1
|
Salceda-Rivera V, Ortiz-Lazareno PC, Hernández-Flores G, Vazquez-Urrutia JR, Meza-Arroyo J, Pardo-Zepeda M, Romo-Rubio H, Barba-Barba C, Sánchez-Zubieta F, Barrón-Gallardo CA, Gonzalez-Ramella O, Bravo-Cuellar A. Very early remission and increased apoptosis with the use of Pentoxifylline in children with acute lymphoblastic leukemia. Front Oncol 2024; 14:1401262. [PMID: 39421449 PMCID: PMC11484046 DOI: 10.3389/fonc.2024.1401262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Despite the improvement in survival in acute lymphoblastic leukemia (ALL), there are still cases with evasion of chemotherapy-induced apoptosis. The IKK/NF-κB signaling pathway contributes to antiapoptotic gene expression. Pentoxifylline (PTX) inhibits IkB phosphorylation, blocking NF-κB and antiapoptotic activity. Methods We conducted a randomized, double-blind clinical trial on pediatric ALL patients undergoing induction therapy, assigning them to PTX or placebo group. Bone marrow aspirates were obtained on days 1, 8, 15, and 22. Apoptosis was assessed using Annexin-V/propidium iodide. Results Results indicated that the PTX group exhibited higher apoptosis on day-8 (41.3% vs. 19.4%, p =0.029) and day-15 (35.0% vs. 14.2%, p <0.01). On day-8, the PTX group displayed an MRD of 0.25% vs. 18.2% (p <0.01) in placebo group; on day-15, the PTX group demonstrated an MRD of 0.09% vs. 1.4% (p =0.02). Patients achieving an MRD <0.01% on day-8 demonstrated a 3-year Overall Survival (OS) of 81.6% vs. 58.3% (p =0.03); on day-15, patients with MRD <0.01% had a 3-year OS of 77.9% vs. 54.5% (p =0.03). The PTX group achieved an MRD of <0.01% earlier on days-8 and 15, along with a higher apoptosis rate, indicating a more favorable therapeutic response. In the entire cohort, patients achieving MRD <0.01% on day-8 or 15 displayed superior OS. Conclusion Our study demonstrates that PTX enhances apoptosis and reduces MRD in pediatric acute lymphoblastic leukemia patients. Clinical trial registration https://clinicaltrials.gov/, identifier NCT02451774.
Collapse
Affiliation(s)
- Violeta Salceda-Rivera
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Pablo C. Ortiz-Lazareno
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Georgina Hernández-Flores
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
| | - Jorge R. Vazquez-Urrutia
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, School of Medicine, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Jesus Meza-Arroyo
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Monzerrat Pardo-Zepeda
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Hugo Romo-Rubio
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Cesar Barba-Barba
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
| | - Fernando Sánchez-Zubieta
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
- Departamento de Clinicas de Reproduccion Humana, Crecimiento y Desarrollo Infantil, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Carlos Alfredo Barrón-Gallardo
- Departamento Académico de Disciplinas Especializantes de Ciencias de la Salud, Universidad Autonoma de Guadalajara, Zapopan, JAL, Mexico
| | - Oscar Gonzalez-Ramella
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Department of Pediatric Hemato-Oncology, Hospital Civil de Guadalajara “Dr. Juan I. Menchaca”, Guadalajara, JAL, Mexico
- Centro Universitario de Ciencias de la Salud, School of Medicine, Universidad de Guadalajara, Guadalajara, JAL, Mexico
| | - Alejandro Bravo-Cuellar
- Immunology Division, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, JAL, Mexico
- Doctoral Program in Biomedical Sciences, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, JAL, Mexico
- Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, JAL, Mexico
| |
Collapse
|
2
|
