1
|
Lee C, Kang SW. Derivation of porous cellulose propionate using hydrated hydroxyl groups and hydraulic pressure. Int J Biol Macromol 2024; 262:130240. [PMID: 38368993 DOI: 10.1016/j.ijbiomac.2024.130240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/09/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
This study aimed to enhance the thermal stability of microporous separators by introducing cellulose propionate (CP) as an innovative polymer matrix material, supplemented with glycerin as an additive. CP/glycerin composite membranes were created using hydraulic pressure techniques to reinforce essential separator properties. SEM analysis unveiled interconnected pores crucial for efficient ion transport, initiating water flux measurements at 5 bar. These measurements showcased improved mechanical strength, resulting in a porosity of 74.1 %. FT-IR spectroscopy illustrated CP-glycerin interactions, inducing plasticization and facilitating pore formation. Thermal Gravimetric Analysis (TGA) demonstrated superior thermal stability in CP/glycerin composite membranes compared to cellulose acetate (CA). Differential Scanning Calorimetry (DSC) revealed a slight reduction in thermal stability within a specific temperature range due to glycerin-induced plasticization effects. Nonetheless, the melting temperature (Tm) of CP/glycerin membranes increased to 188.4 °C, indicating heightened stability at elevated temperatures. Despite pressure-induced pore formation, CP/glycerin membranes exhibited enhanced thermal stability, suggesting reinforced molecular interactions. Overall, this study introduces a novel CP/glycerin composite membrane featuring improved thermal stability, enhanced strength, and controlled pore structures essential for efficient lithium-ion battery applications.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Sang Wook Kang
- Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
2
|
Abduh NAY, Al-Kahtani AA, Amer MS, Algarni TS, Al-Odayni AB. Fabricated Gamma-Alumina-Supported Zinc Ferrite Catalyst for Solvent-Free Aerobic Oxidation of Cyclic Ethers to Lactones. Molecules 2023; 28:7192. [PMID: 37894671 PMCID: PMC10609177 DOI: 10.3390/molecules28207192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this work was to fabricate a new heterogeneous catalyst as zinc ferrite (ZF) supported on gamma-alumina (γ-Al2O3) for the conversion of cyclic ethers to the corresponding, more valuable lactones, using a solvent-free method and O2 as an oxidant. Hence, the ZF@γ-Al2O3 catalyst was prepared using a deposition-coprecipitation method, then characterized using TEM, SEM, EDS, TGA, FTIR, XRD, ICP, XPS, and BET surface area, and further applied for aerobic oxidation of cyclic ethers. The structural analysis indicated spherical, uniform ZF particles of 24 nm dispersed on the alumina support. Importantly, the incorporation of ZF into the support influenced its texture, i.e., the surface area and pore size were reduced while the pore diameter was increased. The product identification indicated lactone compound as the major product for saturated cyclic ether oxidation. For THF as a model reaction, it was found that the supported catalyst was 3.2 times more potent towards the oxidation of cyclic ethers than the unsupported one. Furthermore, the low reactivity of the six-membered ethers can be tackled by optimizing the oxidant pressure and the reaction time. In the case of unsaturated ethers, deep oxidation and polymerization reactions were competitive oxidations. Furthermore, it was found that the supported catalyst maintained good stability and catalytic activity, even after four cycles.
Collapse
Affiliation(s)
- Naaser A. Y. Abduh
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Abdullah A. Al-Kahtani
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Mabrook S. Amer
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Tahani Saad Algarni
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.A.-K.); (M.S.A.)
| | - Abdel-Basit Al-Odayni
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| |
Collapse
|
3
|
Tang C, Zhong L, Xiong R, Xiao Y, Cheng B, Lei S. Regulable in-situ autoredox for anchoring synergistic Ni/NiO nanoparticles on reduced graphene oxide with boosted alkaline electrocatalytic oxygen evolution. J Colloid Interface Sci 2023; 648:181-192. [PMID: 37301143 DOI: 10.1016/j.jcis.2023.05.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
To develop ideal alternatives to noble metal catalysts, transition metal catalysts supported on graphene have been receiving extensive attention in the field of electrochemical energy. In this work, using graphene oxide (GO) and nickel formate as precursors, Ni/NiO synergistic nanoparticles with regulable composition are anchored on reduced graphene oxide (RGO) to prepare Ni/NiO/RGO composite electrocatalysts through in-situ autoredox. Thanks to the synergistic effect of Ni3+ active sites and Ni electron donors, the as-prepared Ni/NiO/RGO catalysts exhibit efficient electrocatalytic oxygen evolution performance in 1.0 M KOH electrolyte. The optimal sample has an overpotential of only 275 mV at a current density of 10 mA cm-2 and a small Tafel slope of 90 mV dec-1, which are very comparable to those of commercial RuO2 catalyst. Additionally, the catalytic capacity and structure remain stable after 2000 cyclic voltammetry cycles. For the electrolytic cell assembled with the best-performing sample as anode and commercial Pt/C as cathode, the current density can reach 10 mA cm-2 at a low potential of 1.57 V and remains stable after 30 h of continuous work. It would be expected that the as-developed Ni/NiO/RGO catalyst with high activity should have broad application prospects.
