1
|
Struys I, Song JY, Velázquez C, Boadum T, Posch MJ, van de Ven M, Lenaerts L, Amant F. Compound-dependent fetal toxicity after in utero exposure to chemotherapy in a pregnant mouse model. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104594. [PMID: 39613124 DOI: 10.1016/j.etap.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Although chemotherapy is integrated in the treatment of second-trimester pregnant cancer patients, its potential cyto- and genotoxicity to fetal tissue remains unknown. To investigate any causal relation between in utero chemotherapy exposure and fetal toxicity, late-gestation pregnant BL6 mice were exposed to vehicle, or one of six chemotherapeutic compounds, used to treat pregnant cases: cyclophosphamide, carboplatin, cisplatin (alkylating agents), epirubicin, doxorubicin (anthracyclines) or paclitaxel (taxane). fetuses were euthanized at gestational day 18.5, after 48 hours of in utero exposure. Fetuses in utero exposed to alkylating agents presented with morphological changes in liver, bone marrow and thymus. Furthermore, decreased expression of Ki67, and increased expression of caspase-3 and P-H2AX markers, pointed to inhibited proliferation and increased apoptosis and DNA-double stranded breaks respectively, in several fetal tissues. Moderate toxicity was seen after in utero exposure to anthracyclines and taxanes. These findings emphasize the importance of investigating fetal toxicity in the clinical setting.
Collapse
Affiliation(s)
- Ilana Struys
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Terry Boadum
- NKI Animal Laboratory, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marloes J Posch
- NKI Animal Laboratory, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging (MCCA), Preclinical Intervention Unit, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Frédéric Amant
- Department of Oncology, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynecology, UZ Leuven, Leuven, Belgium; Gynecologic Oncology, Netherlands Cancer Institute, Anthony Van Leeuwenhoek, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
3
|
Chen M, Marrs B, Qi L, Knifley T, Weiss HL, D’Orazio JA, O’Connor KL. Integrin α6β4 signals through DNA damage response pathway to sensitize breast cancer cells to cisplatin. Front Oncol 2022; 12:1043538. [PMID: 36439467 PMCID: PMC9686853 DOI: 10.3389/fonc.2022.1043538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Integrin α6β4 is highly expressed in triple negative breast cancer (TNBC) and drives its most aggressive traits; however, its impact on chemotherapeutic efficacy remains untested. We found that integrin α6β4 signaling promoted sensitivity to cisplatin and carboplatin but not to other chemotherapies tested. Mechanistic investigations revealed that integrin α6β4 stimulated the activation of ATM, p53, and 53BP1, which required the integrin β4 signaling domain. Genetic manipulation of gene expression demonstrated that mutant p53 cooperated with integrin α6β4 for cisplatin sensitivity and was necessary for downstream phosphorylation of 53BP1 and enhanced ATM activation. Additionally, we found that in response to cisplatin-induced DNA double strand break (DSB), integrin α6β4 suppressed the homologous recombination (HR) activity and enhanced non-homologous end joining (NHEJ) repair activity. Finally, we discovered that integrin α6β4 preferentially activated DNA-PK, facilitated DNA-PK-p53 and p53-53BP1 complex formation in response to cisplatin and required DNA-PK to enhance ATM, 53BP1 and p53 activation as well as cisplatin sensitivity. In summary, we discovered a novel function of integrin α6β4 in promoting cisplatin sensitivity in TNBC through DNA damage response pathway.
Collapse
Affiliation(s)
- Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Brock Marrs
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Heidi L. Weiss
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - John A. D’Orazio
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Pediatrics, University of Kentucky, Lexington, KY, United States
| | - Kathleen L. O’Connor
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Association study of candidate DNA-repair gene variants and acute graft versus host disease in pediatric patients receiving allogeneic hematopoietic stem-cell transplantation. THE PHARMACOGENOMICS JOURNAL 2022; 22:9-18. [PMID: 34711928 PMCID: PMC8794787 DOI: 10.1038/s41397-021-00251-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/26/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Acute Graft versus Host Disease (aGvHD) grades 2-4 occurs in 15-60% of pediatric patients undergoing allogeneic haematopoietic stem-cell transplantation (allo-HSCT). The collateral damage to normal tissue by conditioning regimens administered prior to allo-HSCT serve as an initial trigger for aGvHD. DNA-repair mechanisms may play an important role in mitigating this initial damage, and so the variants in corresponding DNA-repair protein-coding genes via affecting their quantity and/or function. We explored 51 variants within 17 DNA-repair genes for their association with aGvHD grades 2-4 in 60 pediatric patients. The cumulative incidence of aGvHD 2-4 was 12% (n = 7) in the exploratory cohort. MGMT rs10764881 (G>A) and EXO rs9350 (c.2270C>T) variants were associated with aGvHD 2-4 [Odds ratios = 14.8 (0 events out of 40 in rs10764881 GG group) and 11.5 (95% CI: 2.3-191.8), respectively, multiple testing corrected p ≤ 0.001]. Upon evaluation in an extended cohort (n = 182) with an incidence of aGvHD 2-4 of 22% (n = 40), only MGMT rs10764881 (G>A) remained significant (adjusted HR = 2.05 [95% CI: 1.06-3.94]; p = 0.03) in the presence of other clinical risk factors. Higher MGMT expression was seen in GG carriers for rs10764881 and was associated with higher IC50 of Busulfan in lymphoblastoid cells. MGMT rs10764881 carrier status could predict aGvHD occurrence in pediatric patients undergoing allo-HSCT.
Collapse
|
5
|
Yamamuro S, Takahashi M, Satomi K, Sasaki N, Kobayashi T, Uchida E, Kawauchi D, Nakano T, Fujii T, Narita Y, Kondo A, Wada K, Yoshino A, Ichimura K, Tomiyama A. Lomustine and nimustine exert efficient antitumor effects against glioblastoma models with acquired temozolomide resistance. Cancer Sci 2021; 112:4736-4747. [PMID: 34536314 PMCID: PMC8586660 DOI: 10.1111/cas.15141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastomas (GBM) often acquire resistance against temozolomide (TMZ) after continuous treatment and recur as TMZ‐resistant GBM (TMZ‐R‐GBM). Lomustine (CCNU) and nimustine (ACNU), which were previously used as standard therapeutic agents against GBM before TMZ, have occasionally been used for the salvage therapy of TMZ‐R‐GBM; however, their efficacy has not yet been thoroughly examined. Therefore, we investigated the antitumor effects of CCNU and ACNU against TMZ‐R‐GBM. As a model of TMZ‐R‐GBM, TMZ resistant clones of human GBM cell lines (U87, U251MG, and U343MG) were established (TMZ‐R‐cells) by the culture of each GBM cells under continuous TMZ treatment, and the antitumor effects of TMZ, CCNU, or ACNU against these cells were analyzed in vitro and in vivo. As a result, although growth arrest and apoptosis were triggered in all TMZ‐R‐cells after the administration of each drug, the antitumor effects of TMZ against TMZ‐R‐cells were significantly reduced compared to those of parental cells, whereas CCNU and ACNU demonstrated efficient antitumor effects on TMZ‐R‐cells as well as parental cells. It was also demonstrated that TMZ resistance of TMZ‐R‐cells was regulated at the initiation of DNA damage response. Furthermore, survival in mice was significantly prolonged by systemic treatment with CCNU or ACNU but not TMZ after implantation of TMZ‐R‐cells. These findings suggest that CCNU or ACNU may serve as a therapeutic agent in salvage treatment against TMZ‐R‐GBM.