Matos BS, Peixoto da Silva S, Vasconcelos MH, Xavier CPR. Chemosensitizing effect of pentoxifylline in sensitive and multidrug-resistant non-small cell lung cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:19. [PMID: 38835347 PMCID: PMC11149106 DOI: 10.20517/cdr.2024.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Aim: Multidrug resistance (MDR) is frequent in non-small cell lung cancer (NSCLC) patients, which can be due to its fibrotic stroma. This work explores the combination of pentoxifylline, an anti-fibrotic and chitinase 3-like-1 (CHI3L1) inhibitor drug, with conventional chemotherapy to improve NSCLC treatment. Methods: The effect of pentoxifylline in the expression levels of P-glycoprotein (P-gp), CHI3L1 and its main downstream proteins, as well as on cell death, cell cycle profile, and P-gp activity was studied in two pairs of sensitive and MDR counterpart NSCLC cell lines (NCI-H460/NCI-H460/R and A549/A549-CDR2). Association studies between CHI3L1 gene expression and NSCLC patients' survival were performed using The Cancer Genome Atlas (TCGA) analysis. The sensitizing effect of pentoxifylline to different drug regimens was evaluated in both sensitive and MDR NSCLC cell lines. The cytotoxicity of the drug combinations was assessed in MCF10A non-tumorigenic cells. Results: Pentoxifylline slightly decreased the expression levels of CHI3L1, β-catenin and signal transducer and activator of transcription 3 (STAT3), and caused a significant increase in the G1 phase of the cell cycle in both pairs of NSCLC cell lines. A significant increase in the % of cell death was observed in the sensitive NCI-H460 cell line. TCGA analysis revealed that high levels of CHI3L1 are associated with low overall survival (OS) in NSCLC patients treated with vinorelbine. Moreover, pentoxifylline sensitized both pairs of sensitive and MDR NSCLC cell lines to the different drug regimens, without causing significant toxicity to non-tumorigenic cells. Conclusion: This study suggests the possibility of combining pentoxifylline with chemotherapy to increase NSCLC therapeutic response, even in cases of MDR.
Collapse
Affiliation(s)
- Beatriz S Matos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal
| |
Collapse
|
3
|
Anti-Fibrotic Potential of Angiotensin (1-7) in Hemodynamically Overloaded Rat Heart. Int J Mol Sci 2023; 24:ijms24043490. [PMID: 36834901 PMCID: PMC9967643 DOI: 10.3390/ijms24043490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic structure controlling the proper functioning of heart muscle. ECM remodeling with enhanced collagen deposition due to hemodynamic overload impairs cardiomyocyte adhesion and electrical coupling that contributes to cardiac mechanical dysfunction and arrhythmias. We aimed to explore ECM and connexin-43 (Cx43) signaling pathways in hemodynamically overloaded rat heart as well as the possible implication of angiotensin (1-7) (Ang (1-7)) to prevent/attenuate adverse myocardial remodeling. Male 8-week-old, normotensive Hannover Spraque-Dawley rats (HSD), hypertensive (mRen-2)27 transgenic rats (TGR) and Ang (1-7) transgenic rats (TGR(A1-7)3292) underwent aortocaval fistula (ACF) to produce volume overload. Five weeks later, biometric and heart tissue analyses were performed. Cardiac hypertrophy in response to volume overload was significantly less pronounced in TGR(A1-7)3292 compared to HSD rats. Moreover, a marker of fibrosis hydroxyproline was increased in both ventricles of volume-overloaded TGR while it was reduced in the Ang (1-7) right heart ventricle. The protein level and activity of MMP-2 were reduced in both ventricles of volume-overloaded TGR/TGR(A1-7)3292 compared to HSD. SMAD2/3 protein levels were decreased in the right ventricle of TGR(A1-7)3292 compared to HSD/TGR in response to volume overload. In parallel, Cx43 and pCx43 implicated in electrical coupling were increased in TGR(A1-7)3292 versus HSD/TGR. It can be concluded that Ang (1-7) exhibits cardio-protective and anti-fibrotic potential in conditions of cardiac volume overload.
