1
|
Agarwal P, Rupenthal ID. Non-aqueous formulations in topical ocular drug delivery - a paradigm shift? Adv Drug Deliv Rev 2023; 198:114867. [PMID: 37178927 DOI: 10.1016/j.addr.2023.114867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Topical eyedrop application is the preferred route for drug delivery to anterior segment tissues; however, the challenge of overcoming the eye's anatomical and physiological barriers while minimising tissue toxicity has restricted developments in this field. Aqueous vehicles have traditionally been used, which typically require several additives and preservatives to achieve physiologically compatible and sterile eyedrops, elevating their toxicity potential. Non-aqueous vehicles have been suggested as efficient alternatives for topical drug delivery as they can address many of the limitations associated with conventional aqueous eyedrops. However, despite their obvious advantages, non-aqueous eyedrops remain poorly researched and few non-aqueous formulations are currently available in the market. This review challenges the conventional hypothesis that aqueous solubility is a prerequisite to ocular drug absorption and establishes a rationale for using non-aqueous vehicles for ocular drug delivery. Recent advances in the field have been detailed and future research prospects have been explored, pointing towards a paradigm shift in eyedrop formulation in the near future.
Collapse
Affiliation(s)
- Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand.
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
2
|
Zhang W, Chen L, Shen X, Wang Y, Fang X, Zhang Q. Study on the formation and stability of polyol-in-oil emulsion. TENSIDE SURFACT DET 2022. [DOI: 10.1515/tsd-2021-2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, the influence of polyols, emulsifiers and oils on the formation and stability of polyol-in-oil (P/O) emulsions was investigated. The interfacial tension in P/O systems is much lower than that of water-oil systems, so polyols and oils showed a greater affinity, which was not conducive to the stability of the emulsion system. High compatibility of the emulsifier and the inner and outer phases was the key to the formation of stable emulsions. Using polyethylene glycol 400 (PEG) as polyol phase, mineral oil or squalane as oil phase and cetyl PEG/PPG-10/1 dimethicone (EM 90) as emulsifier, long-term stable P/O emulsions with homogeneous droplets were successfully prepared.
Collapse
Affiliation(s)
- Wanping Zhang
- Division of Perfume and Cosmetics , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics , Shanghai 201418 , P. R. China
| | - Lin Chen
- Division of Perfume and Cosmetics , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics , Shanghai 201418 , P. R. China
| | - Xingliang Shen
- Division of Perfume and Cosmetics , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics , Shanghai 201418 , P. R. China
| | - Yaping Wang
- Shanghai Maikunte Medical Technology Co., LTD , Shanghai 201415 , P. R. China
| | - Xiang Fang
- Division of Perfume and Cosmetics , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics , Shanghai 201418 , P. R. China
| | - Qianjie Zhang
- Division of Perfume and Cosmetics , Shanghai Institute of Technology , Shanghai 201418 , P. R. China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics , Shanghai 201418 , P. R. China
| |
Collapse
|
3
|
Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: A review. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Kadukkattil Ramanunny A, Singh SK, Wadhwa S, Gulati M, Kapoor B, Khursheed R, Kuppusamy G, Dua K, Dureja H, Chellappan DK, Jha NK, Gupta PK, Vishwas S. Overcoming hydrolytic degradation challenges in topical delivery: non-aqueous nano-emulsions. Expert Opin Drug Deliv 2021; 19:23-45. [PMID: 34913772 DOI: 10.1080/17425247.2022.2019218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Non-aqueous nano-emulsions (NANEs) are colloidal lipid-based dispersions with nano-sized droplets formed by mixing two immiscible phases, none of which happens to be an aqueous phase. Their ability to incorporate water and oxygen sensitive drugs without any susceptibility to degradation makes them the optimum dosage form for such candidates. In NANEs, polar liquids or polyols replace the aqueous phase while surfactants remain same as used in conventional emulsions. They are a part of the nano-emulsion family albeit with substantial difference in composition and application. AREAS COVERED The present review provides a brief insight into the strategies of loading water-sensitive drugs into NANEs. Further advancement in these anhydrous systems with the use of solid particulate surfactants in the form of Pickering emulsions is also discussed. EXPERT OPINION NANEs offer a unique platform for delivering water-sensitive drugs by loading them in anhydrous formulation. The biggest advantage of NANEs vis-à-vis the other nano-cargos is that they can also be prepared without using equipment-intensive techniques. However, the use of NANEs in drug delivery is quite limited. Looking at the small number of studies available in this direction, a need for further research in this field is required to explore this delivery system further.