Collapse
Affiliation(s)
- Shun Yamamuro
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Masamichi Takahashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Kaishi Satomi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Diagnostic Pathology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Japan
| | - Tatsuya Kobayashi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Eita Uchida
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka-City, Japan
| | - Daisuke Kawauchi
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba-shi, Japan
| | - Tomoyuki Nakano
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Neurosurgery, Tokyo Medical and Dental University, Bunkyo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Takashi Fujii
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University School of Medicine, Bunkyo-ku, Japan
| | - Kojiro Wada
- Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| | - Atsuo Yoshino
- Department of Neurological Surgery, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan
| | - Arata Tomiyama
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Brain Disease Translational Research, Faculty of Medicine, Juntendo University, Bunkyo-ku, Japan.,Department of Neurosurgery, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
6
|
Mrdjanović J, Šolajić S, Srđenović-Čonić B, Bogdanović V, Dea KJ, Kladar N, Jurišić V. The Oxidative Stress Parameters as Useful Tools in Evaluating the DNA Damage and Changes in the Complete Blood Count in Hospital Workers Exposed to Low Doses of Antineoplastic Drugs and Ionizing Radiation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168445. [PMID: 34444191 PMCID: PMC8394042 DOI: 10.3390/ijerph18168445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/24/2023]
Abstract
Hospital workers at the Oncology Department are occupationally exposed to antineoplastic drugs (ANTNP) or low doses of ionizing radiation (Irrad). Therefore, the aim of this study was to evaluate the level of DNA damage, the oxidative stress parameters and complete blood count (CBC) of hospital workers in order to analyze the negative health effects of ANTNP and low dose Irrad. The frequency of micronuclei (MN) and proliferation index (PI) were analyzed by cytokinesis-block test. The oxidative stress biomarkers evaluated were the level of lipid peroxidation in plasma and catalase activity (CAT) in erythrocytes. A group of 86 hospital workers (35 exposed to ANTPN and 51 to Irrad) had increased MN frequency, CAT activity and level of lipid peroxidation compared to the control group, which consisted of 24 volunteers. The hemoglobin level was lower in the ANTNP group compared to thecontrol group, while a significant difference in RBC was recorded between thecontrol and Irrad groups, and in platelet count betweentheIrrad and ANTNP group. The results showed increased DNA damage, oxidative stress parameters, as well as impairment on complete blood count in hospital workers occupationally exposed to antineoplastic drugs and low-dose ionizing radiation. As this research has shown the importance of oxidative stress, we suggest that in addition to routine methods in periodic medical evaluation, the possibility of applying oxidative stress parameters is considered. Moreover, hospital workers exposed to ANTNP and Irrad in the workplace should undergo not only a more complete health prevention procedure but also have a more appropriate health promotion.
Collapse
Affiliation(s)
- Jasminka Mrdjanović
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia; (J.M.); (S.Š.); (V.B.)
| | - Slavica Šolajić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia; (J.M.); (S.Š.); (V.B.)
| | - Branislava Srđenović-Čonić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.-Č.); (N.K.)
| | - Višnja Bogdanović
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, 21204 Sremska Kamenica, Serbia; (J.M.); (S.Š.); (V.B.)
| | - Karaba-Jakovljević Dea
- Department of Physiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (B.S.-Č.); (N.K.)
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Correspondence:
| |
Collapse
|
7
|
Association of the hOGG1 Ser326Cys polymorphism with gynecologic cancer susceptibility: a meta-analysis. Biosci Rep 2020; 40:226992. [PMID: 33210702 PMCID: PMC7693197 DOI: 10.1042/bsr20203245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023] Open
Abstract
The association between the hOGG1 Ser326Cys polymorphism and gynecologic cancer susceptibility is inconclusive. We performed a comprehensive meta-analysis to precisely estimate of the impact of the hOGG1 Ser326Cys polymorphism on gynecologic cancer susceptibility. Electronic databases including PubMed, Embase, WanFang, and the China National Knowledge Infrastructure were searched for relevant studies. Odds ratios (ORs) with corresponding 95% confidence intervals (CIs) were determined to assess the strength of the association. Fourteen studies with 2712 cases and 3638 controls were included in the final meta-analysis. The pooled analysis yielded a significant association between the hOGG1 Ser326Cys polymorphism and overall gynecologic cancer susceptibility (dominant model: OR = 1.16, 95% CI = 1.03–1.30, P=0.017). A significantly higher gynecologic cancer risk was found for the European population (homozygous model: OR = 2.17, 95% CI = 1.80–2.61, P<0.001; recessive model: OR = 2.11, 95% CI = 1.41–3.17, P<0.001; dominant model: OR = 1.29, 95% CI = 1.12–1.48, P<0.001; and allele model: OR = 1.40, 95% CI = 1.13–1.74, P=0.002), but not in the Asian population. The stratified analysis by cancer type revealed endometrial cancer was significantly associated with the hOGG1 Ser326Cys polymorphism (dominant model: OR = 1.29, 95% CI = 1.09–1.54, P=0.003; and allele model: OR = 1.28, 95% CI = 1.02–1.60, P=0.031). In conclusion, the hOGG1 Ser326Cys polymorphism was associated with higher overall gynecologic cancer susceptibility, especially for endometrial cancer in the European population.