Collapse
|
4
|
Serebrovska ZO, Xi L, Tumanovska LV, Shysh AM, Goncharov SV, Khetsuriani M, Kozak TO, Pashevin DA, Dosenko VE, Virko SV, Kholin VA, Grib ON, Utko NA, Egorov E, Polischuk AO, Serebrovska TV. Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life (Basel) 2022; 12:life12030432. [PMID: 35330183 PMCID: PMC8953753 DOI: 10.3390/life12030432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/28/2022] Open
Abstract
Intermittent hypoxia-hyperoxia training (IHHT) is a non-pharmacological therapeutic modality for management of some chronic- and age-related pathologies, such as Alzheimer’s disease (AD). Our previous studies demonstrated significant improvement of cognitive function after IHHT in the patients with mild cognitive impairment (MCI). The present study further investigated the effects of IHHT on pro-inflammatory factors in healthy elderly individuals and patients with early signs of AD. Twenty-nine subjects (13 healthy subjects without signs of cognitive impairment syndrome and 16 patients diagnosed with MCI; age 52 to 76 years) were divided into four groups: Healthy+Sham (n = 7), Healthy+IHHT (n = 6), MCI+Sham (n = 6), and MCI+IHHT (n = 10). IHHT was carried out 5 days per week for 3 weeks (total 15 sessions), and each daily session included 4 cycles of 5-min hypoxia (12% FIO2) and 3-min hyperoxia (33% FIO2). Decline in cognitive function indices was observed initially in both MCI+Sham and MCI+IHHT groups. The sham training did not alter any of the parameters, whereas IHHT resulted in improvement in latency of cognitive evoked potentials, along with elevation in APP110, GDF15 expression, and MMP9 activity in both healthy subjects and those with MCI. Increased MMP2 activity, HMGB1, and P-selectin expression and decreased NETs formation and Aβ expression were also observed in the MCI+IHHT group. There was a negative correlation between MoCA score and the plasma GDF15 expression (R = −0.5799, p < 0.05) before the initiation of IHHT. The enhanced expression of GDF15 was also associated with longer latency of the event-related potentials P330 and N200 (R = 0.6263, p < 0.05 and R = 0.5715, p < 0.05, respectively). In conclusion, IHHT upregulated circulating levels of some inflammatory markers, which may represent potential triggers for cellular adaptive reprogramming, leading to therapeutic effects against cognitive dysfunction and neuropathological changes during progression of AD. Further investigation is needed to clarify if there is a causative relationship between the improved cognitive function and the elevated inflammatory markers following IHHT.
Collapse
Affiliation(s)
- Zoya O. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
- Correspondence: (Z.O.S.); (L.X.)
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0204, USA
- Correspondence: (Z.O.S.); (L.X.)
| | - Lesya V. Tumanovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Angela M. Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Goncharov
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Michael Khetsuriani
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Taisia O. Kozak
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Denis A. Pashevin
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Victor E. Dosenko
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Sergii V. Virko
- Lashkariov Institute of Semiconductor Physics, National Academy of Sciences, 41 Nauki Ave., 03028 Kyiv, Ukraine;
| | - Viktor A. Kholin
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Oksana N. Grib
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Natalie A. Utko
- Department of Age Physiology and Pathology of Nervous System, Chebotarev Institute of Gerontology NAMS of Ukraine, 04114 Kyiv, Ukraine; (V.A.K.); (O.N.G.); (N.A.U.)
| | - Egor Egorov
- CELLGYM Technologies GmbH, 14193 Berlin, Germany;
| | - Anna O. Polischuk
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| | - Tetiana V. Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, 01024 Kyiv, Ukraine; (L.V.T.); (A.M.S.); (S.V.G.); (M.K.); (T.O.K.); (D.A.P.); (V.E.D.); (A.O.P.); (T.V.S.)
| |
Collapse
|
5
|
Al-Husein BA, Mhaidat NM, Alzoubi KH, Alzoubi GM, Alqudah MA, Albsoul-Younes AM, Matalqah SM. Pentoxifylline induces caspase-dependent apoptosis in colorectal cancer cells. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Meirovitz A, Baider L, Peretz T, Stephanos S, Barak V. Effect of pentoxifylline on colon cancer patients treated with chemotherapy (Part I). Tumour Biol 2021; 43:341-349. [PMID: 34957976 DOI: 10.3233/tub-211533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cancer progression is associated with significant systemic clinical manifestations including cachexia induced weight loss and anorexia. Pentoxifylline (PTX) is a drug that has been shown to have multiple beneficial effects in cancer patients through its anti-inflammatory properties. MAIN OBJECTIVE To evaluate PTX effects on colon cancer patients treated with chemotherapy. PATIENTS AND METHODS Forty metastatic colon cancer patients receiving chemotherapy were enrolled in this randomized study. 17 patients were treated with a full dose of PTX (400 mg TID), 9 patients with a reduced dose PTX (200 mg TID) and 23 served as controls (no PTX). RESULTS Follow-up evaluations of patients included the following: physical examination; leukopenia determination; weight determination; stomatitis determination; and survival rate. Patients treated with PTX (both full and reduced doses), experienced a significant increase in weight and a reduction in stomatitis relative to the control group. Treatment with PTX also significantly increased patient survival rate. All patients treated with PTX, had a median overall survival (OS) rate of 20.4 months as compared to 13.2 months in the control group. CONCLUSIONS PTX treatment of colon cancer patients, in addition to chemotherapy, significantly improved survival rates, induced weight gain and reduced stomatitis occurrence -all important parameters of cachexia.