Collapse
Affiliation(s)
- Changcun Tang
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Longsheng Zhong
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Renzhi Xiong
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Baochang Cheng
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
4
|
Modeling and Optimization of the Para-Xylene Continuous Suspension Crystallization Separation Process via a Morphology Technique and a Multi-Dimensional Population Balance Equation. Processes (Basel) 2023. [DOI: 10.3390/pr11030770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
In this study, we carried out a para-xylene crystallization experiment at constant temperature and concentration levels. Throughout the process, the kinetics of nucleation, growth, breakage, and aggregation of para-xylene particles were measured and built using a morphological approach. An additional a three-stage continuous suspension crystallization separation experiment was carried out, the process for which was simulated using the population balance model based on correlated kinetic equations. The population balance equation was solved using an extended moment of classes algorithm, and the solving process was implemented in MATLAB. In this case, the predicted particle size distribution of the products matched well with the experiment. In order to provide references for the optimization of the industrial para-xylene crystallization process, a three-stage suspension crystallization separation experiment was designed and conducted, in which each crystallizer had a distinct operating temperature and mean residence time. The effects of operating parameters on the final product were investigated further. The proposed models and algorithms can also be applied in other cases and provide an alternative approach for optimizing continuous crystallization processes.
Collapse
|
5
|
Active Sites in H-Mordenite Catalysts Probed by NMR and FTIR. Catalysts 2023. [DOI: 10.3390/catal13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mordenites are widely used in catalysis and environmental protection. The catalytic properties of mordenite are largely determined by the composition of its crystal framework, i.e., the SiO2/Al2O3 molar ratio (MR), and the cationic form. In H-mordenites, the most important characteristic becomes the structure and distribution of acid sites, which depends on the number and distribution of Al tetrahedra in the framework. In the present work, the local structure of these centers in H-mordenite catalysts with a nominal MR varied from 9.9 to 19.8 was studied in detail using a combination of magic angle spinning nuclear magnetic resonance (MAS NMR) and Fourier transform infrared spectroscopy (FTIR). 27Al MAS NMR indicates the presence of extra-framework Al in most of the studied samples that results in a higher real MR of the zeolitic framework compared to the nominal value. Concentrations of Lewis and Brønsted acid sites, as well as of silanol groups were estimated by elemental analysis, NMR, and FTIR spectroscopy. The values of site concentrations obtained from band intensities of adsorbed CO and those of OH groups are compared with the amount of framework and extra-framework aluminum. The advantages and restrictions of different methods of active site characterization are discussed.
Collapse
|
6
|
Kibis L, Zadesenets A, Garkul I, Korobova A, Kardash T, Slavinskaya E, Stonkus O, Korenev S, Podyacheva O, Boronin A. Pd-Ce-O x/MWCNTs and Pt-Ce-O x/MWCNTs Composite Materials: Morphology, Microstructure, and Catalytic Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7485. [PMID: 36363076 PMCID: PMC9659094 DOI: 10.3390/ma15217485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The composite nanomaterials based on noble metals, reducible oxides, and nanostructured carbon are considered to be perspective catalysts for many useful reactions. In the present work, multi-walled carbon nanotubes (MWCNTs) were used for the preparation of Pd-Ce-Ox/MWCNTs and Pt-Ce-Ox/MWCNTs catalysts comprising the active components (6 wt%Pd, 6 wt%Pt, 20 wt%CeO2) as highly dispersed nanoparticles, clusters, and single atoms. The application of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) provided analysis of the samples’ morphology and structure at the atomic level. For Pd-Ce-Ox/MWCNTs samples, the formation of PdO nanoparticles with an average crystallite size of ~8 nm was shown. Pt-Ce-Ox/MWCNTs catalysts comprised single Pt2+ ions and PtOx clusters less than 1 nm. A comparison of the catalytic properties of the samples showed higher activity of Pd-based catalysts in CO and CH4 oxidation reactions in a low-temperature range (T50 = 100 °C and T50 = 295 °C, respectively). However, oxidative pretreatment of the samples resulted in a remarkable enhancement of CO oxidation activity of Pt-Ce-Ox/MWCNTs catalyst at T < 20 °C (33% of CO conversion at T = 0 °C), while no changes were detected for the Pd-Ce-Ox/MWCNTs sample. The revealed catalytic effect was discussed in terms of the capability of the Pt-Ce-Ox/MWCNTs system to form unique PtOx clusters providing high catalytic activity in low-temperature CO oxidation.
