1
|
Boicean A, Boeras I, Birsan S, Ichim C, Todor SB, Onisor DM, Brusnic O, Bacila C, Dura H, Roman-Filip C, Ognean ML, Tanasescu C, Hasegan A, Bratu D, Porr C, Roman-Filip I, Neamtu B, Fleaca SR. In Pursuit of Novel Markers: Unraveling the Potential of miR-106, CEA and CA 19-9 in Gastric Adenocarcinoma Diagnosis and Staging. Int J Mol Sci 2024; 25:7898. [PMID: 39063140 PMCID: PMC11277351 DOI: 10.3390/ijms25147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Gastric cancer stands as the fourth leading cause of cancer-related deaths globally, primarily comprising adenocarcinomas, categorized by anatomic location and histologic type. Often diagnosed at advanced stages, gastric cancer prognosis remains poor. To address the critical need for accurate tumoral markers for gastric cancer diagnosis, we conducted a study to assess classical markers like CEA and CA-19-9 alongside the novel marker miR-106. Our investigation revealed distinct dynamics of these markers compared to non-cancerous groups, although no disparities were observed across different disease stages. Univariable and multivariable logistic regression analyses demonstrated that elevated levels of miR-106, CEA and CA 19-9 were predictive of a positive histopathological exam, with the respective odds ratios of 12.032 (95% CI: 1.948-74.305), 30 (95% CI: 3.141-286.576), and 55.866 (95% CI: 4.512-691.687). Subsequently, we utilized predicted probabilities from regression models to construct receiver operating characteristic (ROC) curves, identifying CA 19-9 as the optimal predictor for gastric adenocarcinoma diagnosis when considering age and gender, with an area under the curve (AUC) of 0.936 (p < 0.001). Hence, classical markers exhibit superior performance compared to the novel marker miR-106 in predicting gastric adenocarcinoma.
Collapse
Affiliation(s)
- Adrian Boicean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Ioana Boeras
- Molecular Biology Laboratory of the Applied Ecology Research Center, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Faculty of Social Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Sabrina Birsan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Samuel Bogdan Todor
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Danusia Maria Onisor
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (D.M.O.); (O.B.)
| | - Olga Brusnic
- Department of Gastroenterology, University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mures, Romania; (D.M.O.); (O.B.)
| | - Ciprian Bacila
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Horatiu Dura
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Corina Roman-Filip
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Ciprian Tanasescu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Adrian Hasegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Dan Bratu
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| | - Corina Porr
- County Clinical Emergency Hospital of Sibiu, 550245 Sibiu, Romania
| | - Iulian Roman-Filip
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Bogdan Neamtu
- Pediatric Research Department, Pediatric Clinical Hospital Sibiu, 550166 Sibiu, Romania;
| | - Sorin Radu Fleaca
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (A.B.); (C.I.); (C.B.); (H.D.); (C.R.-F.); (M.L.O.); (C.T.); (A.H.); (D.B.); (S.R.F.)
| |
Collapse
|
2
|
Dilek ON, Arslan Kahraman Dİ, Kahraman G. Carcinoembryonic antigen in the diagnosis, treatment, and follow-up of focal liver lesions. World J Gastrointest Surg 2024; 16:999-1007. [PMID: 38690060 PMCID: PMC11056666 DOI: 10.4240/wjgs.v16.i4.999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/22/2024] Open
Abstract
In this editorial review, we comment on the article published in the recent issue of the World Journal of Gastrointestinal Surgery. Carcinoembryonic antigen (CEA) is a fetal glycoprotein and can be secreted in very small amounts from healthy adults after birth. CEA is widely used not only for diagnostic tumor markers but also importantly for the management of some gastrointestinal tumors. The most common clinical use is surveillance for the monitoring of colorectal carcinoma. However, CEA can become elevated in several malign or benign characterized pathologies. Serum CEA level may vary depending on the location of the lesion, whether it metastasizes or not, and its histopathological characteristics. It has been determined that cases with high preoperative CEA have a more aggressive course and the risk of metastasis to the lymph tissue and liver increases. In this editorial review, we focused on evaluating the role of CEA in clinical practice with a holistic approach, including the diagnostic and prognostic significance of CEA in patients with focal liver lesions, the role of CEA in follow-up after definitive surgery, and also hepatic resection for metastasis, and the management of all patients with raised CEA.