Collapse
Affiliation(s)
- Amichay Meirovitz
- Department of Oncology, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Baider
- Department of Oncology, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Peretz
- Department of Oncology, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samir Stephanos
- Psychosomatic Department, Ulm University Medical Center, Ulm, Germany
| | - Vivian Barak
- Department of Oncology, Hadassah Medical Center and Faculty of Medicine Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Nuclear factor-κB signaling inhibitors revert multidrug-resistance in breast cancer cells. Chem Biol Interact 2021; 340:109450. [PMID: 33775688 DOI: 10.1016/j.cbi.2021.109450] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 01/07/2023]
Abstract
The emergence of multidrug resistance (MDR) is among the crucial obstacles to breast cancer therapy success. The transcription factor nuclear factor (NF)-κB is correlated to the pathogenesis of breast cancer and resistance to therapy. NF-κB augments the expression of MDR1 gene, which encodes for the membrane transporter P-glycoprotein (P-gp) in cancer cells. Since NF-κB activity is considered to be relatively high in particular when it comes to breast cancer, in the present work, we proposed that the inhibition of NF-κB activity can augment and enhance the sensitivity of breast cancer cells to chemotherapy such as doxorubicin (DOX) by virtue of MDR modulation. Our results demonstrated that the DOX-resistant MCF-7 and MDA-MB-231 clones exhibit higher NF-κB (p65) activity, which is linked to the upregulated expression of ABCB1 and ABCC1 transporter proteins. Combined treatment with NF-kB inhibitors (pentoxifylline and bortezomib) sensitized the resistant breast cancer cells to DOX. Such synergy was compromised by forced overexpression of p65. The DOX/NF-κB inhibitor combinations hampered NF-κB (p65) activation and downregulated MDR efflux transporters' level. Breast cancer cell migration was sharply suppressed in cells co-treated with DOX/NF-κB inhibitors. The same treatments successfully enhanced DOX-mediated induction of apoptosis, which is reflected by the elevated ratio of annexin-V/PI positively stained cells, along with the activation of other apoptotic markers. In conclusion, the data generated from this study provide insights for future translational investigations introducing the use of the clinically approved NF-κB inhibitors as an adjuvant in the treatment protocols of resistant breast cancer to overcome the multidrug resistance and enhance the therapeutic outcomes.
Collapse
|
8
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
9
|
Suppression of β1-Adrenoceptor Autoantibodies is Involved in the Antiarrhythmic Effects of Omega-3 Fatty Acids in Male and Female Hypertensive Rats. Int J Mol Sci 2020; 21:ijms21020526. [PMID: 31947691 PMCID: PMC7013542 DOI: 10.3390/ijms21020526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The arrhythmogenic potential of β1-adrenoceptor autoantibodies (β1-AA), as well as antiarrhythmic properties of omega-3 in heart diseases, have been reported while underlying mechanisms are poorly understood. We aimed to test our hypothesis that omega-3 (eicosapentaenoic acid-EPA, docosahexaenoic acid-DHA) may inhibit matrix metalloproteinase (MMP-2) activity to prevent cleavage of β1-AR and formation of β1-AA resulting in attenuation of pro-arrhythmic connexin-43 (Cx43) and protein kinase C (PKC) signaling in the diseased heart. We have demonstrated that the appearance and increase of β1-AA in blood serum of male and female 12-month-old spontaneously hypertensive rats (SHR) was associated with an increase of inducible ventricular fibrillation (VF) comparing to normotensive controls. In contrast, supplementation of hypertensive rats with omega-3 for two months suppressed β1-AA levels and reduced incidence of VF. Suppression of β1-AA was accompanied by a decrease of elevated myocardial MMP-2 activity, preservation of cardiac cell membrane integrity and Cx43 topology. Moreover, omega-3 abrogated decline in expression of total Cx43 as well as its phosphorylated forms at serine 368 along with PKC-ε, while decreased pro-fibrotic PKC-δ levels in hypertensive rat heart regardless the sex. The implication of MMP-2 in the action of omega-3 was also demonstrated in cultured cardiomyocytes in which desensitization of β1-AR due to permanent activation of β1-AR with isoproterenol was prevented by MMP-2 inhibitor or EPA. Collectively, these data support the notion that omega-3 via suppression of β1-AA mechanistically controlled by MMP-2 may attenuate abnormal of Cx43 and PKC-ε signaling; thus, abolish arrhythmia substrate and protect rats with an advanced stage of hypertension from malignant arrhythmias.