Collapse
Affiliation(s)
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India.,Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (Set), Sharda University, Greater Noida, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
5
|
Delgado-Sánchez C, Partal P, Martín-Alfonso MJ, Navarro FJ. Role of crystallinity on the thermal and viscous behaviour of polyethylene glycol-in-silicone oil (o/o) phase change emulsions. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Verification of the Functional Antioxidant Activity and Antimelanogenic Properties of Extracts of Poria cocos Mycelium Fermented with Freeze-Dried Plum Powder. Int J Biomater 2019; 2019:9283207. [PMID: 31275396 PMCID: PMC6582894 DOI: 10.1155/2019/9283207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
Here we examine the effects of extracts of Poria cocos mycelium fermented with freeze-dried plum powder (PPE) on the α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in cultured murine B16 melanoma cells (B16 cells), relative to the effects of Prunus extract. We found that an extract of Prunus fermentation showed significant inhibition of melanogenesis and tyrosinase activity with no effect on cell proliferation and was more active compared to Prunus extract alone. Furthermore, we confirmed that medium containing 3% Prunus was the optimal culture substrate for fermentation with Poria cocos. These results provide evidence that Prunus fermentation extract affects skin whiting in murine B16 melanoma cells (B16 cells). Prunus contains rutin, oxalic acid, succinic acid, and fumaric acid, which help in digestion and fatigue recovery. The rutin of Prunus mume is reported to have antioxidant and anti-inflammatory effects. Also, Prunus extract has a tyrosinase inhibitory activity for skin whiting through its antioxidant activity. Therefore, we believe the Prunus extract for Poria cocos fermentation can be provided as a potential mediator to induce skin whiting.
Collapse
|
7
|
Hwang I, Hong S. Neural Stem Cells and Its Derivatives as a New Material for Melanin Inhibition. Int J Mol Sci 2017; 19:ijms19010036. [PMID: 29271951 PMCID: PMC5795986 DOI: 10.3390/ijms19010036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
The pigment molecule, melanin, is produced from melanosomes of melanocytes through melanogenesis, which is a complex process involving a combination of chemical and enzymatically catalyzed reactions. The synthesis of melanin is primarily influenced by tyrosinase (TYR), which has attracted interest as a target molecule for the regulation of pigmentation or depigmentation in skin. Thus, direct inhibitors of TYR activity have been sought from various natural and synthetic materials. However, due to issues with these inhibitors, such as weak or permanent ability for depigmentation, allergy, irritant dermatitis and rapid oxidation, in vitro and in vivo, the development of new materials that inhibit melanin production is essential. A conditioned medium (CM) derived from stem cells contains many cell-secreted factors, such as cytokines, chemokines, growth factors and extracellular vesicles including exosomes. In addition, the secreted factors could negatively regulate melanin production through stimulation of a microenvironment of skin tissue in a paracrine manner, which allows the neural stem cell CM to be explored as a new material for skin depigmentation. In this review, we will summarize the current knowledge regulating depigmentation, and discuss the potential of neural stem cells and their derivatives, as a new material for skin depigmentation.
Collapse
Affiliation(s)
- Insik Hwang
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
- Department of Public Health Sciences, Korea University Graduate School, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
| | - Sunghoi Hong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
- Department of Public Health Sciences, Korea University Graduate School, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
- Department of Integrated Biomedical and Life Science, Korea University Graduate School, 22 Gil Inchon-ro, Seongbuk-gu, Seoul 02855, Korea.
