCID: PMC10620290 DOI: 10.1007/s10661-023-11942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023]
Abstract
As climate change strains the world's freshwater resources, access to safe and clean water becomes limited. The use of alternative water sources, such as rooftop-harvested rainwater, has become one mechanism to address freshwater scarcity in the American Southwest, particularly when it comes to home gardening. The University of Arizona's Project Harvest, in partnership with the Sonora Environmental Research Institute, Inc., is a multi-year, co-created citizen science project aimed at increasing current understanding of harvested rainwater quality. Citizens in four Arizona, USA, communities (Hayden/Winkelman, Globe/Miami, Dewey-Humboldt, and Tucson) submitted harvested rainwater samples over 3 years. The harvested rainwater samples were then analyzed using IDEXX Colilert® for total coliforms and E. coli and using Hach PathoScreen™ test for sulfate-reducing bacteria (SRB). This study design allows for the validation of a low-cost, at-home alternative methodology for testing rainwater for bacteria that may indicate fecal contamination. In total, 226 samples were tested using both methodologies, revealing a positive correlation (r=0.245; p<0.002) between total coliform MPN and SRB MPN, but no discernable correlation between E. coli MPN and SRB MPN. This work indicates a potential value of SRB testing for harvested rainwater if cost, laboratory access, and fecal contamination are of concern.
Collapse
Affiliation(s)
- Arthur Moses
- Department of Environmental Science, University of Arizona, 1177 E. Fourth St, Tucson, AZ, 85721, USA
| | - Mónica D Ramírez-Andreotta
- Department of Environmental Science, University of Arizona, 1177 E. Fourth St, Tucson, AZ, 85721, USA
- Mel and Enid Zuckerman College of Public Health, Department of Community, Environment and Policy, University of Arizona, 1295 N. Martin Ave, Tucson, AZ, 85721, USA
| | - Jean E T McLain
- Department of Environmental Science, University of Arizona, 1177 E. Fourth St, Tucson, AZ, 85721, USA
- Water Resources Research Center, University of Arizona, 350 N. Campbell Ave, Tucson, AZ, 85719, USA
| | - Victoria Obergh
- Department of Environmental Science, University of Arizona, 1177 E. Fourth St, Tucson, AZ, 85721, USA
| | - Emma Rutin
- Mel and Enid Zuckerman College of Public Health, Department of Community, Environment and Policy, University of Arizona, 1295 N. Martin Ave, Tucson, AZ, 85721, USA
| | - Shana Sandhaus
- Department of Environmental Science, University of Arizona, 1177 E. Fourth St, Tucson, AZ, 85721, USA
| | - Aminata P Kilungo
- Mel and Enid Zuckerman College of Public Health, Department of Community, Environment and Policy, University of Arizona, 1295 N. Martin Ave, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Zhao C, Du M, Yang J, Guo G, Wang L, Yan Y, Li X, Lei M, Chen T. Changes in arsenic accumulation and metabolic capacity after environmental management measures in mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158652. [PMID: 36108864 DOI: 10.1016/j.scitotenv.2022.158652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Due to the public health concern of arsenic, environmental management measures in mining areas had been implemented. To assess the effect of environmental management measures in the mining area comprehensively, arsenic accumulation in the urine, hair, nails, and urinary metabolites of residents in a realgar mining area in Hunan province, China were investigated in 2019, and the changes in arsenic levels in the biomarkers during 2012-2019 were tracked. The importance of confounding factors (age, sex, occupation, residence, clinical history, vegetable source, cooking fuel, smoking, alcohol consumption, BMI) was analyzed using the Boruta algorithm. After the implementation of environmental management measures (including ceasing mining and smelting activities, building landfills, adjusting the planting structure, and soil restoration), urine, hair, and nail arsenic concentration decreased drastically but were still excessive. Arsenic accumulation was highest in older male miners who were long settled in the mining area and consumed homegrown vegetables. The only factor for changes in urinary arsenic levels was the cooking fuel type; residents using wood as cooking fuel experienced sustained arsenic exposure. Occupation and sex were important for determining arsenic changes in the hair and nails. Short-term arsenic accumulation in urine was affected by arsenic exposure, while long-term accumulation in hair and nails by arsenic metabolic capacity. The percentage of urinary arsenic metabolism and arsenic methylation indices of the participants in the mining area were within the normal range (%iAs: 10-30 %, %MMA: 10-20 %, % DMA: 60-80 %); samples indicated worse metabolic capacity than the reference population. The arsenic metabolic capacity of male miners was relatively weak, probably aggravated by alcohol drinking and smoking. Without soil remediation, arsenic exposure will continue. Homegrown vegetables and biomass fuels should be abandoned; reduced cigarette and alcohol consumption is recommended. Urinary arsenic would be more proper for assessing environmental remediation in mining areas.