Collapse
|
10
|
Madera-Sandoval RL, Tóvári J, Lövey J, Ranđelović I, Jiménez-Orozco A, Hernández-Chávez VG, Reyes-Maldonado E, Vega-López A. Combination of pentoxifylline and α-galactosylceramide with radiotherapy promotes necro-apoptosis and leukocyte infiltration and reduces the mitosis rate in murine melanoma. Acta Histochem 2019; 121:680-689. [PMID: 31213291 DOI: 10.1016/j.acthis.2019.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
Despite the success for the treatment of melanoma such as targeted molecular therapy, the use of such treatments are expensive For this reason, this study was carried out to explore the anti-cancer properties of available drugs that are able to modify the melanoma prognosis. The study was conducted in two phases: Evaluation of pharmacological effects of pentoxifylline (PTX) administered above (60 mg/kg) which is the therapeutic dose that is aimed at reducing the side-effect of radiotherapy, and of α- galactosylceramide (GalCer) administered at 100 μg/kg, as well as their combination using a murine model (BDF1 mice) of melanoma cell line (B16-F1, ATCC). For the radiotherapy phase, 9 Gy was applied in the tumor area, before (3 days), during (30 min) and after (3 days) the PTX + GalCer treatment. In both study phases, the mitosis rate, leukocyte infiltration and necro-apoptosis were assessed using histological and immunohistochemical approach and tumor volume evaluation as biomarkers. All treatments showed good prognosis results estimated as reduction of mitosis rate (PTX + GalCer after radiotherapy and GalCer), increased leukocyte infiltrate (PTX + GalCer after radiotherapy and GalCer) and necro-apoptosis augmentation (PTX + GalCer after radiotherapy and radiotherapy control). Nevertheless, a lower development of tumor volume was found in GalCer treatment. In this way, it is possible to suggest that the integrated treatment with immuno-stimulators such as GalCer, plus drug used for peripheral vascular disease (PTX) after radiotherapy is probably an alternative for controlling aggressive melanoma in murine model.
Collapse
Affiliation(s)
- Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico
| | - József Tóvári
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - József Lövey
- National Institute of Oncology, Center of Radiotherapy, Budapest, Hungary
| | - Ivan Ranđelović
- National Institute of Oncology, Department of Experimental Pharmacology, Budapest, Hungary
| | - Alejandro Jiménez-Orozco
- Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Farmacología Celular y Molecular, Mexico City, Mexico
| | - Victor G Hernández-Chávez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hematopatología. Carpio y Plan de Ayala s/n, Casco de Santo Tomás, Mexico City, CP 11340, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, Mexico City, CP 07320, Mexico.