Collapse
Affiliation(s)
- Osman Nuri Dilek
- Department of Surgery, İzmir Katip Celebi University, School of Medicine, İzmir 35150, Turkey
| | | | - Gökhan Kahraman
- Department of Radiology, Suluova State Hospital, Amasya 5500, Turkey
| |
Collapse
|
3
|
Palakollu VN, Veera Manohara Reddy Y, Shekh MI, Vattikuti SVP, Shim J, Karpoormath R. Electrochemical immunosensing of tumor markers. Clin Chim Acta 2024; 557:117882. [PMID: 38521164 DOI: 10.1016/j.cca.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The rising incidence and mortality rates of cancer have led to a growing need for precise and prompt early diagnostic approaches to effectively combat this disease. However, traditional methods employed for detecting tumor cells, such as histopathological and immunological techniques, are often associated with complex procedures, high analytical expenses, elevated false positive rates, and a dependence on experienced personnel. Tracking tumor markers is recognized as one of the most effective approaches for early detection and prognosis of cancer. While onco-biomarkers can also be produced in normal circumstances, their concentration is significantly elevated when tumors are present. By monitoring the levels of these markers, healthcare professionals can obtain valuable insights into the presence, progression, and response to treatment of cancer, aiding in timely diagnosis and effective management. This review aims to provide researchers with a comprehensive overview of the recent advancements in tumor markers using electrochemical immunosensors. By highlighting the latest developments in this field, researchers can gain a general understanding of the progress made in the utilization of electrochemical immunosensors for detecting tumor markers. Furthermore, this review also discusses the current limitations associated with electrochemical immunosensors and offers insights into paving the way for further improvements and advancements in this area of research.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru 560064, India; Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Mehdihasan I Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
4
|
Pan M, Xiao T, Xu L, Xie Y, Ge W. UTP18-mediated p21 mRNA instability drives adenoma-carcinoma progression in colorectal cancer. Cell Rep 2023; 42:112423. [PMID: 37086406 DOI: 10.1016/j.celrep.2023.112423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/13/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
Colorectal cancer (CRC) often develops slowly from adenoma, but the underlying mechanism remains unclear, hampering the prevention or treatment of colorectal adenoma-carcinoma progression. In this study, we use in-depth quantitative proteomics combined with survival analysis, revealing that the ribosome protein U3 small nucleolar RNA-associated protein 18 homolog (UTP18) is consistently upregulated in the progression of colorectal adenoma to carcinoma and is associated with adenoma recurrence, effective serodiagnosis, and poor prognosis of CRC. Furthermore, deSUMOylation induces the nucleocytoplasmic transport of UTP18, driving cell-cycle progression and tumorigenesis via mediation of the instability of p21 mRNA. In addition, the growth and ribosome biogenesis of adenoma organoids is found to be promoted by overexpression of UTP18. Thus, UTP18 contributes to multiple roles in adenogenesis and malignancy of CRC, suggesting that it could be a potential biomarker and drug target for colorectal adenoma and cancer.