Collapse
Affiliation(s)
- Chen Zhao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Du
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guanghui Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingqing Wang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxian Yan
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewen Li
- Shandong University, School of Public Health, Jinan, Shandong, China
| | - Mei Lei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lan X, Lin W, Ning Z, Su X, Chen Y, Jia Y, Xiao E. Arsenic shapes the microbial community structures in tungsten mine waste rocks. ENVIRONMENTAL RESEARCH 2023; 216:114573. [PMID: 36243050 DOI: 10.1016/j.envres.2022.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Tungsten (W) is a critical material that is widely used in military applications, electronics, lighting technology, power engineering and the automotive and aerospace industries. In recent decades, overexploitation of W has generated large amounts of mine waste rocks, which generate elevated content of toxic elements and cause serious adverse effects on ecosystems and public health. Microorganisms are considered important players in toxic element migrations from waste rocks. However, the understanding of how the microbial community structure varies in W mine waste rocks and its key driving factors is still unknown. In this study, high-throughput sequencing methods were used to determine the microbial community profiles along a W content gradient in W mine waste rocks. We found that the microbial community structures showed clear differences across the different W levels in waste rocks. Notably, arsenic (As), instead of W and nutrients, was identified as the most important predictor influencing microbial diversity. Furthermore, our results also showed that As is the most important environmental factor that regulates the distribution patterns of ecological clusters and keystone ASVs. Importantly, we found that the dominant genera have been regulated by As and were widely involved in As biogeochemical cycling in waste rocks. Taken together, our results have provided useful information about the response of microbial communities to W mine waste rocks.
Collapse
Affiliation(s)
- Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China.
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinyu Su
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Yushuang Chen
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou, 521041, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Song M, Lan T, Meng Y, Ju T, Chen Z, Shen P, Du Y, Deng Y, Han S, Jiang J. Effect of microbially induced calcium carbonate precipitation treatment on the solidification and stabilization of municipal solid waste incineration fly ash (MSWI FA) - Based materials incorporated with metakaolin. CHEMOSPHERE 2022; 308:136089. [PMID: 36028130 DOI: 10.1016/j.chemosphere.2022.136089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Microbially induced calcium carbonate precipitation (MICP) has been considered as a potential treatment method for the solidification and stabilization of municipal solid waste incineration fly ash (MSWI-FA).The main obstacle for MICP treatment of MSWI-FA is the harsh environment which causes the bacteria fail to maintain their urease activity effectively, thus decreases the solidification effect and material properties. Currently, there is no research on blending metakaolin (MK) as a protective carrier for the bacteria into the MSWI-FA. The effect of the MICP process on the curing properties of MSWI FA-based cementing materials in the MK and MSWI-FA reaction system is largely unknown. In this study, different mixing ratios of MK were used to adjust the Ca/Si/Al ratio in the mixture, and the properties of the cementing material (MSWI-FA mixed with MK and water) and the MICP-treated material (MSWI-FA mixed with MK and bacterial solution) were investigated. This study contributes to find suitable additives to promote effect of MICP on the solidification of MSWI-FA and the improvement of material properties. The results showed when the mixing ratio of MSWI FA was 90 wt %, the MICP treatment was able to increase the compressive strength of the samples up to 0.99 Mp, and the compressive strength of samples reached 1.46 MPa, when the mixing ratio of MSWI FA was 80 wt %. Though the metakaolin did not show inhibitory effect on the urease activity, the compressive strength of the MICP-treated samples did not further show a significant increase when the mixture of MK was increased from 20 wt% to 30 wt%. Further investigation suggested that MICP activities of bacteria utilizing calcium sources could have an impact on the formation/deformation of calcium-containing hydration products in the reaction system, thus affecting the mechanical and chemical properties of MSWI based materials. MICP treatment is effective in the immobilization of certain heavy metals of MSWI FA, especially for Pb, Cd and Zn. This research shows the potential of using MICP to treat the MSWI fly ash, meanwhile, it is necessary to find suitable reaction system with the proper additives in order to further improve the properties of the MSWI FA based material in terms of mechanical performance.