| |
Collapse
|
11
|
Cardiac Cx43 and ECM Responses to Altered Thyroid Status Are Blunted in Spontaneously Hypertensive versus Normotensive Rats. Int J Mol Sci 2019; 20:ijms20153758. [PMID: 31374823 PMCID: PMC6696036 DOI: 10.3390/ijms20153758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022] Open
Abstract
Heart function and its susceptibility to arrhythmias are modulated by thyroid hormones (THs) but the responsiveness of hypertensive individuals to thyroid dysfunction is elusive. We aimed to explore the effect of altered thyroid status on crucial factors affecting synchronized heart function, i.e., connexin-43 (Cx43) and extracellular matrix proteins (ECM), in spontaneously hypertensive rats (SHRs) compared to normotensive Wistar Kyoto rats (WKRs). Basal levels of circulating THs were similar in both strains. Hyperthyroid state (HT) was induced by injection of T3 (0.15 mg/kg b.w. for eight weeks) and hypothyroid state (HY) by the administration of methimazol (0.05% for eight weeks). The possible benefit of omega-3 polyunsaturated fatty acids (Omacor, 200 mg/kg for eight weeks) intake was examined as well. Reduced levels of Cx43 in SHRs were unaffected by alterations in THs, unlike WKRs, in which levels of Cx43 and its phosphorylated form at serine368 were decreased in the HT state and increased in the HY state. This specific Cx43 phosphorylation, attributed to enhanced protein kinase C-epsilon signaling, was also increased in HY SHRs. Altered thyroid status did not show significant differences in markers of ECM or collagen deposition in SHRs. WKRs exhibited a decrease in levels of profibrotic transforming growth factor β1 and SMAD2/3 in HT and an increase in HY, along with enhanced interstitial collagen. Short-term intake of omega-3 polyunsaturated fatty acids did not affect any targeted proteins significantly. Key findings suggest that myocardial Cx43 and ECM responses to altered thyroid status are blunted in SHRs compared to WKRs. However, enhanced phosphorylation of Cx43 at serine368 in hypothyroid SHRs might be associated with preservation of intercellular coupling and alleviation of the propensity of the heart to malignant arrhythmias.
Collapse
|
12
|
Yang F, Chen E, Yang Y, Han F, Han S, Wu G, Zhang M, Zhang J, Han J, Su L, Hu D. The Akt/FoxO/p27 Kip1 axis contributes to the anti-proliferation of pentoxifylline in hypertrophic scars. J Cell Mol Med 2019; 23:6164-6172. [PMID: 31270945 PMCID: PMC6714140 DOI: 10.1111/jcmm.14498] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
Hypertrophic scars (HS) are characterized by the excessive production and deposition of extracellular matrix (ECM) proteins. Pentoxifylline (PTX), a xanthine derived antioxidant, inhibits the proliferation, inflammation and ECM accumulation of HS. In this study, we aimed to explore the effect of PTX on HS and further clarify the mechanism of PTX‐induced anti‐proliferation. We found that PTX could significantly attenuate proliferation of HS fibroblasts and fibrosis in an animal HS model. PTX inhibited the proliferation of HSFs in a dose‐ and time‐dependent manner, and this growth inhibition was mainly mediated by cell cycle arrest. Transcriptome sequencing showed that PTX affects HS formation through the PI3K/Akt/FoxO1 signalling pathway to activate p27Kip1. PTX down‐regulated p‐Akt and up‐regulated p‐FoxO1 in TGF‐β1 stimulated fibroblasts at the protein level, and simultaneously, the expression of p27Kip1 was activated. In a mouse model of HS, PTX treatment resulted in the ordering of collagen fibres. The results revealed that PTX regulates TGFβ1‐induced fibroblast activation and inhibits excessive scar formation. Therefore, PTX is a promising agent for the treatment of HS formation.