Collapse
Affiliation(s)
- Lidiya Kibis
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrey Zadesenets
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Ilia Garkul
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Arina Korobova
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Tatyana Kardash
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Elena Slavinskaya
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Olga Stonkus
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Sergey Korenev
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Olga Podyacheva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrei Boronin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Travkina OS, Agliullin MR, Kutepov BI. State-of-the-Art in the Industrial Production and Use of Zeolite-Containing Adsorbents and Catalysts in Russia. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s207005042201010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Yang F, Yu Q, Duan W, Qi Z, Qin Q. Study of Electrochemical Catalytic Coal Gasification: Gasification Characteristics and Char Structure Evolution. ACS OMEGA 2021; 6:31026-31036. [PMID: 34841145 PMCID: PMC8613812 DOI: 10.1021/acsomega.1c04135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical catalytic coal gasification experiments with Fuxin (FX) coal under a CO2 atmosphere were conducted to evaluate the effects of power and temperature on coal gasification and char structure evolution during electrochemical catalytic gasification (ECG). When the power was 400 W, with temperature increasing from 800 to 1000 °C, the CO content in the gas products increased by 8.16%, the H2 content increased by 8.39%, and the CH4 concentration in the gas products initially increased and then decreased. When the temperature is 900 °C, with power increasing from 0 to 400 W, the CO content in the gas products increased by 58.27%, the H2 content increased by 81.33%, and the CH4 concentration in the gas products increased from 1.31 to 2.37%. The gasification reactivity and the concentration of combustible gas generated during ECG were higher than those during common coal gasification. Thermal electrons play important roles in ECG. These electrons could promote ring opening reactions and aromatic compound cracking and inhibit aromatization reactions while increasing the number of oxygen-containing functional groups in char, consequently enhancing the char gasification reactivity.
Collapse
Affiliation(s)
- Fan Yang
- School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Qingbo Yu
- School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Wenjun Duan
- School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Zhenfei Qi
- School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| | - Qin Qin
- School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, P.R. China
| |
Collapse
|
9
|
Alsharif NB, Muráth S, Katana B, Szilagyi I. Composite materials based on heteroaggregated particles: Fundamentals and applications. Adv Colloid Interface Sci 2021; 294:102456. [PMID: 34107320 DOI: 10.1016/j.cis.2021.102456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023]
Abstract
Homoaggregation of dispersed particles, i.e., aggregation of particles of the same shape, charge, size, and composition, is a well-studied field and various theoretical and experimental approaches exist to understand the major phenomena involved in such processes. Besides, heteroaggregation of particles, i.e., aggregation of particles of different shape, charge, size, or composition, has attracted widespread interest due to its relevance in various biomedical, industrial, and environmental systems. For instance, heteroaggregation of plastic contaminant particles with naturally occurring solid materials in waters (e.g., clays, silica and organic polymers) plays an important role in the decontamination technologies. Moreover, nanofabrication processes involving heteroaggregation of particles to prepare novel composite materials are widely implemented in fundamental science and in more applied disciplines. In such procedures, stable particle dispersions are mixed and the desired structure forms owing to the presence of interparticle forces of various origins, which can be tuned by performing appropriate surface functionalization as well as altering the experimental conditions. These composites are widely used in different fields from sensing through catalysis to biomedical delivery. The present review summarizes the recent progresses in the field including new findings regarding the basic principles in particle heteroaggregation, preparation strategies of heteroaggregated structures of different morphology, and the application of the obtained hybrid composites. Such information will be very helpful to those involved in the design of novel composites consisting of different nano or colloidal particles.
Collapse
|
10
|
Akhmetova F, Aubakirov Y, Tashmukhambetova Z, Sassykova L, Arbag H, Kurmangaliyeva A. Recycling of waste plastics to liquid fuel mixture over composite zeolites catalysts. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plastic waste production and consumption is increasing at an alarming rate with the increase of the human population, rapid economic growth, continuous urbanization, and changes in lifestyle. In addition, the short life span of plastic accelerates the production of plastic waste on a daily basis. Plastic waste recycling is carried out in different ways, but in most developing countries, open or landfill disposal is a common practice for plastic waste management. Plastic recycling into feedstocks, also known as chemical recycling, is encouraged all over the world. One such area is the thermal and catalytic thermal degradation of plastics into hydrocarbon fractions, which can be used as high-quality motor fuel after appropriate processing. Hydrocracking in the presence of a catalyst is a promising method of converting waste plastic materials to high quality liquid transportation fuels with decreased amounts of olefins and heteroatoms such as S, N, Cl, N, and O.