Collapse
Affiliation(s)
- Mengzhu Song
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tian Lan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yuan Meng
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tongyao Ju
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhehong Chen
- China Tiegong Investment & Construction Group Co., Ltd, China
| | - Pengfei Shen
- China Tiegong Investment & Construction Group Co., Ltd, China
| | - Yufeng Du
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yongchi Deng
- China Tiegong Investment & Construction Group Co., Ltd, China
| | - Siyu Han
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Gabris MA, Rezania S, Rafieizonooz M, Khankhaje E, Devanesan S, AlSalhi MS, Aljaafreh MJ, Shadravan A. Chitosan magnetic graphene grafted polyaniline doped with cobalt oxide for removal of Arsenic(V) from water. ENVIRONMENTAL RESEARCH 2022; 207:112209. [PMID: 34653412 DOI: 10.1016/j.envres.2021.112209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 05/21/2023]
Abstract
The present study reports the successful functionalization/magnetization of bio-polymer to produce chitosan-magnetic graphene oxide grafted polyaniline doped with cobalt oxide (ChMGOP-Co3O4). Analytical techniques furrier transform infra-red (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to confirm the formation of ChMGOP-Co3O4. The effects of several experimental factors (solution pH, adsorbent dosage and coexisting ions) on the uptake of As(V) ions using ChMGOP-Co3O4 were examined through batch experiments. As(V) removal process was validated by experimentally and theoretically investigating the adsorption capacity, rate, and thermal effects. Thermodynamic parameters such as free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were also calculated and were used to explain the mechanism of adsorption. Based on the results, the sorbent showed a high adsorption capacities (90.91 mg/g) at favorable neutral pH and superior removal efficiencies as high as 89% within 50 min. In addition, the adsorption isotherm followed the Langmuir isotherm in compare to the Freundlich, due to its higher R2 value (0.992 < 0.941). Meanwhile, the kinetic data revealed that the of As(V) adsorption was controlled by pseudo-second-order. Overall, the adsorption mechanism studies revealed a spontaneous endothermic nature with predominance of physisorption over chemisorption. This study indicated that ChMGOP-Co3O4 is an exceptional novel adsorbent material for the efficient isolation of As(V) from aqueous media.
Collapse
Affiliation(s)
- Mohammad Ali Gabris
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Mahdi Rafieizonooz
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Elnaz Khankhaje
- Faculty of Civil Engineering Universiti Teknologi Malaysia, 81310, UTM Skudai, Johor Bahru, Malaysia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mamduh J Aljaafreh
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box -2455, Riyadh, 11451, Saudi Arabia
| | - Arvin Shadravan
- Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Arsenic Contamination in Groundwater and Potential Health Risk in Western Lampang Basin, Northern Thailand. WATER 2022. [DOI: 10.3390/w14030465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This research aimed to investigate the spatial distribution of arsenic concentrations in shallow and deep groundwaters which were used as sources for drinking and domestic and agricultural uses. A geochemical modeling software PHREEQC was used to simulate equilibrium geochemical reactions of complex water–rock interactions to identify arsenic speciation and mineral saturation indices based on groundwater quality and hydrogeochemical conditions. In addition, the potential health risk from arsenic-contaminated groundwater consumption was assessed based on the method developed by the U.S. Environmental Protection Agency. The study area is located at the western part of the Lampang Basin, an intermontane aquifer, Northern Thailand. The area is flat and situated in a floodplain in the Cenozoic basin. Most shallow groundwater (£ 10 m depth) samples from dug wells were of Ca-Na-HCO3 and Ca-HCO3 types, whereas deep groundwater from Quaternary terrace deposits (30–150 m depth) samples were of Na-HCO3 and Ca-Na-HCO3 types. High arsenic concentrations were found in the central part of the study area (Shallow groundwater: <2.8–35 mg/L with a mean of 10.7 mg/L; Deep groundwater: <2.8–480 mg/L with a mean of 51.0 mg/L). According to geochemical modeling study, deep groundwater contained toxic As (III), as the dominant species more than shallow groundwater. Arsenic in groundwater of the Lampang Basin may have been derived from leaching of rocks and could have been the primary source of the subsurface arsenic in the study area. Secondary source of arsenic, which is more significant, could be derived from the leaching of sorbed arsenic in aquifer from co-precipitated Fe-oxyhydroxides in sediments. Quantitative risk assessment showed that the average carcinogenic risk values were as high as 2.78 × 10−3 and 7.65 × 10−3 for adult and child, respectively, which were higher than the acceptable level (1 × 10−4). The adverse health impact should be notified or warned with the use of this arsenic-contaminated groundwater without pre-treatment.