Collapse
Affiliation(s)
- Fangfang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xi'an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fu Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shichao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Gaofeng Wu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Jian Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
13
|
Cruz-Galvez CC, Ortiz-Lazareno PC, Pedraza-Brindis EJ, Villasenor-Garcia MM, Reyes-Uribe E, Bravo-Hernandez A, Solis-Martinez RA, Cancino-Marentes M, Rodriguez-Padilla C, Bravo-Cuellar A, Hernandez-Flores G. Pentoxifylline Enhances the Apoptotic Effect of Carboplatin in Y79 Retinoblastoma Cells. In Vivo 2019; 33:401-412. [PMID: 30804118 DOI: 10.21873/invivo.11487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Retinoblastoma (RB) is the most common primary intraocular malignancy. Carboplatin (CPt) is a DNA damage-inducing agent that is widely used for the treatment of RB. Unfortunately, this drug also activates the transcription factor nuclear factor-kappa B (NF-ĸB), leading to promotion of tumor survival. Pentoxifylline (PTX) is a drug that inhibits the phosphorylation of I kappa B-alpha (IĸBα) in serines 32 and 36, and this disrupts NF-ĸB activity that promotes tumor survival. The goal of this study was to evaluate the effect of the PTX on the antitumor activity of CPt. MATERIALS AND METHODS Y79 RB cells were treated with CPt, PTX, or both. Cell viability, apoptosis, loss of mitochondrial membrane potential, the activity of caspase-9, -8, and -3, cytochrome c release, cell-cycle progression, p53, and phosphorylation of IĸBα, and pro- and anti-apoptotic genes were evaluated. RESULTS Both drugs significantly affected the viability of the Y79 RB cells in a time- and dose-dependent manner. The PTX+CPt combination exhibited the highest rate of apoptosis, a decrease in cell viability and significant caspase activation, as well as loss of mitochondrial membrane potential, release of cytochrome c, and increased p53 protein levels. Cells treated with PTX alone displayed decreased I kappa B-alpha phosphorylation, compared to the CPt treated group. In addition, the PTX+CPt combination treatment induced up-regulation of the proapoptotic genes Bax, Bad, Bak, and caspases- 3, -8, and -9, compared to the CPt and PTX individual treated groups. CONCLUSION PTX induces apoptosis per se and increases the CPt-induced apoptosis, augmenting its antitumor effectiveness.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Galvez
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,Doctoral Program in Pharmacology, Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Mexico
| | - Pablo Cesar Ortiz-Lazareno
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Eliza Julia Pedraza-Brindis
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Maria Martha Villasenor-Garcia
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Emmanuel Reyes-Uribe
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,University Center of the Cienega (CUCIENEGA), University of Guadalajara, Ocotlan, Mexico
| | | | - Raul Antonio Solis-Martinez
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| | - Martha Cancino-Marentes
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico.,Doctoral Program in Pharmacology, Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara, Mexico
| | - Cristina Rodriguez-Padilla
- Department of Immunology and Virology, College of Biomedical Science, Autonomous University of Nuevo León (UANL), San Nicolás de los Garza, Mexico
| | - Alejandro Bravo-Cuellar
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico .,Department of Health Science, University Center of the Altos (CUALTOS), University of Guadalajara, Tepatitlan de Morelos, Mexico
| | - Georgina Hernandez-Flores
- Division of Immunology, Western Biomedical Research Center (CIBO), Mexican Institute of Social Insurance (IMSS), Guadalajara, Mexico
| |
Collapse
|
14
|
Sykora M, Kamocsaiova L, Egan Benova T, Frimmel K, Ujhazy E, Mach M, Barancik M, Tribulova N, Szeiffova Bacova B. Alterations in myocardial connexin-43 and matrix metalloproteinase-2 signaling in response to pregnancy and oxygen deprivation of Wistar rats: a pilot study 1. Can J Physiol Pharmacol 2019; 97:829-836. [PMID: 30908945 DOI: 10.1139/cjpp-2018-0740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two important aspects of cardiac adaptive response to pregnancy have been studied in normal as well as hypoxic conditions: (1) intercellular signaling mediated by myocardial connexin-43 (Cx43) that is crucial to synchronize heart function; (2) extracellular signaling mediated by matrix metalloproteinase-2 (MMP-2) that is an early marker of extracellular matrix remodeling. Myocardial Cx43 distribution and functional capillary density were determined as well. Hypoxia was induced by exposure of rats to 10.5% O2 and 89.5% N2 in a hermetically sealed chamber. Findings showed that pregnancy resulted in a significant increase of Cx43 protein expression, its functional phosphorylated forms, and enhanced capillary density while did not affect either expression of total MMP-2 or its activity. Maternal hypoxia for 12 or 16 h did not affect elevated Cx43 but enhanced its distribution on lateral sides of the cardiomyocytes. In contrast, hypoxia of nonpregnant rats resulted in upregulation of Cx43, its lateral distribution, and enhanced capillary density. Hypoxia did not affect myocardial MMP-2 either in pregnant or nonpregnant rats. Cardiac adaptive response to pregnancy is accompanied by enhanced Cx43 without changes in MMP-2 signaling. Pregnant rat heart is tolerant to short-term hypoxemia, while nonpregnant rat heart reacts by upregulation of Cx43 and increased capillary density.