The article deals with the study of hydrocracking of waste plastic into high quality liquid fuel on various catalysts based on natural zeolite deposits Taizhuzgen. The aim of the work is to determine the effect of new composite catalysts on the yield of liquid products by studying the specific surface and porous structure based on natural zeolite modified with Mо salt. It is established that the modification of natural zeolite with Mo affects the morphology of the catalyst, therefore, the obtained catalysts have different effects on the yield and composition of liquid fractions during the hydrogenation thermocatalytic transformation of hydrocarbons. The highest yield of liquid products (61.56%) was achieved using the 2% Mo/Taizhuzgen zeolite catalyst, which was chosen as optimal.
Collapse
|
11
|
Marso TMM, Kalpage CS, Udugala-Ganehenege MY. ZnO/CuO composite catalyst to pre-esterify waste coconut oil for producing biodiesel in high yield. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01958-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
|
13
|
Bismuth as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry. J CHEM-NY 2020. [DOI: 10.1155/2020/9802934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This paper reports an overview of Green Chemistry and the concept of its twelve principles. This study focusses on the ninth principle of Green Chemistry, that is, catalysis. A report on catalysis, in line with its definition, background, classification, properties, and applications, is provided. The study also entails a green element called bismuth. Bismuth’s low toxicity and low cost have made researchers focus on its wide applications in catalysis. It exhibits smartness in all the catalytic activities with the highest catalytic performance among other metals.
Collapse
|
14
|
Heravi MM, Heidari B, Zadsirjan V, Mohammadi L. Applications of Cu(0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations. RSC Adv 2020; 10:24893-24940. [PMID: 35517449 PMCID: PMC9055281 DOI: 10.1039/d0ra02341h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Recently, Cu nanoparticles (NPs) encapsulated into various materials as supports (e.g., zeolite, silica) have attracted much devotion due to their unique catalytic properties such as high catalytic activity, intensive reactivity and selectivity through highly protective properties. Nowadays, the superior catalytic activity of Cu-NPs, encapsulated onto zeolite, silica and different porous systems, is extensively investigated and now well-established. As a matter of fact, Cu-NPs are protected from deactivation by this kind of encapsulation. Thus, their exclusion proceeds smoothly, and their recyclability is significantly increased. Cu-NPs have been used as potential heterogeneous catalysts in different chemical transformations. In this review, we try to show the preparation and applications of Cu(0) encapsulated nanocatalysts in zeolite and silica as superior catalytic systems in Cu-catalyzed organic transformations. In addition, the catalytic activity of these encapsulated Cu-NPs in different important organic transformations (such as hydrogenation, oxidation and carbon-carbon bond formations) are compared with those of a variety of organic, inorganic and hybrid porous bearing a traded metal ion. Moreover, the results from the TGA/DTA analysis and optical properties of Cu-complexes are demonstrated. The inherited characteristic merits of the encapsulated Cu-NPs onto zeolite and silica, such as their low leaching, catalytic activity, reusability economic feasibility and originality are critically considered.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Bahareh Heidari
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| | - Leila Mohammadi
- Department of Chemistry, School of Science, Alzahra University P. O. Box 1993891176 Vanak Tehran Iran +98 21 88041344 +98 21 88044051
| |
Collapse
|
15
|
A Review of Composite/Hybrid Electrocatalysts and Photocatalysts for Nitrogen Reduction Reactions: Advanced Materials, Mechanisms, Challenges and Perspectives. ELECTROCHEM ENERGY R 2020. [DOI: 10.1007/s41918-020-00069-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Zeleke MA, Kuo DH. Synthesis and application of V 2O 5-CeO 2 nanocomposite catalyst for enhanced degradation of methylene blue under visible light illumination. CHEMOSPHERE 2019; 235:935-944. [PMID: 31561311 DOI: 10.1016/j.chemosphere.2019.06.230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/27/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Methylene blue dye is among the toxic, mutagenic, and carcinogenic pollutants. Hence, its treatment via photocatalytic degradation is an important remediation method for the sake of a healthy environment. Herein, the V2O5-CeO2 nanocomposite catalysts were synthesized via a simple precipitation-thermal decomposition approach and used for the photodegradation of methylene blue in the presence of H2O2 as an effective electron scavenger under visible light illumination. The nanocomposite catalysts were systematically characterized to investigate the effects of V2O5 with the aids of X-ray, morphology, light absorption, catalytic activity, and charge transfer properties of the nanocomposite catalysts. The VC-2 nanocomposite prepared with NH4VO3:CeO2 molar ratios at 0.15:1 was found to be the best efficient catalyst where ≥98% of methylene blue was degraded within 25 min irradiation time. From the kinetics analysis, its rate constant was found to be higher than those of the pure V2O5 and CeO2 catalysts by a factor of 12.0 and 13.5, respectively. The plausibly mechanistic elucidation of charge transfer and utilization of reactive species are conspicuous allegations of the combined effects of the nanocomposite catalyst, H2O2 sacrificial agent, and visible light for the photodegradation of the dye.