Collapse
|
8
|
Tiruneh T, Enawgaw B, Shiferaw E. Genetic Pathway in the Pathogenesis of Therapy-Related Myeloid Neoplasms: A Literature Review. Oncol Ther 2020; 8:45-57. [PMID: 32700075 PMCID: PMC7360004 DOI: 10.1007/s40487-020-00111-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Therapy-related myeloid neoplasms are a life-threatening and often fatal complication, associated with poor prognosis outcomes and with high-risk unfavorable cytogenetic abnormalities including complex karyotype. They occur after the treatment of primary malignancies using chemotherapy and/or radiation therapy. Such therapy is not specific to cancer cells, and also damages the deoxyribonucleic acid (DNA) of normal cells, resulting in unbalanced and balanced translocations. There are eight genetic pathways, whose details are summarized in this review, depending on the cytogenetic abnormalities induced. This abnormality is the major contributor to the development of therapy-related myeloid neoplasms. The etiology of these neoplasms depends on the complex interaction between the nature and dose of the cytotoxic agent, the environment, and the presence of subsequent inherited mutations. This review aims to elaborate upon recent knowledge regarding the etiology, pathogenesis, and genetic pathways of therapy-related myeloid neoplasms. A deeper understanding of their etiology would aid physicians in more careful monitoring of patients during or after cytotoxic therapy for hematological malignancy. Ultimately, this knowledge could influence initial treatment strategies, with the aim of reducing both the incidence and serious complications of neoplasms. Therefore, early detection of DNA lesions is vital. The authors recommend that primary malignancy be treated with targeted therapy.
Collapse
Affiliation(s)
- Tegenaw Tiruneh
- Department Hematology and Immunohematology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia. .,School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Bamlaku Enawgaw
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Elias Shiferaw
- School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Li YD, Mao Y, Dong XD, Lei ZN, Yang Y, Lin L, Ashby CR, Yang DH, Fan YF, Chen ZS. Methyl-Cantharidimide (MCA) Has Anticancer Efficacy in ABCB1- and ABCG2-Overexpressing and Cisplatin Resistant Cancer Cells. Front Oncol 2020; 10:932. [PMID: 32676451 PMCID: PMC7333678 DOI: 10.3389/fonc.2020.00932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, we investigated the efficacy of methyl-cantharidimide (MCA), a cantharidin (CTD) analog, as an anticancer drug, in cancer cells overexpressing either ABCB1 or ABCG2 transporters and in cisplatin-resistant cancer cells. The results indicated that: (i) MCA was efficacious in the ABCB1-overexpressing cell line, KB-C2, and the ABCB1-gene-transfected cell line, HEK293/ABCB1 (IC50 from 6.37 to 8.44 mM); (ii) MCA was also efficacious in the ABCG2-overexpressing cell line, NCI-H460/MX20, and the ABCG2-gene-transfected cell lines, HEK293/ABCG2-482-R2, HEK293/ABCG2-482-G2, and the HEK293/ABCG2-482-T7 cell lines (IC50 from 6.37 to 9.70 mM); (iii) MCA was efficacious in the cisplatin resistant cancer cell lines, KCP-4 and BEL-7404/CP20 (IC50 values from 7.05 to 8.16 mM); (iv) MCA (up to 16 mM) induced apoptosis in both BEL-7404 and BEL-7404/CP20 cancer cells; (v) MCA arrested both BEL-7404 and BEL-7404/CP20 cancer cells in the G0/G1 phase of the cell cycle; (vi) MCA (8 mM) upregulated the expression level of the protein, unc-5 netrin receptor B (UNC5B) in HepG2 and BEL-7404 cancer cells. Overall, our results indicated that MCA's efficacy in ABCB1- and ABCG2-overexpressing and cisplatin resistant cancer cells is due to the induction of apoptosis and cell cycle arrest in the G0/G1 phase.
Collapse
Affiliation(s)
- Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Lizhu Lin
- Cancer Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ying-Fang Fan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
10
|
Włodarczyk M, Ciebiera M, Nowicka G. TNF-α G-308A genetic variants, serum CRP-hs concentration and DNA damage in obese women. Mol Biol Rep 2019; 47:855-866. [PMID: 30900134 PMCID: PMC7340642 DOI: 10.1007/s11033-019-04764-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Obesity is associated with inflammation, which can disturb genome stability. Tumor necrosis factor (TNF-α) polymorphism was found to affect TNF-α protein production and inflammation. Therefore, the present study illustrates the relationship between TNF-α polymorphism, the degree of inflammation assessed by serum high sensitivity C-reactive protein concentration (CRP-hs) and basal DNA damage in patients with obesity (BMI 30–34.9 kg/m2) and control subjects with proper body mass (BMI < 25 kg/m2). A total of 115 participants (75 obese premenopausal women; and 40 age-, and gender-matched controls) were included. Biochemical parameters (serum concentrations of total-cholesterol, HDL-cholesterol, LDL- cholesterol, triglycerides, glucose, apolipoprotein AI, CRP-hs) and endogenous DNA damage (determined by comet assay) were measured. TNF-α G-308A polymorphism (rs1800629) was analyzed by PCR-RFLP (PCR-restriction fragments length polymorphism). An effect of TNF-α genotype on serum CRP-hs concentration was noted (p = 0.031). In general, carriers of the rare A allele of the TNF-α G-308A polymorphism had significantly lower endogenous DNA damage and serum CRP-hs concentrations than GG homozygotes, however, the protective effect of the A allele was especially visible in non-obese women. Serum CRP-hs concentrations and levels of DNA damage (% DNA in tail) were significantly higher in obese than in controls (p = 0.001 and p < 0.0001, respectively). The adjusted multiple linear regression analyses revealed a significant, independent impact of obesity on DNA damage (p = 0.00000) and no effect of other covariates i.e. age, TNF-α genotype and serum CRP-hs concentration. Our study showed that obesity has a significant impact on the levels of endogenous DNA damage. Obesity abolished the protective effect of A allele of the TNF-α G-308A polymorphism on DNA damage and on inflammation development observed in non-obese A allele carriers.
Collapse
Affiliation(s)
- Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy with Division of Laboratory Medicine, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland. .,Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.