Collapse
Affiliation(s)
- Meng Pan
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Tixian Xiao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lai Xu
- Division of Colorectal Surgery, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Yong Xie
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China.
| | - Wei Ge
- Department of Immunology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
5
|
In Vitro and In Vivo Antioxidant and Anticancer Potentials of Royal Jelly for Dimethylhydrazine-Induced Colorectal Cancer in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9506026. [PMID: 35910834 PMCID: PMC9334054 DOI: 10.1155/2022/9506026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 02/07/2023]
Abstract
Methods This study was conducted among 60 rats, and groups consist of control, three separate groups for RJ, dimethylhydrazine (DMH), and vitamin E, and two separate treated groups with DMH + RJ and DMH + vitamin E. Additionally, the cytotoxicity of royal jelly was examined on HT-29 cell line. Findings. Based on the in vitro assessment using MTT assay, the LC50 of royal jelly was 1.781 mg/ml, and the highest cytotoxicity was observed at 25 mg/ml concentration after 48 hours. Meanwhile, in the in vivo study, after the 13th week, compared to the DMH group, the rats exposed to DMH + royal jelly experienced a significant less oxidative stress (P < 0.05) and a significantly greater total antioxidant capacity (TAC) level (P < 0.05). The expression of proliferating cell nuclear antigen (PCNA), platelet-derived growth factor (PDGF), and carcinoembryonic antigen (CEA) proteins significantly decreased among the animals receiving DMH + royal jelly compared to the DMH group. The pathological examinations revealed less congestion, necrosis, inflammation, and cell proliferation in the colon tissue of the RJ-treated group than that of the DMH group. Overall, the biochemical indices were better in the treatment groups in comparison with the DMH group. Conclusion The results represented the clinical usability of royal jelly, as a substance with anticancer properties, to prevent and treat colorectal cancer. This issue is related to its effective antioxidant potential, which even exhibits more effectiveness than the vitamin E, which is known as a strong antioxidant.
Collapse
|
6
|
Salehi A, Hosseini SM, Kazemi S. Antioxidant and Anticarcinogenic Potentials of Propolis for Dimethylhydrazine-Induced Colorectal Cancer in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8497562. [PMID: 35782078 PMCID: PMC9246617 DOI: 10.1155/2022/8497562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 12/30/2022]
Abstract
Propolis is a natural compound with anticarcinogenic properties. The present study aimed to compare the inhibitory effect of ethanolic extract of propolis (EEP) and vitamin E on dimethylhydrazine-induced colon lesions in rats. In this study, 60 rats were randomly categorized into six 10-member groups. After 13 weeks, blood and colon tissue were sampled to examine some factors. The parameters included red (RBC) and white (WBC) blood cell profile, lactate dehydrogenase (LDH), C-reactive protein (CRP), total protein (TP), creatine kinase (CPK), and albumin, as well as the extent of colon histological lesions, protein expression (adenomatous polyposis coli (APC), proliferating cell nuclear antigen (PCNA), carcinoembryonic antigen (CEA), and platelet-derived growth factor (PDGF)), and oxidative stress markers (total antioxidant capacity (TAC), malondialdehyde (MDA), and superoxide dismutase (SOD)) in colon tissue. A significant decrease was observed in congestion, mitotic index, inflammation, and cell destruction in colon tissue in dimethylhydrazine group in comparison with the control group (P < 0.05). The EEP exposed rats exhibited a significant lower oxidative stress than the DMH group (P < 0.05). Furthermore, the extract significantly affected TAC level (P < 0.05). While the expression level of APC rose substantially in the EEP-treated group compared to the DMH group, the level of PCNA, CEA, and PDGF proteins significantly reduced. It seems that the EEP can efficiently prevent DMH-induced colonic lesions. Furthermore, its effectiveness is more than the vitamin E, which is a strong antioxidant.