Collapse
Affiliation(s)
- Misganaw Alemu Zeleke
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan; Department of Materials Science and Engineering, Bahir Dar University, P.O. Box 79, Ethiopia
| | - Dong-Hau Kuo
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No.43, Sec. 4, Keelung Road, Taipei, 10607, Taiwan.
| |
Collapse
|
17
|
Yaghoubidoust F, Salimi E, A. Ati A, Nur H. Investigating the catalytic activity of a novel phase‐boundary catalyst in oxidation of styrene. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fatemeh Yaghoubidoust
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial ResearchUniversiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia
- Basic Science DepartmentJundi‐Shapur University of Technology Dezful Iran
| | - Esmaeil Salimi
- Faculty of Chemical and Materials EngineeringShahrood University of Technology Shahrood Iran
| | - Ali A. Ati
- Nanotechnology and Advanced Materials Research CenterUniversity of Technology Baghdad Iraq
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial ResearchUniversiti Teknologi Malaysia 81310 Johor Bahru Johor Malaysia
- Central Laboratory of Minerals and Advanced Materials, Faculty of Mathematics and Natural ScienceState University of Malang Malang 65145 Indonesia
| |
Collapse
|
18
|
Electron Beam Induced Enhancement of the Catalytic Properties of Ion-Track Membranes Supported Copper Nanotubes in the Reaction of the P-Nitrophenol Reduction. Catalysts 2019. [DOI: 10.3390/catal9090737] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study considers the effect of various doses of electron irradiation on the crystal structure and properties of composite catalysts based on polyethylene terephthalate track-etched membranes and copper nanotubes. Copper nanotubes were obtained by electroless template synthesis and irradiated with electrons with 3.8 MeV energy in the dose range of 100–250 kGy in increments of 50 kGy. The original and irradiated samples of composites were investigated by X-ray diffraction technique (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The improved catalytic activity of composite membranes with copper nanotubes was demonstrated by the example of the reduction reaction of p-nitrophenol in the presence of sodium borohydride. Irradiation with electrons at doses of 100 and 150 kGy led to reaction rate constant increases by 35 and 59%, respectively, compared to the non-irradiated sample. This enhancing catalytic activity could be attributed to the changing of the crystallite size of copper, as well as the surface roughness of the composite membrane.
Collapse
|
19
|
Zeynizadeh B, Rahmani S, Eghbali E. Anchored sulfonic acid on silica-layered NiFe2O4: A magnetically reusable nanocatalyst for Hantzsch synthesis of 1,4-dihydropyridines. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate. Catalysts 2019. [DOI: 10.3390/catal9020184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Palm waste biochar (PWB) catalysts were synthesized as bio-based catalysts using different sulphonation methods. (NH4)2SO4, ClSO3H, and H2SO4 were applied to functionalize PWB and appraise the discrepancies between the sulfonic agents, as they affect the esterification reaction in terms of fatty acid methyl ester (FAME) yield and conversion while using palm fatty acid distillate (PFAD) as feedstock. The PWB was first soaked in phosphoric acid (H3PO4) for 24 h and then pyrolized at 400 °C for 2 h in tube furnace. Afterwards, sulphonation was done with different sulfonic agents and characterized with thermo-gravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), and temperature programmed desorption–ammonia (TPD-NH3). The three synthesized catalysts showed high free fatty acid (FFA) conversions of 90.1% for palm waste biochar-ammonium sulfate (PWB-(NH4)2SO4), 91.5% for palm waste biochar-chlorosulfonic acid (PWB-ClSO3H), and 97.4% for palm waste biochar - sulphuric acid (PWB-H2SO4), whereas FAME yields were 88.6% (PWB-(NH4)2SO4), 89.1% (PWB-ClSO3H), and 96.1% (PWB-H2SO4). It was observed that PWB-H2SO4 has the best catalytic activity, which was directly linked to its high acid density (11.35 mmol/g), improved pore diameter (6.25 nm), and increased specific surface area (372.01 m2 g−1). PWB-H2SO4 was used for the reusability study, where it underwent eight reaction runs and was stable until the seventh run. PWB-H2SO4 has shown huge promise for biodiesel synthesis, owing to its easy synthetic process, recyclability, and high catalytic activity for waste oils and fats.