| | - Michał Ciebiera
- II Department of Obstetrics and Gynecology, The Centre of Postgraduate Medical Education, Cegłowska 80, 01-809, Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy with Division of Laboratory Medicine, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland.,Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| |
Collapse
|
11
|
La X, Zhang L, Li Z, Li H, Yang Y. (-)-Epigallocatechin Gallate (EGCG) Enhances the Sensitivity of Colorectal Cancer Cells to 5-FU by Inhibiting GRP78/NF-κB/miR-155-5p/MDR1 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2510-2518. [PMID: 30741544 DOI: 10.1021/acs.jafc.8b06665] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Green tea accounts for approximately 20% of the world's total tea yield. (-)-Epigallocatechin gallate (EGCG) is an active catechin in green tea, which suppresses tumor growth and enhances drug sensitivity in various cancers, but the molecular mechanism is still unclear. Chemotherapy drugs, such as 5-fluorouracil (5-FU), are a common strategy for clinical treatment of cancer patients; however, the lower response rate caused by prolonged use becomes the main reason for tumor recurrence. Therefore, discovering a safe and effective chemo-sensitizer is an urgent task required to be solved. Here, we report that EGCG reinforces the sensitivity of colon cancer cells to 5-FU, and the IC50 values of 5-FU is decreased from 40 ± 4.2 μM to 5 ± 0.36 μM in one human colon carcinoma cell line-HCT-116, and from 150 ± 6.4 μM to 11 ± 0.96 μM in the other human colon carcinoma cell line-DLD1 when these cells are cotreated with 50 μM EGCG. Consistently, compared to 5-FU or EGCG treatment alone, the combination of both significantly promotes cancer cell apoptosis and DNA damage. Further mechanism research reveals that treatment of colorectal cancer (CRC) with 50 μM EGCG inhibits GRP78 expression, activates the NF-κB (2.55 ± 0.05-fold for HCT-116 and 2.27 ± 0.08-fold for DLD1) pathway, and enhances miR-155-5p (2.12 ± 0.02-fold for HCT-116 and 2.01 ± 0.01-fold for DLD1) level. The elevated miR-155-5p strongly suppresses target gene MDR1 expression, which blocks the efflux of 5-FU. The accumulation of 5-FU resulted in caspase-3 and PARP activation, Bcl-2 reduction, and Bad increase, which ultimately lead to cancer cell apoptosis. Overall, our data show that EGCG may be act as a novel chemo-sensitizer, and the GRP78/NF-κB/miR-155-5p/MDR1 pathway plays a vital role in EGCG enhancing the sensitivity of colorectal cancer to 5-FU.
Collapse
Affiliation(s)
- Xiaoqin La
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , China
| | - Lichao Zhang
- Institutes of Biomedical Sciences , Shanxi University , Taiyuan 030006 , China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , China
- Institutes of Biomedical Sciences , Shanxi University , Taiyuan 030006 , China
- School of Life Science , Shanxi University , Taiyuan 030006 , China
| | - Hanqing Li
- School of Life Science , Shanxi University , Taiyuan 030006 , China
| | - Yufei Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education , Shanxi University , Taiyuan 030006 , China
| |
Collapse
|
12
|
Stem cell damage after chemotherapy- can we do better? Best Pract Res Clin Haematol 2019; 32:31-39. [DOI: 10.1016/j.beha.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
|
13
|
Zhang Z, Wang Y, Li Q. Mechanisms underlying the effects of stress on tumorigenesis and metastasis (Review). Int J Oncol 2018; 53:2332-2342. [PMID: 30272293 DOI: 10.3892/ijo.2018.4570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/18/2018] [Indexed: 11/06/2022] Open
Abstract
Stress is one of the fundamental survival mechanisms in nature. Although chronic or long-lasting stress can be detrimental to health, acute or short-term stress can have health benefits. The aim of the present review was to address the complexity and significance of stress in tumorigenesis. The review covers an evaluation of previously used and reported experimental animal models of stress, as well as the effects of stress on the neuroendocrine system, immune function, gut microbiota, and inflammation and multidrug resistance, all of which are closely associated with cancer occurrence, progression and treatment. The review concludes that understanding the efficacy of stress management (prevention and rehabilitation) is crucial to the development of comprehensive and individualized strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhaozhou Zhang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
14
|
Song Z, Wang Y, Xiao Q, Yu Z, Zhao L, Wu H, Sun M, Chai Z, Hou P, Geng X, Liu W, Wei M. Poly(ADP-ribose) polymerase-3 overexpression is associated with poor prognosis in patients with breast cancer following chemotherapy. Oncol Lett 2018; 16:5621-5630. [PMID: 30344717 PMCID: PMC6176245 DOI: 10.3892/ol.2018.9398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Double strand breaks induced by genotoxic agents, if inappropriately repaired, will cause cell death or induce cancer. Poly(ADP-ribose) polymerase-3 (PARP-3) serves a role in double strand break repair, and may be involved in tumorigenesis. To the best of our knowledge, the role of PARP-3 in breast cancer has not yet been examined. In the present study, the expression of PARP-3 was investigated in 493 breast cancer samples and 54 tumor-adjacent control samples using tissue-microarray-based immunohistochemistry. PARP-3 expression was higher in breast cancer samples compared with control samples. PARP-3 overexpression was significantly associated with histological grade II–III (P=0.012). In addition, PARP-3 overexpression was significantly associated with shorter disease-free survival (DFS; P=0.027) time and exhibited a tendency toward shorter overall survival (OS; P=0.183) time in patients with breast cancer compared with patients with lower PARP-3 expression, particularly in BRCA1-positive patients (P=0.004 for disease-free survival and P=0.095 for OS). Multivariate Cox regression analysis indicated that PARP-3 was an independent prognostic factor in patients with breast cancer. Furthermore, it was revealed that PARP-3 overexpression was associated with shorter survival time in patients with cyclophosphamide/doxorubicin or epirubicin/5-fluorouracil (CAF/CEF) chemotherapy compared with low PARP-3 expression, but not in patients with CAF/CEF + docetaxel chemotherapy. The present study suggested that PARP-3 may be used as a biomarker for predicting the clinical outcome of patients receiving chemotherapy, and targeting PARP-3 may be a potential therapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhiguo Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yong Wang
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Qinghuan Xiao
- Deparment of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Mingli Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Zhangguo Chai
- Outpatient Department, Shenyang Artillery Academy, Shenyang, Liaoning 110867, P.R. China
| | - Ping Hou
- Liaoning Blood Center, Shenyang, Liaoning 110044, P.R. China
| | - Xiaoqiang Geng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
15
|
Liu T, Liu X, Li W. Tetrandrine, a Chinese plant-derived alkaloid, is a potential candidate for cancer chemotherapy. Oncotarget 2018; 7:40800-40815. [PMID: 27027348 PMCID: PMC5130046 DOI: 10.18632/oncotarget.8315] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer is a disease caused by the abnormal proliferation and differentiation of cells governed by tumorigenic factors. Chemotherapy is one of the major cancer treatment strategies, and it functions by targeting the physiological capabilities of cancer cells, including sustained proliferation and angiogenesis, the evasion of programmed cell death, tissue invasion and metastasis. Remarkably, natural products have garnered increased attention in the chemotherapy drug discovery field because they are biologically friendly and have high therapeutic effects. Tetrandrine, isolated from the root of Stephania tetrandra S Moore, is a traditional Chinese clinical agent for silicosis, autoimmune disorders, inflammatory pulmonary diseases, cardiovascular diseases and hypertension. Recently, the novel anti-tumor effects of tetrandrine have been widely investigated. More impressive is that tetrandrine affects multiple biological activities of cancer cells, including the inhibition of proliferation, angiogenesis, migration, and invasion; the induction of apoptosis and autophagy; the reversal of multidrug resistance (MDR); and the enhancement of radiation sensitization. This review focuses on introducing the latest information about the anti-tumor effects of tetrandrine on various cancers and its underlying mechanism. Moreover, we discuss the nanoparticle delivery system being developed for tetrandrine and the anti-tumor effects of other bisbenzylisoquinoline alkaloid derivatives on cancer cells. All current evidence demonstrates that tetrandrine is a promising candidate as a cancer chemotherapeutic.