Collapse
Affiliation(s)
- Alireza Salehi
- Department of Pathology, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Biocompatible graphene-zirconia nanocomposite as a cyto-safe immunosensor for the rapid detection of carcinoembryonic antigen. Sci Rep 2021; 11:22536. [PMID: 34795382 PMCID: PMC8602324 DOI: 10.1038/s41598-021-99498-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
Graphene-based materials have gained remarkable attention in numerous disciplines owing to their unique electrochemical properties. Out of various hybridized nanocomposites, graphene-zirconia nanocomposite (GZ) was distinctive due to its biocompatibility. Zirconia nanoparticles serve as spacers that reduce the stacking of graphene and improve the electrochemical performance of the material. Considering that lungs and skin suffer the greatest exposure to nanoparticles, this study aimed to evaluate the cytotoxicity of the as-synthesized GZ nanocomposites on MRC5 (lung cells) and HaCaT (skin cells) via morphological observation and cell viability assay using 3-(4,5 dimethylthiazol-2-yl)-(2,5-diphenyltetrazolium bromide) tetrazolium (MTT). GZ-treated cells showed a comparable proliferation rate and morphology with untreated cells under microscopic evaluation. Based on MTT results, the IC50 values of GZ were > 500 µg/ml for MRC5 and HaCaT cells. The excellent biocompatibility was the supremacy of GZ over other nanocomposites applied as electrode materials in biosensors. GZ was functionalized with biolinker for the detection of carcinoembryonic antigen (CEA). The proposed immunosensor exhibited good responses towards CEA detection, with a 4.25 pg/ml LOD and correlation coefficient of R2 = 0.99 within a linear working range from 0.01 to 10 ng/ml. The performance of the immunosensor to detect CEA present in human serum was also evaluated. Good recovery of CEA was found, suggesting that the proposed immunosensor possess a high affinity to CEA even in a complex biological matrix, rendering it a promising sensing platform for real sample analysis and open a new way for the detection of cancer-associated proteins.
Collapse
|
8
|
Evaluating Lung Cancer with Tumor Markers: CEA, CA 19-9 and CA 125. JOURNAL OF CONTEMPORARY MEDICINE 2021. [DOI: 10.16899/jcm.840949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Review of clinical and emerging biomarkers for early diagnosis and treatment management of pancreatic cancer: towards personalised medicine. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396921000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Pancreatic cancer is the 12th most commonly diagnosed cancer and the 3rd leading cause of cancer mortality and accounts for approximately 2·7% of all newly diagnosed cancer cases and 6·4% of all cancer mortalities in Canada. It has a very poor survival rate mainly due to the difficulty of detecting the disease at an early stage. Consequently, in the advancement of disease management towards the concept of precision medicine that takes individual patient variabilities into account, several investigators have focused on the identification of effective clinical biomarkers with high specificity and sensitivity, capable of early diagnosis of symptomatic patients and early detection of the disease in asymptomatic individuals at high risk for developing pancreatic cancer.
Materials and methods:
We searched several databases from August to December 2020 for relevant studies published in English between 2000 and 2020 and reporting on biomarkers for the management of pancreatic cancer. In this narrative review paper, we describe 13 clinical and emerging biomarkers for pancreatic cancers used in screening for early detection and diagnosis, to identify patients’ risk for metastatic disease and subsequent relapse, to monitor patient response to specific treatment and to provide clinicians the possibility of prospectively identifying groups of patients who will benefit from a particular treatment.
Conclusions:
Current and emerging biomarkers for pancreatic cancer with high specificity and sensitivity has the potential to account for individual patient variabilities, for early detection of disease before the onset of metastasis to improve treatment outcome and patients’ survival, help screen high-risk populations, predict prognosis, provide accurate information of patient response to specific treatment and improve patients monitoring during treatment. Thus, the future holds promise for the use of effective clinical biomarkers or a panel of biomarkers for personalised patient-specific targeted medicine for pancreatic cancer.