Collapse
|
21
|
De-Ethylation and Cleavage of Rhodamine B by a Zirconium Phosphate/Silver Bromide Composite Photocatalyst. Catalysts 2018. [DOI: 10.3390/catal9010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A composite heterogeneous photocatalyst based on silver bromide was prepared by a reaction of silver exchanged zirconium phosphate (ZrP) and HBr. The ZrP/AgBr composite containing 53 wt% AgBr was tested in the photocatalytic degradation of Rhodamine B (RhB) and exhibited higher catalytic activity with respect to pure AgBr. As a matter of fact, the time needed to achieve a percentage of chromophore cleavage of about 90% was 3 min for the composite versus the 30 min needed for pure AgBr. The ZrP/AgBr composite turned out to be stable for at least three consecutive cycles. The UV-Vis spectra of the RhB solution, recorded at different irradiation times, were also decomposed and the concentration of the species formed by de-ethylation and cleavage processes during photocatalysis were calculated; the data obtained for the AgBr-based catalysis were also compared with those for the AgCl-based catalysis, and the degradation mechanism was suggested for both catalytic systems.
Collapse
|
22
|
Guan S, Li W, Ma J, Lei Y, Zhu Y, Huang Q, Dou X. A review of the preparation and applications of MnO2 composites in formaldehyde oxidation. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.05.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Morgan LM, Molinari M, Corrias A, Sayle DC. Protecting Ceria Nanocatalysts-The Role of Sacrificial Barriers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32510-32515. [PMID: 30160106 DOI: 10.1021/acsami.8b08674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Forces acting on a functional nanomaterial during operation can cause plastic deformation and extinguish desirable catalytic activities. Here, we show that sacrificial materials, introduced into the catalytic composite device, can absorb some of the imposed stress and protect the structural integrity and hence the activity of the functional component. Specifically, we use molecular dynamics to simulate uniaxial stress on a ceria (CeO2) nanocube, an important functional material with respect to oxidative catalysis, such as the conversion of CO to CO2. We predict that the nanocube, protected by a "soft" BaO or "hard" MgO sacrificial barrier, is able to withstand 40.1 or 26.5 GPa, respectively, before plastic deformation destroys the structure irreversibly; the sacrificial materials, BaO and MgO, capture 71 and 54% of the stress, respectively. In comparison, the unprotected nanoceria catalyst deforms plastically at only 2.5 GPa. Furthermore, modeling reveals the deformation mechanisms and the importance of microstructural features, insights that are difficult to measure experimentally.
Collapse
Affiliation(s)
- Lucy M Morgan
- School of Physical Sciences , University of Kent , Canterbury CT2 7NH , U.K
| | - Marco Molinari
- Department of Chemistry , University of Huddersfield , Huddersfield HD1 3DH , U.K
| | - Anna Corrias
- School of Physical Sciences , University of Kent , Canterbury CT2 7NH , U.K
| | - Dean C Sayle
- School of Physical Sciences , University of Kent , Canterbury CT2 7NH , U.K
| |
Collapse
|
24
|
Gorzin F, Towfighi Darian J, Yaripour F, Mousavi SM. Preparation of hierarchical HZSM-5 zeolites with combined desilication with NaAlO2/tetrapropylammonium hydroxide and acid modification for converting methanol to propylene. RSC Adv 2018; 8:41131-41142. [PMID: 35559299 PMCID: PMC9091568 DOI: 10.1039/c8ra08624a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023] Open
Abstract
A two-step route comprising desilication by NaAlO2/TPAOH mixture, followed by acid washing was used to produce mesoporous HZSM-5. The optimum alkaline-acid treated sample showed high stability (640 h) compared to the parent one in MTP reaction (425 h).
Collapse
Affiliation(s)
- Fatemeh Gorzin
- Department of Chemical Engineering
- Tarbiat Modares University
- Tehran
- Iran
| | | | - Fereydoon Yaripour
- Catalysis Research Group
- Petrochemical Research & Technology Company
- National Iranian Petrochemical Company
- Tehran
- Iran
| | | |
Collapse
|
25
|
Sodhi RK, Paul S. An Overview of Metal Acetylacetonates: Developing Areas/Routes to New Materials and Applications in Organic Syntheses. CATALYSIS SURVEYS FROM ASIA 2017. [DOI: 10.1007/s10563-017-9239-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Venditti I, Cartoni A, Fontana L, Testa G, Scaramuzzo F, Faccini R, Terracciano CM, Camillocci ES, Morganti S, Giordano A, Scotognella T, Rotili D, Dini V, Marini F, Fratoddi I. Y3+ embedded in polymeric nanoparticles: Morphology, dimension and stability of composite colloidal system. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Electrochemical detection of thiocyanate using phosphate-modified zeolite carbon paste electrodes. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Oh WD, Dong Z, Lim TT. Hierarchically-structured Co–CuBi 2 O 4 and Cu–CuBi 2 O 4 for sulfanilamide removal via peroxymonosulfate activation. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.04.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Zhao F, Liu D, Wang Y. Novel Mesoporous ZSM-5 Zeolite with Disparate Morphologies Synthesized by a Double Long-alkyl-chain Organosilane Template. TENSIDE SURFACT DET 2017. [DOI: 10.3139/113.110478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractA novel hierarchical ZSM-5 zeolite containing two disparate morphologies was prepared by using a new organosilane surfactant with two long alkyl chains. Main crystal phase arrayed regularly and stacked in dense layers. However, the rest of crystalline phase was shaped like egg tarts.