Collapse
|
9
|
Ruj DB, Chakrabortty DS, Nayak DJ, Chatterjee R. Treatment of arsenic sludge generated from groundwater treatment plant: A review towards a sustainable solution. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1016/j.sajce.2021.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
10
|
Ahmad K, Shah HUR, Ashfaq M, Nawaz H. Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Water contamination is worldwide issue, undermining whole biosphere, influencing life of a large number of individuals all over the world. Water contamination is one of the chief worldwide danger issues for death, sickness, and constant decrease of accessible drinkable water around the world. Among the others, presence of arsenic, is considered as the most widely recognized lethal contaminant in water bodies and poses a serious threat not exclusively to humans but also towards aquatic lives. Hence, steps must be taken to decrease quantity of arsenic in water to permissible limits. Recently, metal-organic frameworks (MOFs) with outstanding stability, sorption capacities, and ecofriendly performance have empowered enormous improvements in capturing substantial metal particles. MOFs have been affirmed as good performance adsorbents for arsenic removal having extended surface area and displayed remarkable results as reported in literature. In this review we look at MOFs which have been recently produced and considered for potential applications in arsenic metal expulsion. We have delivered a summary of up-to-date abilities as well as significant characteristics of MOFs used for this removal. In this review conventional and advanced materials applied to treat water by adsorptive method are also discussed briefly.
Collapse
Affiliation(s)
- Khalil Ahmad
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Habib-Ur-Rehman Shah
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Muhammad Ashfaq
- Institute of Chemistry, Baghdad ul Jadeed Campus, The Islamia University of Bahawalpur , Bahawalpur 63100 , Pakistan
| | - Haq Nawaz
- CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences (CAS) , Beijing 100190 , China
| |
Collapse
|
11
|
Rajendran RM, Garg S, Bajpai S. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:13886-13899. [PMID: 33205270 DOI: 10.1007/s11356-020-11613-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic contamination in drinking water is recognized as major health hazard worldwide. As reported in literature, more than 19% Indians are consuming lethal levels of arsenic for drinking purposes. In this work, arsenic (III) removal was studied using HFN300 polyethersulfone nanofiltration membrane in spiral wound configuration. Various membrane parameters such as hydraulic permeability (4.87 L m-2 h-1 bar-1), mass transfer coefficient (0.957*10-6 m s-1), reflection coefficient (0.9), and solute permeability (2*10-9 m s-1) were estimated using film theory combined Spiegler-Kedem (FTCSK) model. The higher value of reflection coefficient suggested the impervious nature of nanofiltration (NF) membrane used for arsenic (III) solute rejection. The influence of various operating parameters such as transmembrane pressure, initial feed concentration, and feed flowrate on membrane performance was also examined. It was found that arsenic (III) rejection was dependent on pressure and feed concentration. Result showed that more than 96.4% arsenic (III) rejection was achieved for 50 mg L-1 of feed at optimized conditions. As HFN300 membrane was negatively charged at pH 8 and arsenic (III) was available in neutral solute form, electro-migration was not considered for solute rejection mechanism. Solution diffusion with significant coupling between solute and solvent, steric hindrance effect, convection, and solute-membrane affinity interactions were considered dominant factors for the possible solute rejection mechanism. Rejection efficiency (% R) and permeate flowrate (Q2) were simulated and compared with experimental results. It was found that simulated results were in excellent agreement with the experimental results. The maximum error obtained was within 10% for both % R and Q2. This confirms the efficacy of FTCSK model in predicting arsenic (III) removal using NF membrane. The annualized cost per cubic metre of treated water was estimated as 3.32 $/m3. This further confirms the feasibility of using NF process in removing arsenic from contaminated water.
Collapse
Affiliation(s)
- Robin Marlar Rajendran
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144011, India
| | - Sangeeta Garg
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144011, India
| | - Shailendra Bajpai
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar, 144011, India.
| |
Collapse
|
12
|
Jones M, Credo J, Ingram J, Baldwin J, Trotter R, Propper C. Arsenic Concentrations in Ground and Surface Waters across Arizona Including Native Lands. JOURNAL OF CONTEMPORARY WATER RESEARCH & EDUCATION 2020; 169:44-60. [PMID: 33042358 PMCID: PMC7544159 DOI: 10.1111/j.1936-704x.2020.03331.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parts of the Southwestern United States report arsenic levels in water resources that are above the United States Environmental Protection Agency's current drinking water limits. Prolonged exposure to arsenic through food and drinking water can contribute to significant health problems including cancer, developmental effects, cardiovascular disease, neurotoxicity, and diabetes. In order to understand exposure risks, water sampling and testing has been conducted throughout Arizona. This information is available to the public through often non-overlapping databases that are difficult to access and in impracticable formats. The current study utilized a systemic compilation of online databases to compile a spreadsheet containing over 33,000 water samples. The reported arsenic concentrations from these databases were collected from 1990-2017. Using ArcGIS software, these data were converted into a map shapefile and overlaid onto a map of Arizona. This visual representation shows that arsenic levels in surface and ground water exceed the United States Environmental Protection Agency's drinking water limits for many sites in several counties in Arizona, and there is an underrepresentation of sampling in several tribal jurisdictions. This information is useful for water managers and private well owners throughout the State for determining safe drinking water sources and limiting exposure to arsenic.