Collapse
|
10
|
|
11
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
12
|
Study on the Diagnosis of Gastric Cancer by Magnetic Beads Extraction and Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2743060. [PMID: 32802837 PMCID: PMC7426759 DOI: 10.1155/2020/2743060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022]
Abstract
Objective. This study constructed a model for the early diagnosis of gastric cancer by comparing the serum peptides profiles of patients with advanced gastric cancer and healthy people. And that model may be the potential to be applied for the efficacy evaluation and recurrence monitoring in gastric cancer. Methods. Serums of 30 healthy people and 30 advanced gastric cancer patients were matched by age and gender were collected. The serum peptide spectrum was obtained by MB-WCX concentration and MALDI-TOF MS analysis. Based on the analysis of the efficiency of differential peptides in the diagnosis of gastric cancer, we first established a model for the diagnosis of gastric cancer based on differential peptides and then carried out external verification. The diagnostic reliability of this model was further tested by compared with carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9). Results. In this present study, we found the expression of two peptide peaks with a molecular weight of 2863 Da and 2953 Da were significantly increased in gastric cancer serum, while the expression of two peptide peaks with a molecular weight of 1945 Da and 2082 Da were significantly decreased. Depending on the characteristics of peptide expression, we constructed a diagnostic model, we compared the sensitivity and specificity of the model established by 2953 Da/1945 Da, and found this model is significantly higher than CEA and CA19-9. Conclusion. There were some differences in serum peptides profiles between patients with advanced gastric cancer and healthy people. The serum peptide diagnostic models based on 2953 Da and 1945 Da have high diagnostic efficiency for advanced gastric cancer. Our result indicated that this model was well worth further validation for clinical diagnosis.
Collapse
|
13
|
Ibrahim AY, Youness ER, Mahmoud MG, Asker MS, El-Newary SA. Acidic Exopolysaccharide Produced from Marine Bacillus amyloliquefaciens 3MS 2017 for the Protection and Treatment of Breast Cancer. Breast Cancer (Auckl) 2020; 14:1178223420902075. [PMID: 32047357 PMCID: PMC6984436 DOI: 10.1177/1178223420902075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE This study was planned to investigate the anti-breast-cancer property of acidic exopolysaccharide produced from marine Bacillus amyloliquefaciens 3MS 2017 (BAEPS) in an animal model, which previously showed in-vitro anti-breast-cancer activity, by studying its potential participation in various targeted mechanisms. METHODS Mammary carcinoma in female Sprague-Dawley rats, both in prophylactic and in curative designs, was chemically induced using 7,12-dimethylebenz-(a)-anthracene (DMBA). B. amyloliquefaciens 3MS 2017 anti-breast-cancer property was evaluated by studying its effects on cancer-growth-rate-limiting enzymes (aromatase and Na+/K+ ATPase), sexual hormones (estrogen and progesterone), antioxidant and inflammatory biomarkers (cyclooxygenase-1; COX-1 and cyclooxygenase-2; COX-2). The incidence of breast cancer by DMBA was dependent on the level of carcinoembryonic antigen (CEA) and aromatase. RESULTS 7,12-Dimethylebenz-(a)-anthracene female rats were characterized by a significant increase in cancer-related biomarkers with an increase of oxidative stress biomarkers, in comparison with the negative control. Potent BAEPS anticancer activity on DMBA rats was exhibited either as a prophylactic or as a curative agent, which appeared via restoring the aromatase and Na+/K+ ATPase subunits levels and CEA close to the normal level. Besides, BAEPS modulated a sexual hormone, in comparison with the cancer control group (P ⩽ .05). B. amyloliquefaciens 3MS 2017 selectively inhibited COX-2 in parallel with promising antioxidant properties. The curative characters of BAEPS were more promising than the prophylactic. CONCLUSION The anti-breast-cancer characters accompanied with a good safety margin may be attributed to its inhibitory effect on cancer-growth-rate-limiting enzymes, estrogen production, COX-2 level and lipid peroxidation, concurrent with enhancing COX-1 level, progesterone production, and antioxidant status.