| |
Collapse
|
8
|
Garcia-Jimenez A, Teruel-Puche JA, Garcia-Ruiz PA, Saura-Sanmartin A, Berna J, Garcia-Canovas F, Rodriguez-Lopez JN. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase. PLoS One 2017; 12:e0187845. [PMID: 29136639 PMCID: PMC5685642 DOI: 10.1371/journal.pone.0187845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/26/2017] [Indexed: 11/18/2022] Open
Abstract
Deoxyarbutin, a potent inhibitor of tyrosinase, could act as substrate of the enzyme. Oxytyrosinase is able to hydroxylate deoxyarbutin and finishes the catalytic cycle by oxidizing the formed o-diphenol to quinone, while the enzyme becomes deoxytyrosinase, which evolves to oxytyrosinase in the presence of oxygen. This compound is the only one described that does not release o-diphenol after the hydroxylation step. Oxytyrosinase hydroxylates the deoxyarbutin in ortho position of the phenolic hydroxyl group by means of an aromatic electrophilic substitution. As the oxygen orbitals and the copper atoms are not coplanar, but in axial/equatorial position, the concerted oxidation/reduction cannot occur and the release of a copper atom to bind again in coplanar position, enabling the oxidation/reduction or release of the o-diphenol from the active site to the medium. In the case of deoxyarbutin, the o-diphenol formed is repulsed by the water due to its hydrophobicity, and so can bind correctly and be oxidized to a quinone before being released. Deoxyarbutin has been characterized with: [Formula: see text] = 1.95 ± 0.06 s-1 and [Formula: see text] = 33 ± 4 μM. Computational simulations of the interaction of β-arbutin, deoxyarbutin and their o-diphenol products with tyrosinase show how these ligands bind at the copper centre of tyrosinase. The presence of an energy barrier in the release of the o-diphenol product of deoxyarbutin, which is not present in the case of β-arbutin, together with the differences in polarity and, consequently differences in their interaction with water help understand the differences in the kinetic behaviour of both compounds. Therefore, it is proposed that the release of the o-diphenol product of deoxyarbutin from the active site might be slower than in the case of β-arbutin, contributing to its oxidation to a quinone before being released from the protein into the water phase.
Collapse
Affiliation(s)
- Antonio Garcia-Jimenez
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Antonio Teruel-Puche
- Group of Molecular Interactions in Membranes, Department of Biochemistry and Molecular Biology-A, University of Murcia, Espinardo, Murcia, Spain
| | - Pedro Antonio Garcia-Ruiz
- Group of Chemistry of Carbohydrates, Industrial Polymers and Additives, Department of Organic Chemistry, Faculty of Veterinary, University of Murcia, Espinardo, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Group of Synthetic Organic Chemistry, Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Espinardo, Murcia, Spain
| | - Jose Berna
- Group of Synthetic Organic Chemistry, Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
- * E-mail:
| | - José Neptuno Rodriguez-Lopez
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| |
Collapse
|
9
|
Carvalho VF, de Lemos DP, Vieira CS, Migotto A, Lopes LB. Potential of Non-aqueous Microemulsions to Improve the Delivery of Lipophilic Drugs to the Skin. AAPS PharmSciTech 2017; 18:1739-1749. [PMID: 27757922 DOI: 10.1208/s12249-016-0643-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, non-aqueous microemulsions were developed because of the challenges associated with finding pharmaceutically acceptable solvents for topical delivery of drugs sparingly soluble in water. The formulation irritation potential and ability to modulate the penetration of lipophilic compounds (progesterone, α-tocopherol, and lycopene) of interest for topical treatment/prevention of skin disorders were evaluated and compared to solutions and aqueous microemulsions of similar composition. The microemulsions (ME) were developed with BRIJ, vitamin E-TPGS, and ethanol as surfactant-co-surfactant blend and tributyrin, isopropyl myristate, and oleic acid as oil phase. As polar phase, propylene glycol (MEPG) or water (MEW) was used (26% w/w). The microemulsions were isotropic and based on viscosity and conductivity assessment, bicontinuous. Compared to drug solutions in lipophilic vehicles, MEPG improved drug delivery into viable skin layers by 2.5-38-fold; the magnitude of penetration enhancement mediated by MEPG into viable skin increased with drug lipophilicity, even though the absolute amount of drug delivered decreased. Delivery of progesterone and tocopherol, but not lycopene (the most lipophilic compound), increased up to 2.5-fold with MEW, and higher amounts of these two drugs were released from MEW (2-2.5-fold). Both microemulsions were considered safe for topical application, but MEPG-mediated decrease in the viability of reconstructed epidermis was more pronounced, suggesting its higher potential for irritation. We conclude that MEPG is a safe and suitable nanocarrier to deliver a variety of lipophilic drugs into viable skin layers, but the use of MEW might be more advantageous for drugs in the lower range of lipophilicity.