Collapse
Affiliation(s)
- M.C. Jones
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - J.M. Credo
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011
| | - J.C. Ingram
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011
| | - J.A. Baldwin
- Department of Health Sciences, Northern Arizona University, Flagstaff, AZ 86011
| | - R.T. Trotter
- Department of Anthropology, Northern Arizona University, Flagstaff, AZ 86011
| | - C.R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011
| |
Collapse
|
13
|
Towards Sustainable Mining: Exploiting Raw Materials from Extractive Waste Facilities. SUSTAINABILITY 2020. [DOI: 10.3390/su12062383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The focus of the present research is on the exploitation of extractive waste to recover raw materials, considering the technological and economic factors, together with the environmental impacts, associated with extractive waste quarrying and dressing activities. The present study, based on a case history from Northern Italy (Montorfano and Baveno granite quarrying area), was intended to validate the presented interdisciplinary approach for evaluating economic and environmental impacts associated with extractive waste facility exploitation (from granite waste to products for the ceramic industry and by-products for the building industry). A shared methodology was applied to determine extractive waste characteristics (geochemistry, petrography, and mineralogy), waste volume (geophysical, topographic, and morphologic 3D characterization) and potential exploitable products and by-products. Meanwhile, a Life Cycle Assessment (LCA) was applied to determine the environmental impacts associated with the extraction and processing phases.
Collapse
|
14
|
Ravansari R, Wilson SC, Tighe M. Portable X-ray fluorescence for environmental assessment of soils: Not just a point and shoot method. ENVIRONMENT INTERNATIONAL 2020; 134:105250. [PMID: 31751829 DOI: 10.1016/j.envint.2019.105250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Portable XRF is a rapid, mobile, high throughput, and potentially cost effective instrumental analytical technique capable of elemental assessment. It is widely used for environmental assessment of soils in a variety of contexts such as agriculture and pollution both in-situ and ex-situ, to varying levels of success. Portable XRF performance for soil analysis is often validated against wet chemistry techniques but a range of factors may give rise to elementally dependent disparities affecting accuracy and precision assessments. These include heterogeneity, analysis times, instrument stability during analyses, protective thin films, incident X-rays, sample thickness, sample width, analyte interferences, detector resolution, power source fluctuations and instrumental drift. Light elements comprising water and organic matter (i.e. carbon, oxygen) also negatively affect measurements due to X-ray scattering and attenuation. The often-overlooked phenomenon of variability in both soil organic matter and water can also affect soil density (e.g. shrink-swell clays) and thus sample critical thickness which in turn affects the effective volume of sample analyzed. Compounding this, for elements having lower characteristic fluorescence energy, effective volumes of analyses are lower and thus measurements may not be representative of the whole sample. Understanding the effects and interplay between determined elemental concentrations and soil organic matter, water, and critical thickness together with the subtlety of theoretical effective volumes of analyses will help analysts mitigate potential problems and assess the applicability, advantages and limitations of PXRF for a given site. We demonstrate that with careful consideration of these factors and a systematic approach to analysis which we summarize and present, PXRF can provide highly accurate results.
Collapse
Affiliation(s)
- Roozbeh Ravansari
- School of Environmental and Rural Science, University of New England, Armidale 2351, Australia.
| | - Susan C Wilson
- School of Environmental and Rural Science, University of New England, Armidale 2351, Australia
| | - Matthew Tighe
- School of Environmental and Rural Science, University of New England, Armidale 2351, Australia
| |
Collapse
|
15
|
Characteristics of Arsenic Leached from Sediments: Agricultural Implications of Abandoned Mines. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy metals, including arsenic from abandoned mines, are easily transported with sediment and deposited in waterbodies such as reservoirs and lakes, creating critical water quality issues when they are released. Understanding the leaching of heavy metals is necessary for developing efficient water quality improvement plans. This study investigated how arsenic leaches from different soil and sediment types and responds to hydrologic conditions to identify areas susceptible to arsenic contamination. In this study, batch- and column-leaching tests and sequential extraction procedures were used to examine arsenic leaching processes in detail. The results showed that most arsenic-loaded sediments accumulated in the vicinity of a reservoir inlet, and arsenic in reservoir beds have a higher leaching potential than those from agricultural land and stream beds. Arsenic deposited at the bottom of reservoirs had higher mobility than that in the other soils and sediments, and arsenic leaching was closely associated with the acidity of water. In addition, arsenic leaching was found to be responsive to seasons (wet or dry) as its mobilization is controlled by organic compounds that vary over time. The results suggested that temporal variations in the hydrochemical composition of reservoir water should be considered when defining a management plan for reservoir water quality.