Collapse
Affiliation(s)
- Abeer Y Ibrahim
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Giza, Egypt
| | - Eman R Youness
- Department of Medical Biochemistry, Medical Research Division, National Research Centre, Giza, Egypt
| | - Manal G Mahmoud
- Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mohsen S Asker
- Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Samah A El-Newary
- Department of Medicinal and Aromatic Plants Research, National Research Centre, Giza, Egypt
| |
Collapse
|
14
|
He J, Li C, Ding L, Huang Y, Yin X, Zhang J, Zhang J, Yao C, Liang M, Pirraco RP, Chen J, Lu Q, Baldridge R, Zhang Y, Wu M, Reis RL, Wang Y. Tumor Targeting Strategies of Smart Fluorescent Nanoparticles and Their Applications in Cancer Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902409. [PMID: 31369176 DOI: 10.1002/adma.201902409] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Advantages such as strong signal strength, resistance to photobleaching, tunable fluorescence emissions, high sensitivity, and biocompatibility are the driving forces for the application of fluorescent nanoparticles (FNPs) in cancer diagnosis and therapy. In addition, the large surface area and easy modification of FNPs provide a platform for the design of multifunctional nanoparticles (MFNPs) for tumor targeting, diagnosis, and treatment. In order to obtain better targeting and therapeutic effects, it is necessary to understand the properties and targeting mechanisms of FNPs, which are the foundation and play a key role in the targeting design of nanoparticles (NPs). Widely accepted and applied targeting mechanisms such as enhanced permeability and retention (EPR) effect, active targeting, and tumor microenvironment (TME) targeting are summarized here. Additionally, a freshly discovered targeting mechanism is introduced, termed cell membrane permeability targeting (CMPT), which improves the tumor-targeting rate from less than 5% of the EPR effect to more than 50%. A new design strategy is also summarized, which is promising for future clinical targeting NPs/nanomedicines design. The targeting mechanism and design strategy will inspire new insights and thoughts on targeting design and will speed up precision medicine and contribute to cancer therapy and early diagnosis.
Collapse
Affiliation(s)
- Jiuyang He
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Chenchen Li
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yanan Huang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jian Zhang
- Universal Medical Imaging Diagnostic Research Center, Shanghai, 200233, P. R. China
| | - Chenjie Yao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Minmin Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Rogério P Pirraco
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
| | - Jie Chen
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Quan Lu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Ryan Baldridge
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yong Zhang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Department of Biomedical Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Minghong Wu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's PT Government Associate Lab, 4805, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017, Barco, Guimarães, Portugal
| | - Yanli Wang
- Tumor Precision Targeting Research Center, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
15
|
SWCNTs@GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal Chim Acta 2018; 1042:44-51. [DOI: 10.1016/j.aca.2018.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/28/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
|
16
|
Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies. J Pharm Biomed Anal 2018; 147:185-210. [DOI: 10.1016/j.jpba.2017.07.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
|
17
|
Pavithra M, Muruganand S, Parthiban C. Development of a Simple Isatin-Based Electrochemical Immunosensor on a Screen-Printed Gold Electrode for Highly Sensitive Detection of Carcinoembryonic Antigen. ChemistrySelect 2017. [DOI: 10.1002/slct.201700870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Masilamani Pavithra
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | - Shanmugam Muruganand
- Department of Electronics and Instrumentation; Bharathiar University; Coimbatore India
| | | |
Collapse
|
18
|
|
19
|
Li Y, Zhang Y, Li F, Feng J, Li M, Chen L, Dong Y. Ultrasensitive electrochemical immunosensor for quantitative detection of SCCA using Co 3 O 4 @CeO 2 -Au@Pt nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 2017; 92:33-39. [DOI: 10.1016/j.bios.2017.01.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
|
20
|
Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum. Biosens Bioelectron 2017; 92:542-548. [DOI: 10.1016/j.bios.2016.10.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/02/2023]
|
21
|
Arya SK, Kongsuphol P, Park MK. On-chip electrochemical immunoassay platform for specific protein biomarker estimation in undiluted serum using off-surface membrane matrix. Biosens Bioelectron 2017; 91:721-727. [DOI: 10.1016/j.bios.2017.01.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
|
22
|
Arya SK, Estrela P. Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum. Methods 2017; 116:125-131. [DOI: 10.1016/j.ymeth.2016.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022] Open
|
23
|