Collapse
|
10
|
Ephrem E, Elaissari H, Greige-Gerges H. Improvement of skin whitening agents efficiency through encapsulation: Current state of knowledge. Int J Pharm 2017; 526:50-68. [DOI: 10.1016/j.ijpharm.2017.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
11
|
Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression. Int J Mol Sci 2015; 16:1495-508. [PMID: 25584612 PMCID: PMC4307316 DOI: 10.3390/ijms16011495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/04/2015] [Indexed: 12/20/2022] Open
Abstract
Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.
Collapse
|
12
|
Atanase LI, Riess G. PEG 400/Paraffin oil non-aqueous emulsions stabilized by PBut-Block-P2VP block copolymers. J Appl Polym Sci 2014. [DOI: 10.1002/app.41390] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Leonard Ionut Atanase
- University of Haute Alsace; Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Photochimie et d'Ingénierie Macromoléculaires; 3 rue Alfred Werner 68093 Mulhouse Cedex France
| | - Gérard Riess
- University of Haute Alsace; Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Photochimie et d'Ingénierie Macromoléculaires; 3 rue Alfred Werner 68093 Mulhouse Cedex France
| |
Collapse
|
13
|
Atanase LI, Riess G. Stabilization of non-aqueous emulsions by poly(2-vinylpyridine)-b-poly(butadiene) block copolymers. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wu PS, Huang LN, Guo YC, Lin CC. Effects of the novel poly(methyl methacrylate) (PMMA)-encapsulated organic ultraviolet (UV) filters on the UV absorbance and in vitro sun protection factor (SPF). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 131:24-30. [DOI: 10.1016/j.jphotobiol.2014.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022]
|
15
|
Hispolon decreases melanin production and induces apoptosis in melanoma cells through the downregulation of tyrosinase and microphthalmia-associated transcription factor (MITF) expressions and the activation of caspase-3, -8 and -9. Int J Mol Sci 2014; 15:1201-15. [PMID: 24445257 PMCID: PMC3907864 DOI: 10.3390/ijms15011201] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/29/2013] [Accepted: 01/08/2014] [Indexed: 01/10/2023] Open
Abstract
Hispolon is one of the most important functional compounds that forms Phellinus linteus (Berkeley & Curtis) Teng. Hispolon has antioxidant, anti-inflammatory, antiproliferative and anticancer effects. In this study, we analyzed the functions of hispolon on melanogenesis and apoptosis in B16-F10 melanoma cells. The results demonstrated that hispolon is not an enzymatic inhibitor for tyrosinase; rather, it represses the expression of tyrosinase and the microphthalmia-associated transcription factor (MITF) to reduce the production of melanin in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16-F10 cells at lower concentrations (less than 2 μM). In contrast, at higher concentration (greater than 10 μM), hispolon can induce activity of caspase-3, -8 and -9 to trigger apoptosis of B16-F10 cells but not of Detroit 551 normal fibroblast cells. Therefore, we suggest that hispolon has the potential to treat hyperpigmentation diseases and melanoma skin cancer in the future.
Collapse
|
16
|
Cinnamomum cassia essential oil inhibits α-MSH-induced melanin production and oxidative stress in murine B16 melanoma cells. Int J Mol Sci 2013; 14:19186-201. [PMID: 24051402 PMCID: PMC3794828 DOI: 10.3390/ijms140919186] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/24/2023] Open
Abstract
Essential oils extracted from aromatic plants exhibit important biological activities and have become increasingly important for the development of aromatherapy for complementary and alternative medicine. The essential oil extracted from Cinnamomum cassia Presl (CC-EO) has various functional properties; however, little information is available regarding its anti-tyrosinase and anti-melanogenic activities. In this study, 16 compounds in the CC-EO have been identified; the major components of this oil are cis-2-methoxycinnamic acid (43.06%) and cinnamaldehyde (42.37%). CC-EO and cinnamaldehyde exhibited anti-tyrosinase activities; however, cis-2-methoxycinnamic acid did not demonstrate tyrosinase inhibitory activity. In murine B16 melanoma cells stimulated with α-melanocyte-stimulating hormone (α-MSH), CC-EO and cinnamaldehyde not only reduced the melanin content and tyrosinase activity of the cells but also down-regulated tyrosinase expression without exhibiting cytotoxicity. Moreover, CC-EO and cinnamaldehyde decreased thiobarbituric acid-reactive substance (TBARS) levels and restored glutathione (GSH) and catalase activity in the α-MSH-stimulated B16 cells. These results demonstrate that CC-EO and its major component, cinnamaldehyde, possess potent anti-tyrosinase and anti-melanogenic activities that are coupled with antioxidant properties. Therefore, CC-EO may be a good source of skin-whitening agents and may have potential as an antioxidant in the future development of complementary and alternative medicine-based aromatherapy.