Collapse
Affiliation(s)
- Ting Liu
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Xin Liu
- Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, College of Pharmacy, Wuhan University, Wuhan, P. R. China
| | - Wenhua Li
- College of Life Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
16
|
Roussel C, Witt KL, Shaw PB, Connor TH. Meta-analysis of chromosomal aberrations as a biomarker of exposure in healthcare workers occupationally exposed to antineoplastic drugs. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 781:207-217. [PMID: 31416576 DOI: 10.1016/j.mrrev.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
Abstract
Many antineoplastic drugs used to treat cancer, particularly alkylating agents and topoisomerase inhibitors, are known to induce genetic damage in patients. Elevated levels of chromosomal aberrations, micronuclei, and DNA damage have been documented in cancer patients. Elevations in these same biomarkers of genetic damage have been reported in numerous studies of healthcare workers, such as nurses and pharmacists, who routinely handle these drugs, but results vary across studies. To obtain an overall assessment of the exposure effect, we performed a meta-analysis on data obtained from peer-reviewed publications reporting chromosomal aberration levels in healthcare workers exposed to antineoplastic drugs. A literature search identified 39 studies reporting on occupational exposure to antineoplastic drugs and measurement of chromosomal aberrations in healthcare workers. After applying strict inclusion criteria for data quality and presentation, data from 17 studies included in 16 publications underwent meta-analysis using Hedges' bias-corrected g and a random-effects model. Results showed the level of chromosomal aberrations in healthcare workers exposed to antineoplastic drugs was significantly higher than in controls. The standardized mean differences (difference of means divided by within sd) from all studies were pooled, yielding a value 1.006 (unitless) with p<0.001. Thus, in addition to the documented genotoxic effects of antineoplastic drugs in cancer patients, this meta-analysis confirmed a significant association between occupational exposure to antineoplastics during the course of a normal work day and increases in chromosomal aberrations in healthcare workers. Based on the studies reviewed, we were unable to accurately assess whether appropriate use of protective measures might reduce the incidence of genetic damage in healthcare workers. However, given the potential for increased cancer risk linked to increases in chromosomal aberrations, the results of this study support the need to limit occupational exposure of healthcare workers to antineoplastic drugs as much as possible.
Collapse
Affiliation(s)
- Christine Roussel
- Doylestown Hospital, 595 West State Street, Doylestown, PA, 18901, United States.
| | - Kristine L Witt
- Biomolecular Screening Branch, National Institute of Environmental Health Sciences/Division of the National Toxicology Program, Research Triangle Park, NC, 27709, United States.
| | - Peter B Shaw
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, Cincinnati, OH, 45226, United States.
| | - Thomas H Connor
- Division of Applied Research and Technology, National Institute for Occupational Safety and Health, 1090 Tusculum Avenue, Cincinnati, OH, 45226, United States.
| |
Collapse
|
17
|
Fernandes E Silva E, Figueira FDS, Lettnin AP, Carrett-Dias M, Filgueira DDMVB, Kalil S, Trindade GS, Votto APDS. C-Phycocyanin: Cellular targets, mechanisms of action and multi drug resistance in cancer. Pharmacol Rep 2017; 70:75-80. [PMID: 29331790 DOI: 10.1016/j.pharep.2017.07.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/30/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023]
Abstract
C-Phycocyanin (C-PC) has been shown to be promising in cancer treatment; however, although several articles detailing this have been published, its main mechanisms of action and its cellular targets have not yet been defined, nor has a detailed exploration been conducted of its role in the resistance of cancer cells to chemotherapy, rendering clinical use impossible. From our extensive examination of the literature, we have determined as our main hypothesis that C-PC has no one specific target, but rather acts on the membrane, cytoplasm, and nucleus with diverse mechanisms of action. We highlight the cell targets with which C-PC interacts (the MDR1 gene, cytoskeleton proteins, and COX-2 enzyme) that make it capable of killing cells resistant to chemotherapy. We also propose future analyses of the interaction between C-PC and drug extrusion proteins, such as ABCB1 and ABCC1, using in silico and in vitro studies.
Collapse
Affiliation(s)
- Estela Fernandes E Silva
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | | | - Aline Portantiolo Lettnin
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Michele Carrett-Dias
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Daza de Moraes Vaz Batista Filgueira
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Susana Kalil
- Escola de Química e Alimentos, FURG, Rio Grande, RS, Brazil.
| | - Gilma Santos Trindade
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Ana Paula de Souza Votto
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
18
|
DNA damage response in patients with pediatric Acute Lymphoid Leukemia during induction therapy. Leuk Res 2017; 54:59-65. [PMID: 28109975 DOI: 10.1016/j.leukres.2017.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Predicting the individual response to chemotherapy is a crucial challenge in cancer treatment. DNA damage caused by antitumor therapies evokes different repair mechanisms responses, such as Nucleotide Excision Repair (NER), whose components are being studied as prognosis biomarkers and target therapies. However, few reports have addressed DNA damages in pediatric Acute Lymphoid Leukemia (ALL). Hence, we conducted an observational follow-up study with pediatric patients to assess DNA damage (by Comet Assay) and gene expression from NER pathway during chemotherapy induction. Bone marrow samples from diagnosis, 15th(D15) and 35th (D35) days of the treatment were collected from 28 patients with ALL. There was no increase in damage index. However, there was a reduction of cells with low damages on D35 compared with diagnosis. NER pathway expression remained the same, however, in a single patient, a significant decrease was observed, maybe due to silencing or downregulation of repair pathways. DNA damage levels and repair may influence the clinical outcome, being involved in drug resistance and risk of relapse. In pediatric ALL, we analyzed for the first time DNA damage and repair behavior in BM samples. Monitoring patient's outcomes will help to access the implication of our findings in survival and relapse rates.