Collapse
|
30
|
Bruce SM, Zong Z, Chatzidimitriou A, Avci LE, Bond JQ, Carreon MA, Wettstein SG. Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.02.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Mohammadkhani B, Haghighi M, Sadeghpour P. Altering C2H4/C3H6 yield in methanol to light olefins over HZSM-5, SAPO-34 and SAPO-34/HZSM-5 nanostructured catalysts: influence of Si/Al ratio and composite formation. RSC Adv 2016. [DOI: 10.1039/c6ra00432f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HZSM-5 zeolites with various Si/Al ratios were synthesized by hydrothermal method and the sample with optimum Si/Al ratio combined with SAPO-34. In MTO reaction, SAPO-34/HZSM-5 composite shows high activity and selectivity toward light olefins.
Collapse
Affiliation(s)
- Bahman Mohammadkhani
- Chemical Engineering Faculty
- Sahand University of Technology
- Tabriz
- Iran
- Reactor and Catalysis Research Center (RCRC)
| | - Mohammad Haghighi
- Chemical Engineering Faculty
- Sahand University of Technology
- Tabriz
- Iran
- Reactor and Catalysis Research Center (RCRC)
| | - Parisa Sadeghpour
- Chemical Engineering Faculty
- Sahand University of Technology
- Tabriz
- Iran
- Reactor and Catalysis Research Center (RCRC)
| |
Collapse
|
32
|
Insight into catalyst deactivation mechanism and suppression techniques in thermocatalytic deoxygenation of bio-oil over zeolites. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe economic viability of the thermocatalytic upgrade of biomass-derived oxygenates is facing the challenge of low-quality products. This is because of leaching of active species, coking, and concomitant catalyst deactivation. These cumulate into the loss of catalytic activity with time on stream (TOS), which causes low degree of deoxygenation. Thus, this article reviews recent advances aimed at alleviating these setbacks to make the process viable for industrial scale-up. To understand the concept of catalyst deactivation and to offer solutions, the review scrutinized the deactivation mechanism diligently. The review also analyzes deactivation-suppression techniques such as nanocrystal zeolite cracking, hydrogen spilt-over (HSO) species, and composite catalysts (hybrid, hierarchical mesoporous zeolite, modified zeolites, and catalytic cracking deposition of silane). Interestingly, these deactivation-suppression techniques enhance catalytic properties mostly by reducing the signal strength of strong acid sites and increasing hydrothermal stability. Further, the approaches improve catalytic activity, selectivity, and TOS stability because of the lower formation of coke precursors such as polynuclear aromatics. However, despite these many advances, the need for further investigations to achieve excellent catalytic activity for industrial scale-up persists.
Collapse
|
33
|
Seok S, Hussain MA, Park KJ, Kim JW, Kim DH. Sonochemical synthesis of PdO@silica as a nanocatalyst for selective aerobic alcohol oxidation. ULTRASONICS SONOCHEMISTRY 2016; 28:178-184. [PMID: 26384897 DOI: 10.1016/j.ultsonch.2015.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 05/27/2023]
Abstract
A sonochemical method has been employed for the synthesis of palladium oxide (PdO) nanoparticles deposited on silica nanoparticle. By sonochemical process, the PdO nanoparticles were doped on the surface of silica at room temperature and atmospheric pressure with short reaction time. Silica nanoparticles were used as a supporting material to suppress aggregation and thereby to increase surface area of PdO nanoparticles. Fabricated PdO-doped silica nanoparticle (PdO@SNP) was applied as a nanocatalyst for selective alcohol oxidation reaction in the presence of molecular oxygen. The PdO@SNP composite showed higher catalytic activity and selectivity than unsupported PdO nanoparticle for aerobic alcohol oxidation reaction.
Collapse
Affiliation(s)
- Seunghwan Seok
- Department of Chemical & Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Muhammad Asif Hussain
- Department of Chemical Engineering, Kangwon National University, Samcheok 245-711, Republic of Korea; Department of Advanced Materials Engineering, Kangwon National University, Samcheok 245-711, Republic of Korea
| | - Kyun Joo Park
- Department of Chemical & Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jung Won Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok 245-711, Republic of Korea.
| | - Do Hyun Kim
- Department of Chemical & Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
34
|
Song W, Liu Z, Liu L, Skov AL, Song N, Xiong G, Zhu K, Zhou X. A solvent evaporation route towards fabrication of hierarchically porous ZSM-11 with highly accessible mesopores. RSC Adv 2015. [DOI: 10.1039/c5ra02493e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A solvent evaporation route to generate an organosilane modified dry gel and its transformation into hierarchically porous ZSM-11 is reported. The material features good pore-connectivity and improved acid site accessibility towards bulky substrates.