Akanda MR, Ju H. A Tyrosinase-Responsive Nonenzymatic Redox Cycling for Amplified Electrochemical Immunosensing of Protein. Anal Chem 2016; 88:9856-9861. [DOI: 10.1021/acs.analchem.6b03056] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Md. Rajibul Akanda
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
24
|
Sharma S, Raghav R, O’Kennedy R, Srivastava S. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme Microb Technol 2016; 89:15-30. [DOI: 10.1016/j.enzmictec.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
|
25
|
Laocharoensuk R. Development of Electrochemical Immunosensors towards Point-of-care Cancer Diagnostics: Clinically Relevant Studies. ELECTROANAL 2016. [DOI: 10.1002/elan.201600248] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rawiwan Laocharoensuk
- National Nanotechnology Center (NANOTEC); National Science and Technology Development Agency (NSTDA); Pathum Thani 12120 Thailand
| |
Collapse
|
26
|
Moreira FTC, Ferreira MJMS, Puga JRT, Sales MGF. Screen-printed electrode produced by printed-circuit board technology. Application to Cancer Biomarker Detection by means of plastic antibody as sensing material. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 223:927-935. [PMID: 30740000 PMCID: PMC6366552 DOI: 10.1016/j.snb.2015.09.157] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This research work presents, for the first time, a screen-printed electrode (SPE) made on a PCB board with silver tracks (Ag) and a three electrode configuration (AgxO-working, AgxO-counter and Ag/AgxO-reference electrodes), following the same approach as printed-circuit boards (PCBs). This low cost and disposable device was tested for screening a cancer biomarker in point-of-care. The selected biomarker was carcinogenic embryonic antigen (CEA) protein, routinely used to follow-up the progression of specific cancer diseases. The biosensor was constructed by assembling a plastic antibody on the Ag-working electrode area, acting as the biorecognition element of the device. The protein molecules that were entrapped on the polymer and positioned at the outer surface of the polypyrrole (PPy) film were removed by protease action. The imprinting effect was tested by preparing non-imprinted (NPPy) material, including only PPy as biorecognition element. Infrared and Raman studies confirmed the surface modification of these electrodes. The ability of the sensing material to rebind CEA was measured by several electrochemical techniques: cyclic voltammetry (CV), impedance spectroscopy (EIS) and square wave voltammetry (SWV). The linear response ranged from 0.05 to 1.25 pg/mL against logarithm concentration. Overall, producing screen-printed electrodes by means of conventional PCB technology showed promising features, mostly regarding cost and prompt availability. The plastic antibody-based biosensor also seems to be a promising tool for screening CEA in point-of-care, with low response time, low cost, good sensitivity and high stability.
Collapse
Affiliation(s)
- Felismina T C Moreira
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| | | | - José R T Puga
- TID-CINTESIS/ School of Engineering, Polytechnic Institute of Porto, Portugal
| | - M Goreti F Sales
- BioMark-CINTESIS/ISEP, School of Engineering, Polytechnic Institute of Porto, Portugal
| |
Collapse
|
27
|
Wu D, Ma H, Zhang Y, Jia H, Yan T, Wei Q. Corallite-like Magnetic Fe3O4@MnO2@Pt Nanocomposites as Multiple Signal Amplifiers for the Detection of Carcinoembryonic Antigen. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18786-18793. [PMID: 26244448 DOI: 10.1021/acsami.5b05443] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A nonenzymatic sandwich-type electrochemical immunosensor using corallite-like magnetic Fe3O4@MnO2@Pt nanocomposites was developed for the sensitive detection of carcinoembryonic antigen (CEA). First, aminated graphene (GS-NH2) sheets were synthesized from graphite oxide using the Hummers' method, which was used to immobilize the primary antibody via the active amino groups on the GS-NH2. Second, corallite-like Fe3O4@MnO2@Pt nanoparticles (NPs) were synthesized and characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS). They were used as labels to conjugate with a secondary antibody. The multiple amplification of Fe3O4@MnO2@Pt NPs and the promoted electron transfer of GS-NH2 lead to a broad linear range from 0.5 pg/mL to 20 ng/mL and a low detection limit with 0.16 pg/mL. In addition, the immunosensor performed with good selectivity and acceptable stability and reproducibility as well. The results are satisfactory when the proposed method has been applied to analyze human serum samples. Thus, there would be a promising future in the early diagnosis of cancer to detect CEA and other tumor markers.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Hongmin Ma
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Hongying Jia
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Tao Yan
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan , Jinan 250022, People's Republic of China
| |
Collapse
|
28
|
Rath D, Panda S. Contribution of rotational diffusivity towards the transport of antigens in heterogeneous immunosensors. Analyst 2015; 140:6579-87. [DOI: 10.1039/c5an00803d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantification of rotational diffusivities of biomarkers and their contribution to the overall transport using time resolved fluorescence anisotropy method would enable higher capture efficiency in heterogeneous immunosensors.