Collapse
|
19
|
Abstract
: More than 1.6 million new cases of cancer will be diagnosed in the U.S. in 2016, resulting in more than 500,000 deaths. Although chemotherapy has been the mainstay of treatment in advanced cancers, immunotherapy development, particularly with PD-1 inhibitors, has changed the face of treatment for a number of tumor types. One example is the subset of tumors characterized by mismatch repair deficiency and microsatellite instability that are highly sensitive to PD-1 blockade. Hereditary forms of cancer have been noted for more than a century, but the molecular changes underlying mismatch repair-deficient tumors and subsequent microsatellite unstable tumors was not known until the early 1990s. In this review article, we discuss the history and pathophysiology of mismatch repair, the process of testing for mismatch repair deficiency and microsatellite instability, and the role of immunotherapy in this subset of cancers. IMPLICATIONS FOR PRACTICE Mismatch repair deficiency has contributed to our understanding of carcinogenesis for the past 2 decades and now identifies a subgroup of traditionally chemotherapy-insensitive solid tumors as sensitive to PD-1 blockade. This article seeks to educate oncologists regarding the nature of mismatch repair deficiency, its impact in multiple tumor types, and its implications for predicting the responsiveness of solid tumors to immune checkpoint blockade.
Collapse
|
20
|
Lee V, Murphy A, Le DT, Diaz LA. Mismatch Repair Deficiency and Response to Immune Checkpoint Blockade. Oncologist 2016; 21:1200-1211. [PMID: 27412392 DOI: 10.1634/theoncologist.2016-0046] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
: More than 1.6 million new cases of cancer will be diagnosed in the U.S. in 2016, resulting in more than 500,000 deaths. Although chemotherapy has been the mainstay of treatment in advanced cancers, immunotherapy development, particularly with PD-1 inhibitors, has changed the face of treatment for a number of tumor types. One example is the subset of tumors characterized by mismatch repair deficiency and microsatellite instability that are highly sensitive to PD-1 blockade. Hereditary forms of cancer have been noted for more than a century, but the molecular changes underlying mismatch repair-deficient tumors and subsequent microsatellite unstable tumors was not known until the early 1990s. In this review article, we discuss the history and pathophysiology of mismatch repair, the process of testing for mismatch repair deficiency and microsatellite instability, and the role of immunotherapy in this subset of cancers. IMPLICATIONS FOR PRACTICE Mismatch repair deficiency has contributed to our understanding of carcinogenesis for the past 2 decades and now identifies a subgroup of traditionally chemotherapy-insensitive solid tumors as sensitive to PD-1 blockade. This article seeks to educate oncologists regarding the nature of mismatch repair deficiency, its impact in multiple tumor types, and its implications for predicting the responsiveness of solid tumors to immune checkpoint blockade.
Collapse
Affiliation(s)
- Valerie Lee
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Adrian Murphy
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Dung T Le
- Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Luis A Diaz
- The Swim Across America Laboratory, Baltimore, Maryland, USA the Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Bifunctional alkylating agent-mediated MGMT-DNA cross-linking and its proteolytic cleavage in 16HBE cells. Toxicol Appl Pharmacol 2016; 305:267-273. [PMID: 27342729 DOI: 10.1016/j.taap.2016.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/22/2023]
Abstract
Nitrogen mustard (NM), a bifunctional alkylating agent (BAA), contains two alkyl arms and can act as a cross-linking bridge between DNA and protein to form a DNA-protein cross-link (DPC). O(6)-methylguanine-DNA methyltransferase (MGMT), a DNA repair enzyme for alkyl adducts removal, is found to enhance cell sensitivity to BAAs and to promote damage, possibly due to its stable covalent cross-linking with DNA mediated by BAAs. To investigate MGMT-DNA cross-link (mDPC) formation and its possible dual roles in NM exposure, human bronchial epithelial cell line 16HBE was subjected to different concentrations of HN2, a kind of NM, and we found mDPC was induced by HN2 in a concentration-dependent manner, but the mRNA and total protein of MGMT were suppressed. As early as 1h after HN2 treatment, high mDPC was achieved and the level maintained for up to 24h. Quick total DPC (tDPC) and γ-H2AX accumulation were observed. To evaluate the effect of newly predicted protease DVC1 on DPC cleavage, we applied siRNA of MGMT and DVC1, MG132 (proteasome inhibitor), and NMS-873 (p97 inhibitor) and found that proteolysis plays a role. DVC1 was proven to be more important in the cleavage of mDPC than tDPC in a p97-dependent manner. HN2 exposure induced DVC1 upregulation, which was at least partially contributed to MGMT cleavage by proteolysis because HN2-induced mDPC level and DNA damage was closely related with DVC1 expression. Homologous recombination (HR) was also activated. Our findings demonstrated that MGMT might turn into a DNA damage promoter by forming DPC when exposed to HN2. Proteolysis, especially DVC1, plays a crucial role in mDPC repair.
Collapse
|
22
|
Shi YH, Wang B, Xu BP, Jiang DN, Zhao DM, Ji MR, Zhou L, Li X, Lu CZ. The association of six non-synonymous variants in three DNA repair genes with hepatocellular carcinoma risk: a meta-analysis. J Cell Mol Med 2016; 20:2056-2063. [PMID: 27306318 PMCID: PMC5082408 DOI: 10.1111/jcmm.12896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/04/2016] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma is a complex polygenic disease. Despite the huge advances in genetic epidemiology, it still remains a challenge to unveil the genetic architecture of hepatocellular carcinoma. We, therefore, decided to meta-analytically assess the association of six non-synonymous coding variants from XRCC1, XRCC3 and XPD genes with hepatocellular carcinoma risk by pooling the results of 20 English articles. This meta-analysis was conducted according to the PRISMA statement, and data collection was independently completed in duplicate. In overall analyses, the minor alleles of four variants, Arg280His (odds ratio, 95% confidence interval, P: 1.37, 1.13-1.66, 0.001), Thr241Met (1.93, 1.17-3.20, 0.011), Asp312Asn (1.22, 1.08-1.38, 0.001) and Lys751Gln (1.42, 1.02-1.97, 0.038), were associated with the significant risk for hepatocellular carcinoma. There were low probabilities of publication bias for all variants. Subgroup analyses revealed significant association of XRCC1 gene Arg399Gln with hepatocellular carcinoma in Chinese especially from south China (odds ratio, 95% confidence interval, P: 1.57, 1.16-2.14, 0.004), in larger studies (1.48, 1.11-1.98, 0.007) and in studies with population-based controls (1.33, 1.06-1.68, 0.016). Taken together, our findings demonstrated that XPD gene Asp312Asn and XRCC1 gene Arg399Gln might be candidate susceptibility loci for hepatocellular carcinoma. Considering the ubiquity of genetic heterogeneity, further validation in a broad range of ethnic populations is warranted.