Collapse
Affiliation(s)
- Wen Song
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Zhiting Liu
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Liping Liu
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- P. R. China
| | - Anne Ladegaard Skov
- Center for Energy Resources Engineering
- Department of Chemical and Biochemical Engineering
- Technical University of Denmark
- Kgs. Lyngby
- Denmark
| | - Nan Song
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Guang Xiong
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian
- P. R. China
| | - Kake Zhu
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xinggui Zhou
- UNILAB
- State Key Lab of Chemical Engineering
- School of Chemical Engineering
- East China University of Science and Technology
- Shanghai 200237
| |
Collapse
|
35
|
Li Y, Yu F, He W, Yang W. The preparation and catalytic performance of graphene-reinforced ion-exchange resins. RSC Adv 2015. [DOI: 10.1039/c4ra08972c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural and thermal stability of graphene-based polymer nanocomposites were improved with chemical bonded interaction of graphene within the polymer networks.
Collapse
Affiliation(s)
- Yanan Li
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- PR China
| | - Fengping Yu
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- PR China
| | - Wenjun He
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- PR China
| | - Weimin Yang
- SINOPEC Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- PR China
| |
Collapse
|
36
|
Deng W, Xuan H, Zhang C, Gao Y, Zhu X, Zhu K, Huo Q, Zhou Z. Promoting Xylene Production in Benzene Methylation using Hierarchically Porous ZSM-5 Derived from a Modified Dry-gel Route. Chin J Chem Eng 2014. [DOI: 10.1016/j.cjche.2014.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Zhou H, Sun J, Ren B, Wang F, Wu X, Bai S. Effects of alkaline media on the controlled large mesopore size distribution of bimodal porous silicas via sol-gel methods. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.03.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Hydrothermal degradation of model sulfonic acid compounds: Probing the relative sulfur–carbon bond strength in water. CATAL COMMUN 2014. [DOI: 10.1016/j.catcom.2014.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Mitschang F, Schmalz H, Agarwal S, Greiner A. Tea-Bag-Like Polymer Nanoreactors Filled with Gold Nanoparticles. Angew Chem Int Ed Engl 2014; 53:4972-5. [DOI: 10.1002/anie.201402212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Indexed: 11/07/2022]
|
40
|
Mitschang F, Schmalz H, Agarwal S, Greiner A. Goldnanopartikel-gefüllte Polymer-Nanoreaktoren für Teebeutel- ähnliche Katalysatoren. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Guan Z, Lu S, Chen Z, Li C. An unexpected effect of water on the asymmetric hydrogenation of α-ketoesters on platinum nanoparticles confined in carbon nanotubes. J Catal 2013. [DOI: 10.1016/j.jcat.2013.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Song C, Chen P, Wang C, Zhu L. Photodegradation of perfluorooctanoic acid by synthesized TiO2-MWCNT composites under 365nm UV irradiation. CHEMOSPHERE 2012; 86:853-9. [PMID: 22172634 DOI: 10.1016/j.chemosphere.2011.11.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/15/2011] [Accepted: 11/15/2011] [Indexed: 05/04/2023]
Abstract
Degradation of perfluorooctanoic acid (PFOA) is of great importance due to its global distribution, persistence and toxicity to bioorganisms. In present study, a composite TiO(2) with multiple wall carbon nanotubes (MWCNTs) was synthesized using sol-gel method and it was used as photocatalyst to degrade PFOA in water. The prepared composite catalyst displayed significant absorption in UV to visible light region. The loading content of TiO(2) on MWCNTs could be adjusted by changing the ratio of precursor to MWCNTs. Due to the combined effect of the adsorption ability and e(-) transport capacity of MWCNT, the composites displayed much higher photocatalytic ability to PFOA as compared to pure TiO(2) under UV irradiation. The photocatalyst prepared with 10:1 of tetrabutyl titanate/MWCNT was the most effective. With the optimal dosage at 1.6 g L(-1), almost 100% of PFOA was degraded in acid medium after irradiation for 8h. It was proposed that PFOA were mainly degraded by stepwise losing a moiety of CF(2).
Collapse
Affiliation(s)
- Chao Song
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin, PR China
| | | | | | | |
Collapse
|
43
|
Wibawa PJ, Saim H, Agam MA, Nur H. Design, Preparation and Characterization of Polystyrene Nanospheres Based-Porous Structure towards UV-Vis and Infrared Light Absorption. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.phpro.2011.11.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|