Collapse
Affiliation(s)
- Dharitri Rath
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur – 208 016
- India
- Centre for Environmental Sciences and Engineering
| | - Siddhartha Panda
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur – 208 016
- India
- Centre for Environmental Sciences and Engineering
| |
Collapse
|
29
|
Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection. Biosens Bioelectron 2014; 61:336-43. [PMID: 24912033 DOI: 10.1016/j.bios.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 12/15/2022]
Abstract
Thrombin plays the role in cardiovascular diseases and regulates many processes in inflammation and could be a feature of many pathological conditions, including the thromboembolic disease, cancer and neurodegenerative diseases. An ultrasensitive and amplified electrochemical sandwich assay using screen-printed carbon electrode (SPCE) strips for thrombin detection was established in this study. The conductivity and sensing performance of the carbon electrodes were enhanced by using gold nanoparticles (AuNPs). The aptamer addressed on the strips was used as a primary probe to capture thrombin in the detected samples. An amplifier was invented for recognizing thrombin captured on the SPCE, which is the multiple molecules of anti-thrombin antibody (Ab) and horseradish peroxidase (HRP) co-modified AuNPs (AuNPs/Ab-HRP). Hydrogen peroxide was used as the substrate for HRP and then the response current (RC) could be detected. The optimization of these AuNPs conjugates-amplified aptamer immunosensing SPCE strips was conducted for thrombin detection. The detection sensitivity showed a linear relation between RC and thrombin concentration in the range of 10 pM-100 nM, and limit of detection (LOD) was 1.5 pM. The fabricated AuNPs/Ab-HRP-amplified aptamer immunosensing SPCE strips were further used to detect thrombin in human serum with a linear range of 100 pM-100 nM. This study provided the promising SPCE strips with highly sensitive and rapid detection for thrombin by the electrochemical aptasensor combined with AuNPs conjugates for amplifying the detection signal.
Collapse
|
30
|
Lin D, Wu J, Ju H, Yan F. Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 2014; 52:153-8. [DOI: 10.1016/j.bios.2013.08.051] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/13/2013] [Accepted: 08/22/2013] [Indexed: 12/11/2022]
|
31
|
Wu D, Fan H, Li Y, Zhang Y, Liang H, Wei Q. Ultrasensitive electrochemical immunoassay for squamous cell carcinoma antigen using dumbbell-like Pt–Fe3O4 nanoparticles as signal amplification. Biosens Bioelectron 2013; 46:91-6. [DOI: 10.1016/j.bios.2013.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/24/2013] [Accepted: 02/12/2013] [Indexed: 11/26/2022]
|
32
|
Zhang XY, Zhou LY, Luo HQ, Li NB. A sensitive and label-free impedimetric biosensor based on an adjunct probe. Anal Chim Acta 2013; 776:11-6. [DOI: 10.1016/j.aca.2013.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 11/27/2022]
|