Collapse
Affiliation(s)
- Yan-Hui Shi
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Bin Wang
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Bai-Ping Xu
- Intervention Therapy Department, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Dan-Na Jiang
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Dong-Mei Zhao
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Man-Ru Ji
- Department of Gastroenterology, The First Hospital of Qiqihar City, Qiqihar, Heilongjiang, China
| | - Li Zhou
- Central Laboratory, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xue Li
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Chang-Zhu Lu
- Department of Physiology, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
23
|
Li X, Pan L, Shi J. Nuclear-Targeting MSNs-Based Drug Delivery System: Global Gene Expression Analysis on the MDR-Overcoming Mechanisms. Adv Healthc Mater 2015; 4:2641-8. [PMID: 26450832 DOI: 10.1002/adhm.201500548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/10/2015] [Indexed: 11/07/2022]
Abstract
The biological mechanisms of nuclear-targeting mesoporous silica nanoparticles (MSNs)-based DDSs (DOX@NT-MSNs) in overcoming multidrug resistance of cancer cells are studied. It is interesting to find for the first time that DOX@NT-MSNs down-regulate the expression of apoptosis suppressor genes and inhibit DNA repair process by disturbing the p53 pathway.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| | - Limin Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics; Chinese Academy of Sciences; 1295 Ding-xi Road Shanghai 200050 China
| |
Collapse
|
24
|
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B. microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 2015; 9:1153-76. [PMID: 26501795 PMCID: PMC5712454 DOI: 10.2217/bmm.15.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Much evidence has documented that microRNAs (miRNAs) play an important role in the modulation of interindividual variability in the production of drug metabolizing enzymes and transporters (DMETs) and nuclear receptors (NRs) through multidirectional interactions involving environmental stimuli/stressors, the expression of miRNA molecules and genetic polymorphisms. MiRNA expression has been reported to be affected by drugs and miRNAs themselves may affect drug metabolism and toxicity. In cancer research, miRNA biomarkers have been identified to mediate intrinsic and acquired resistance to cancer therapies. In drug safety assessment, miRNAs have been found associated with cardiotoxicity, hepatotoxicity and nephrotoxicity. This review article summarizes published studies to show that miRNAs can serve as early biomarkers for the evaluation of drug efficacy and drug safety.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental & Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - William H Tolleson
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - William Mattes
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
25
|
Zhang YC, Zhou YQ, Yan B, Shi J, Xiu LJ, Sun YW, Liu X, Qin ZF, Wei PK, Li YJ. Secondary acute promyelocytic leukemia following chemotherapy for gastric cancer: A case report. World J Gastroenterol 2015; 21:4402-4407. [PMID: 25892894 PMCID: PMC4394105 DOI: 10.3748/wjg.v21.i14.4402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/29/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) refers to a heterogeneous group of myeloid neoplasms that develop in patients following extensive exposure to either cytotoxic agents or radiation. The development of t-AML has been reported following treatment of cancers ranging from hematological malignancies to solid tumors; however, to our knowledge, t-AML has never been reported following treatment of gastric cancer. In this study, we report the development of t-acute promyelocytic leukemia in a cT4N1M0 gastric cancer patient after an approximate 44 mo latency period following treatment with 4 cycles of oxaliplatin (OXP) (85 mg/m2 on day 1) plus capecitabine (1250 mg/m2 orally twice daily on days 1-14) in combination with recombinant human granulocyte-colony stimulating factor treatment. Karyotype analysis of the patient revealed 46,XY,t(15;17)(q22;q21)[15]/46,idem,-9,+add(9)(p22)[2]/46,XY[3], which, according to previous studies, includes some “favorable” genetic abnormalities. The patient was then treated with all-trans retinoic acid (ATRA, 25 mg/m2/d) plus arsenic trioxide (ATO, 10 mg/d) and attained complete remission. Our case illuminated the role of certain cytotoxic agents in the induction of t-AML following gastric cancer treatment. We recommend instituting a mandatory additional evaluation for patients undergoing these therapies in the future.
Collapse
MESH Headings
- Aged
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Biomarkers, Tumor/genetics
- Biopsy
- Capecitabine/adverse effects
- Granulocyte Colony-Stimulating Factor/adverse effects
- Humans
- Karyotyping
- Leukemia, Promyelocytic, Acute/chemically induced
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Male
- Organoplatinum Compounds/adverse effects
- Oxaliplatin
- Predictive Value of Tests
- Remission Induction
- Risk Factors
- Stomach Neoplasms/drug therapy
- Tomography, X-Ray Computed
- Treatment Outcome
Collapse
|
26
|
de Sant’Anna JR, Franco CCDS, Mathias PCDF, de Castro-Prado MAA. Assessment of in vivo and in vitro genotoxicity of glibenclamide in eukaryotic cells. PLoS One 2015; 10:e0120675. [PMID: 25803314 PMCID: PMC4372363 DOI: 10.1371/journal.pone.0120675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/25/2015] [Indexed: 12/18/2022] Open
Abstract
Glibenclamide is an oral hypoglycemic drug commonly prescribed for the treatment of type 2 diabetes mellitus, whose anti-tumor activity has been recently described in several human cancer cells. The mutagenic potential of such an antidiabetic drug and its recombinogenic activity in eukaryotic cells were evaluated, the latter for the first time. The mutagenic potential of glibenclamide in therapeutically plasma (0.6 μM) and higher concentrations (10 μM, 100 μM, 240 μM and 480 μM) was assessed by the in vitro mammalian cell micronucleus test in human lymphocytes. Since the loss of heterozygosity arising from allelic recombination is an important biologically significant consequence of oxidative damage, the glibenclamide recombinogenic activity at 1 μM, 10 μM and 100 μM concentrations was evaluated by the in vivo homozygotization assay. Glibenclamide failed to alter the frequency of micronuclei between 0.6 μM and 480 μM concentrations and the cytokinesis block proliferation index between 0.6 μM and 240 μM concentrations. On the other hand, glibenclamide changed the cell-proliferation kinetics when used at 480 μM. In the homozygotization assay, the homozygotization indices for the analyzed markers were lower than 2.0 and demonstrated the lack of recombinogenic activity of glibenclamide. Data in the current study demonstrate that glibenclamide, in current experimental conditions, is devoid of significant genotoxic effects. This fact encourages further investigations on the use of this antidiabetic agent as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Juliane Rocha de Sant’Anna
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Genética de Microorganismos e Mutagênese, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Claudinéia Conationi da Silva Franco
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biologia Celular e Secreção, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Paulo Cezar de Freitas Mathias
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Biologia Celular e Secreção, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Marialba Avezum Alves de Castro-Prado
- Departamento de Biotecnologia, Genética e Biologia Celular, Laboratório de Genética de Microorganismos e Mutagênese, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
27
|
Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice. Blood 2014; 124:3887-95. [PMID: 25349173 DOI: 10.1182/blood-2014-06-582551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies.