Collapse
|
17
|
Comparative study on the photostability of arbutin and deoxy arbutin: sensitivity to ultraviolet radiation and enhanced photostability by the water-soluble sunscreen, benzophenone-4. Biosci Biotechnol Biochem 2013; 77:1127-30. [PMID: 23649246 DOI: 10.1271/bbb.130042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arbutin and deoxy arbutin may release hydroquinone under some conditions. We therefore investigated the photostability of arbutin and deoxy arbutin in an aqueous solution. The results revealed arbutin and deoxy arbutin to be photolabile in an aqueous solution. Deoxy arbutin was less stable than arbutin when exposed to UV radiation. The hydroquinone concentration was also increased during the radiation period in both solutions. Benzophenone-4 could clearly improve the photostability of arbutin during the period of UV radiation, but only slightly enhance the photostability of deoxy arbutin.
Collapse
|
18
|
Atanase LI, Riess G. Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications. Int J Pharm 2013; 448:339-45. [PMID: 23566926 DOI: 10.1016/j.ijpharm.2013.03.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 10/27/2022]
Abstract
Polyethylene glycol (PEG) 400/Miglyol 812 non-aqueous sub-micron emulsions were developed due to the fact that they are of interest for the design of drug-loaded biocompatible topical formulations. These types of emulsions were favourably stabilized by poly (2-vinylpyridine)-b-poly (butadiene) (P2VP-b-PBut) copolymer with DPBut>DP2VP, each of these sequences being well-adapted to the solubility parameters of PEG 400 and Miglyol 812, respectively. This type of block copolymers, which might limit the Ostwald ripening, appeared to be more efficient stabilizers than low molecular weight non-ionic surfactants. The emulsion characteristics, such as particle size, stability and viscosity at different shear rates were determined as a function of the phase ratio, the copolymer concentration and storage time. It was further shown that Acyclovir, as a model drug of low water solubility, could be incorporated into the PEG 400 dispersed phase, with no significant modification of the initial emulsion characteristics.
Collapse
Affiliation(s)
- Leonard Ionut Atanase
- University of Haute Alsace, Ecole Nationale Supérieure de Chimie de Mulhouse, Laboratoire de Photochimie et d'Ingénierie Macromoléculaires, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | |
Collapse
|
19
|
Chang TS, Lin VCH. Melanogenesis inhibitory activity of two generic drugs: cinnarizine and trazodone in mouse B16 melanoma cells. Int J Mol Sci 2011; 12:8787-96. [PMID: 22272104 PMCID: PMC3257101 DOI: 10.3390/ijms12128787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/26/2011] [Accepted: 11/28/2011] [Indexed: 11/16/2022] Open
Abstract
More than 200 generic drugs were screened to identify the inhibitory activity on melanogenesis in mouse B16 melanoma cells. Cinnarizine and trazodone were identified as melanogenesis inhibitors. The inhibitory effects of the two drugs on cell survival, melanogenesis, and tyrosinase activity were investigated. The results showed that both cinnarizine and trazodone inhibited melanogenesis in B16 cells by a dose-dependent manner at the non-cytotoxic concentrations. Based on the results of the present study, seeking new melanogenesis inhibitors from generic drugs is an alternative approach to developing new depigmenting agents in cosmeceuticals. Moreover, cinnarizine and trazodone were proven to be good candidates as skin-whitening agents for treatment of skin hyperpigmentation.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Science and Technology, National University of Tainan, 33 Sec. 2 Su-Lin St., Tainan 71702, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +886-6-2602137
| | - Victor Chia-Hsiang Lin
- Department of Urology, E-Da Hospital, Kaohsiung 84001, Taiwan; E-Mail:
- The PhD Program of Biotechnology, Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|