Collapse
|
16
|
Mehta N, Cocerva T, Cipullo S, Padoan E, Dino GA, Ajmone-Marsan F, Cox SF, Coulon F, De Luca DA. Linking oral bioaccessibility and solid phase distribution of potentially toxic elements in extractive waste and soil from an abandoned mine site: Case study in Campello Monti, NW Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2799-2810. [PMID: 30463133 DOI: 10.1016/j.scitotenv.2018.10.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 05/19/2023]
Abstract
Oral bioaccessibility and solid phase distribution of potentially toxic elements (PTE) from extractive waste streams were investigated to assess the potential human health risk posed by abandoned mines. The solid phase distribution along with micro-X-ray fluorescence (micro-XRF) and scanning electron microscopy (SEM) analysis were also performed. The results showed that the total concentrations of PTE were higher in <250 μm size fractions of waste rock and soil samples in comparison to the <2 mm size fractions. Mean value of total concentrations of chromium(Cr), copper (Cu), and nickel (Ni) in waste rocks (size fractions <250 μm) were found to be 1299, 1570, and 4010 mg/kg respectively due to the parent material. However, only 11% of Ni in this sample was orally bioaccessible. Detailed analysis of the oral bioaccessible fraction (BAF, reported as the ratio of highest bioaccessible concentration compared with the total concentration from the 250 μm fraction) across all samples showed that Cr, Cu, and Ni varied from 1 to 6%, 14 to 47%, and 5 to 21%, respectively. The variation can be attributed to the difference in pH, organic matter content and mineralogical composition of the samples. Non-specific sequential extraction showed that the non-mobile forms of PTE were associated with the clay and Fe oxide components of the environmental matrices. The present study demonstrates how oral bioaccessibility, solid phase distribution and mineralogical analysis can provide insights into the distribution, fate and behaviour of PTE in waste streams from abandoned mine sites and inform human health risk posed by such sites .
Collapse
Affiliation(s)
- Neha Mehta
- Department of Earth Sciences, University of Torino, Italy.
| | - Tatiana Cocerva
- School of Natural and Built Environment, Queen's University Belfast, UK
| | - Sabrina Cipullo
- School of Water, Energy and Environment, Cranfield University, UK
| | - Elio Padoan
- Department of Agricultural, Forest and Food Sciences,University of Torino, Italy
| | | | - Franco Ajmone-Marsan
- Department of Agricultural, Forest and Food Sciences,University of Torino, Italy
| | - Siobhan Fiona Cox
- School of Natural and Built Environment, Queen's University Belfast, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, UK
| | | |
Collapse
|
17
|
Tabelin CB, Igarashi T, Villacorte-Tabelin M, Park I, Opiso EM, Ito M, Hiroyoshi N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1522-1553. [PMID: 30248873 DOI: 10.1016/j.scitotenv.2018.07.103] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/01/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Massive and ambitious underground space development projects are being undertaken by many countries around the world to decongest megacities, improve the urban landscapes, upgrade outdated transportation networks, and expand modern railway and road systems. A number of these projects, however, reported that substantial portions of the excavated debris are oftentimes naturally contaminated with hazardous elements, which are readily released in substantial amounts once exposed to the environment. These contaminated excavation debris/spoils/mucks, loosely referred to as "naturally contaminated rocks", contain various hazardous and toxic inorganic elements like arsenic (As), selenium (Se), boron (B), and heavy metals like lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn). If left untreated, these naturally contaminated rocks could pose very serious problems not only to the surrounding ecosystem but also to people living around the construction and disposal sites. Several incidents of soil and ground/surface water contamination, for example, have been documented due to the false assumption that excavated materials are non-hazardous because they only contain background levels of environmentally regulated elements. Naturally contaminated rocks are hazardous wastes, but they still remain largely unregulated. In fact, standard leaching tests for their evaluation and classification are not yet established. In this review, we summarized all available studies in the literature about the factors and processes crucial in the enrichment, release, and migration of the most commonly encountered hazardous and toxic elements in naturally contaminated geological materials. Although our focus is on naturally contaminated rocks, analogue systems like contaminated soils, sediments, and other hazardous wastes that have been more widely studied will also be discussed. Classification schemes and leaching tests to properly identify and regulate excavated rocks that may potentially pose environmental problems will be examined. Finally, management and mitigation strategies to limit the negative effects of these hazardous wastes are introduced.