Collapse
|
28
|
Wu Q, Yang Z, Nie Y, Shi Y, Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 2014; 347:159-66. [PMID: 24657660 DOI: 10.1016/j.canlet.2014.03.013] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/16/2014] [Accepted: 03/11/2014] [Indexed: 12/17/2022]
Abstract
Multi-drug resistance (MDR) has become the largest obstacle to the success of cancer chemotherapies. The mechanisms of MDR and the approaches to test MDR have been discovered, yet not fully understood. This review covers the in vivo and in vitro approaches for the detection of MDR in the laboratory and the mechanisms of MDR in cancers. This study also envisages the future developments toward the clinical and therapeutic applications of MDR in cancer treatment. Future therapeutics for cancer treatment will likely combine the existing therapies with drugs originated from MDR mechanisms such as anti-cancer stem cell drugs, anti-miRNA drugs or anti-epigenetic drugs. The challenges for the clinical detection of MDR will be to find new biomarkers and to determine new evaluation systems before the drug resistance emerges.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhiping Yang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
29
|
Gupte M, Tuck AN, Sharma VP, Williams KJ. Major differences between tumor and normal human cell fates after exposure to chemotherapeutic monofunctional alkylator. PLoS One 2013; 8:e74071. [PMID: 24019948 PMCID: PMC3760805 DOI: 10.1371/journal.pone.0074071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/26/2013] [Indexed: 01/07/2023] Open
Abstract
The major dilemma of cancer chemotherapy has always been a double-edged sword, producing resistance in tumor cells and life-threatening destruction of nontumorigenic tissue. Glioblastoma is the most common form of primary brain tumor, with median survival at 14 months after surgery, radiation and temozolomide (monofunctional alkylator) therapy. Treatment failure is most often due to temozolomide-resistant tumor growth. The underlying basis for development of tumor cell resistance to temozolomide instead of death is not understood. Our current results demonstrate that both cervical carcinoma (HeLa MR) and glioblastoma (U251) tumor cells exposed to an equivalent chemotherapeutic concentration of a monofunctional alkylator undergo multiple cell cycles, maintenance of metabolic activity, and a prolonged time to death that involves accumulation of Apoptosis Inducing Factor (AIF) within the nucleus. A minority of the tumor cell population undergoes senescence, with minimal caspase cleavage. Surviving tumor cells are comprised of a very small subpopulation of individual cells that eventually resume proliferation, out of which resistant cells emerge. In contrast, normal human cells (MCF12A) exposed to a monofunctional alkylator undergo an immediate decrease in metabolic activity and subsequent senescence. A minority of the normal cell population undergoes cell death by the caspase cleavage pathway. All cytotoxic events occur within the first cell cycle in nontumorigenic cells. In summation, we have demonstrated that two different highly malignant tumor cell lines slowly undergo very altered cellular and temporal responses to chemotherapeutic monofunctional alkylation, as compared to rapid responses of normal cells. In the clinic, this produces resistance and growth of tumor cells, cytotoxicity of normal cells, and death of the patient.
Collapse
|
30
|
Autophagy and genomic integrity. Cell Death Differ 2013; 20:1444-54. [PMID: 23933813 DOI: 10.1038/cdd.2013.103] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023] Open
Abstract
DNA lesions, constantly produced by endogenous and exogenous sources, activate the DNA damage response (DDR), which involves detection, signaling and repair of the damage. Autophagy, a lysosome-dependent degradation pathway that is activated by stressful situations such as starvation and oxidative stress, regulates cell fate after DNA damage and also has a pivotal role in the maintenance of nuclear and mitochondrial genomic integrity. Here, we review important evidence regarding the role played by autophagy in preventing genomic instability and tumorigenesis, as well as in micronuclei degradation. Several pathways governing autophagy activation after DNA injury and the influence of autophagy upon the processing of genomic lesions are also discussed herein. In this line, the mechanisms by which several proteins participate in both DDR and autophagy, and the importance of this crosstalk in cancer and neurodegeneration will be presented in an integrated fashion. At last, we present a hypothetical model of the role played by autophagy in dictating cell fate after genotoxic stress.
Collapse
|
31
|
Maletzki C, Stier S, Linnebacher M. Microsatellite instability in hematological malignancies: Hypermutation vs. immune control-who is challenging who? Oncoimmunology 2013; 2:e25419. [PMID: 24167765 PMCID: PMC3805632 DOI: 10.4161/onci.25419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022] Open
Abstract
The genome of colorectal carcinomas displaying pronounced microsatellite instability codes for an extraordinarily high number of mutated proteins that elicit tumor-specific cellular immune responses. We have recently demonstrated that leukemic cells are also vulnerable to T cells specific for tumor-associated antigens produced in the context of microsatellite instability. This finding extends our understanding of secondary and therapy-related leukemogenesis, linking it to the mutual interaction between immune control and escape.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy; Department of General Surgery; University of Rostock; Rostock, Germany
| | | | | |
Collapse
|
32
|
Yin F, Liu X, Li D, Wang Q, Zhang W, Li L. Tumor suppressor genes associated with drug resistance in ovarian cancer (review). Oncol Rep 2013; 30:3-10. [PMID: 23660957 DOI: 10.3892/or.2013.2446] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 03/29/2013] [Indexed: 11/06/2022] Open
Abstract
Ovarian cancer is a fatal gynecological cancer and a major cause of cancer-related mortality worldwide. The main limitation to a successful treatment for ovarian cancer is the development of drug resistance to combined chemotherapy. Tumor suppressor genes (TSGs) are wild-type alleles of genes which play regulatory roles in diverse cellular activities, and whose loss of function contributes to the development of cancer. It has been demonstrated that TSGs contribute to drug resistance in several types of solid tumors. However, an overview of the contribution of TSGs to drug resistance in ovarian cancer has not previously been reported. In this study, 15 TSGs responding to drug resistance in ovarian cancer were reviewed to determine the relationship of TSGs with ovarian cancer drug resistance. Furthermore, gene/protein-interaction and bio-association analysis were performed to demonstrate the associations of these TSGs and to mine the potential drug resistance-related genes in ovarian cancer. We observed that the 15 TSGs had close interactions with each other, suggesting that they may contribute to drug resistance in ovarian cancer as a group. Five pathways/processes consisting of DNA damage, apoptosis, cell cycle, DNA binding and methylation may be the key ways with which TSGs participate in the regulation of drug resistance. In addition, ubiquitin C (UBC) and six additional TSGs including the adenomatous polyposis coli gene (APC), death associated protein kinase gene (DAPK), pleiomorphic adenoma gene-like 1 (PLAGL1), retinoblastoma susceptibility gene (RB1), a gene encoding an apoptosis-associated speck-like protein (PYCARD/ASC) and tumor protein 63 (TP63), which had close interactions with the 15 TSGs, are potential drug resistance-related genes in ovarian cancer.
Collapse
Affiliation(s)
- Fuqiang Yin
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|