Collapse
Affiliation(s)
- Carlito Baltazar Tabelin
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Mylah Villacorte-Tabelin
- Department of Biological Sciences, College of Science and Mathematics, Mindanao State University - Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Ilhwan Park
- Division of Sustainable Resources Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Einstine M Opiso
- Geoenvironmental Engineering Group, Central Mindanao University, Maramag 8710, Bukidnon, Philippines
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Naoki Hiroyoshi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
18
|
Nguyen VK, Ha MG, Shin S, Seo M, Jang J, Jo S, Kim D, Lee S, Jung Y, Kang P, Shin C, Ahn Y. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 223:852-859. [PMID: 29986334 DOI: 10.1016/j.jenvman.2018.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Mine wastes from tungsten mine which contain a high concentration of arsenic (As) may expose many environmental problems because As is very toxic. This study aimed to evaluate bioleaching efficiency of As and manganese (Mn) from tungsten mine wastes using the pure and mixed culture of Acidithiobacillus ferrooxidans and A. thiooxidans. The electrochemical effect of the electrode through externally applied voltage on bacterial growth and bioleaching efficiency was also clarified. The obtained results indicated that both the highest As extraction efficiency (96.7%) and the highest Mn extraction efficiency (100%) were obtained in the mixed culture. A. ferrooxidans played a more important role than A. thiooxidans in the extraction of As whereas A. thiooxidans was more significant than A. ferrooxidans in the extraction of Mn. Unexpectedly, the external voltage applied to the bioleaching did not enhance metal extraction rate but inhibited bacterial growth, resulting in a reverse effect on bioleaching efficiency. This could be due to the low electrical tolerance of bioleaching bacteria. However, this study asserted that As and Mn could be successfully removed from tungsten mine waste by the normal bioleaching using the mixed culture of A. ferrooxidans and A. thiooxidans.
Collapse
Affiliation(s)
- Van Khanh Nguyen
- Department of Environmental Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Seunghye Shin
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Minhyeong Seo
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Jongwon Jang
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Seungjin Jo
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Donghyeon Kim
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Sungmin Lee
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Yoonho Jung
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | | | - Chajeong Shin
- BUSAN IL Science High School, Busan 49317, Republic of Korea
| | - Yeonghee Ahn
- Department of Environmental Engineering, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
19
|
Lee E, Han Y, Park J, Hong J, Silva RA, Kim S, Kim H. Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 147:124-131. [PMID: 25262394 DOI: 10.1016/j.jenvman.2014.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/27/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency.
Collapse
Affiliation(s)
- Eunseong Lee
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Yosep Han
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Jeonghyun Park
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Jeongsik Hong
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Rene A Silva
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Seungkon Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 561-756, Republic of Korea.
| |
Collapse
|
20
|
Clancy TM, Hayes KF, Raskin L. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10799-812. [PMID: 24004144 DOI: 10.1021/es401749b] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.
Collapse
Affiliation(s)
- Tara M Clancy
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
21
|
Lim M, Kim MJ. Reuse of washing effluent containing oxalic acid by a combined precipitation-acidification process. CHEMOSPHERE 2013; 90:1526-1532. [PMID: 23041037 DOI: 10.1016/j.chemosphere.2012.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
This study aims at evaluating the reuse feasibility of effluent produced by the soil washing of mine tailings with oxalic acid. Alkaline chemicals such as NaOH, Ca(OH)(2), and Na(2)CO(3) are used for the precipitation of arsenic and heavy metals in the effluent containing oxalic acid. All of the target contaminants are removed with very high efficiency (up to 100%) at high pH. The precipitation using NaOH at pH 9 is determined to be the most cost-effective method for the removal of arsenic as well as heavy metals in the effluent. The effluent decontaminated by NaOH is consecutively reused for the soil washing of raw mine tailings, resulting in considerable efficiency. Furthermore, even more arsenic and heavy metals are extracted from raw mine tailings by acidifying the decontaminated effluent under the alkaline condition, compared with direct reuse of the decontaminated effluent. Here, the oxalic acid, which is a weak complex-forming ligand as well as a weak acid, has noticeable effects on both soil washing and effluent treatment by precipitation. It extracts efficiently the contaminants from the mine tailings without adverse change of soil and also makes possible the precipitation of the contaminants in the effluent unlike strong chelating reagent. Reuse of the washing effluent containing oxalic acid would make the existing soil washing process more environment-friendly and cost-effective.
Collapse
Affiliation(s)
- Mihee Lim
- Department of Environmental Engineering, College of Engineering, Korea Maritime University, Dongsam-dong, Youngdo-gu, Busan 606-791, Republic of Korea
| | | |
Collapse
|
22
|
Wei C, Zheng H, Yu J. Arsenic in the rhizosphere soil solution of ferns. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2012; 14:950-965. [PMID: 22908657 DOI: 10.1080/15226514.2011.636405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this study was to explore the evidence of arsenic hyperaccumulation in plant rhizosphere solutions. Six common fern plants were selected and grown in three types of substrate: arsenic (As) -tailings, As-spiked soil, and soil-As-tailing composites. A rhizobox was designed with an in-situ collection of soil solutions to analyze changes in the As concentration and valence as well as the pH, dissolved organic carbon (DOC) and total nitrogen (TN). Arsenite composed less than 20% of the total As, and As depletion was consistent with N depletion in the rhizosphere solutions of the various treatments. The As concentrations in the rhizosphere and non-rhizosphere solutions in the presence of plants were lower than in the respective controls without plants, except for in the As-spiked soils. The DOC concentrations were invariably higher in the rhizosphere versus non-rhizosphere solutions from the various plants; however, no significant increase in the DOC content was observed in Pteris vittata, in which only a slight decrease in pH appeared in the rhizosphere compared to non-rhizosphere solutions. The results showed that As reduction by plant roots was limited, acidification-induced solubilization was not the mechanism for As hyperaccumulation.
Collapse
Affiliation(s)
- Chaoyang Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | | | | |
Collapse
|
23
|
Isosaari P, Sillanpää M. Electromigration of arsenic and co-existing metals in mine tailings. CHEMOSPHERE 2010; 81:1155-1158. [PMID: 20888026 DOI: 10.1016/j.chemosphere.2010.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/04/2010] [Accepted: 09/06/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study was to investigate the feasibility of enhanced electrokinetic remediation technology for controlled leaching and collection of labile arsenic fractions from mine tailings. Direct current was applied to tailings for 20 d using ammonium oxalate and sodium hydroxide as enhancement solutions. Migration of arsenic was observed, resulting in 63-71% removal near the cathode but only 6-17% overall removal in the entire tailings matrix in 20 d. However, significant migration of arsenic towards the anode and accumulation in a collection well near the anode was observed, especially under alkaline conditions. Thus, treatment time and consumption of chemicals could probably be reduced by installing specific collection or adsorption zones near the anode. A relationship between electrokinetic mobility of arsenic and other elements and their extractability in sequential extraction tests was established, indicating that dissolution or desorption of the elements and thermodynamic conditions (pH and Eh gradient) played a bigger role in the electrokinetic removal process than electromigration of soluble ions.
Collapse
Affiliation(s)
- Pirjo Isosaari
- Department of Civil and Environmental Engineering, Aalto University School of Science and Technology, Aalto, Finland.
| | | |
Collapse
|
24
|
Comparative assessment of soil contamination by lead and heavy metals in riparian and agricultural areas (southern Québec, Canada). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3100-14. [PMID: 20948950 PMCID: PMC2954571 DOI: 10.3390/ijerph7083100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/29/2010] [Accepted: 08/02/2010] [Indexed: 11/18/2022]
Abstract
Soils contaminated with hydrocarbons (C10–C50), PAHS, lead and other heavy metals were recently found in the banks of two major rivers in southern Québec. Alluvial soils are contaminated over a distance of 100 kilometers. Eight sampling sites, including some located in agriculture areas (farm woodlots) have been selected to compare air pollution (aerosol fallout and rainout) and river pollution values. The concentrations detected in soil profiles for As, Cd and Pb vary between 3.01 to 37.88 mg kg−1 (As), 0.11 to 0.81 mg kg−1 (Cd) 12.32 to 149.13 mg kg−1 (Pb). These metallic elements are considered highly toxic and can harm wildlife and human health at high levels. The maximum concentration of Pb (149.13 mg kg−1) in soils of the riparian zone is twelve times higher than the average Pb concentration found in a natural state evaluated at 15.3 mg kg−1 (SD 17.5). Pb concentrations in soils of agricultural areas (woodland control sites) range between 12 and 22 mg kg−1, and given that these values are recorded in surrounding cultivated land, the issue of the quality of agricultural products (crops and forage) to feed livestock or destined for human consumption must be further addressed in detail.
Collapse
|