Collapse
Affiliation(s)
- Matus Sykora
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Lucia Kamocsaiova
- Faculty of Natural Sciences of Comenius University, Bratislava, Slovakia
| | | | - Karel Frimmel
- CEM SAS, Institute for Heart Research, Bratislava, Slovakia
| | - Eduard Ujhazy
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | - Mojmir Mach
- CEM SAS, Institute of Experimental Pharmacology and Toxicology, Bratislava, Slovakia
| | | | | | | |
Collapse
|
15
|
Pentoxifylline Added to Steroid Window Treatment Phase Modified Apoptotic Gene Expression in Pediatric Patients With Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2018; 40:360-367. [PMID: 29683943 DOI: 10.1097/mph.0000000000001152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pentoxifylline is a xanthine that possesses antitumor properties and that can induce higher apoptosis in the leukemic cells of pediatric patients with acute lymphoblastic leukemia (ALL) during treatment with prednisone. We conducted a phase 1 pilot, controlled, randomized trial to evaluate the gene expression modified by pentoxifylline during the steroid window of induction to remission phase in patients newly diagnosed with ALL. Experimental and control treatments induced broad changes in the gene expression profile. Patients who received just prednisone upregulated 377 and downregulated 344 genes, in contrast with patients treated with the experimental treatment (combination of prednisone and pentoxifylline), who demonstrated upregulation of 1319 and downregulation of 1594 genes. The most important genes modified in this pathway are those with proapoptotic activity, the majority of these overexpressed. Thus, the addition of pentoxifylline to the treatment with prednisone during steroid window in patients with ALL modified the gene expression profile and changed different signal pathways of the leukemic cell. The combination of both drugs represents a therapeutic alternative for potentiating antileukemic therapy.
Collapse
|
16
|
Silver pyridine-2-sulfonate complex - its characterization, DNA binding, topoisomerase I inhibition, antimicrobial and anticancer response. J Inorg Biochem 2018; 186:206-216. [PMID: 29960924 DOI: 10.1016/j.jinorgbio.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
In the current study the ability of silver pyridine-2-sulfonate complex to exert multiple biological activities is compared with the pharmacological action of silver sulfadiazine (AgSD). Polymeric form of {[Ag(py-2-SO3)]}n (AgPS) was synthesized and characterized by analytical techniques (IR, CHN, TG/DTA, MS) and its molecular formula was established. The crystal structure was determined by X-ray diffraction method and the polymeric complex crystallizes in the triclinic P-1 space group. The stability of Ag(I) complex was verified by 1H and 13C NMR measurements and the interaction with calf thymus DNA through UV-VIS and fluorescence quenching experiments was studied. The Ag(I) complex was able to interact with DNA by dual binding mode: partial intercalation along groove binding. The binding constants were calculated to be in the order of 103 M-1. Topoisomerase I inhibition study have shown that silver complex is inhibiting its activity at concentration of 30 μM. The cytotoxic activity of AgPS and AgSD against mouse leukaemia L1210 S, R and T cell line was also evaluated. AgPS showed higher cytotoxicity than AgSD after 48 h incubation. The results suggest that mechanism of cell death is necrosis with a contribution of late apoptosis. Antimicrobial testing indicates higher growth inhibition effect of AgPS with comparison to commercially available AgSD.
Collapse
|
17
|
Castellanos-Esparza YC, Wu S, Huang L, Buquet C, Shen R, Sanchez-Gonzalez B, García Latorre EA, Boyer O, Varin R, Jiménez-Zamudio LA, Janin A, Vannier JP, Li H, Lu H. Synergistic promoting effects of pentoxifylline and simvastatin on the apoptosis of triple-negative MDA-MB-231 breast cancer cells. Int J Oncol 2018; 52:1246-1254. [PMID: 29436616 DOI: 10.3892/ijo.2018.4272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/14/2017] [Indexed: 11/06/2022] Open
Abstract
Pentoxifylline (PTX), a xanthine family molecule and simvastatin (SIM), an anti-hypercholesterolemic agent, have recently been considered as sensitizers to chemotherapy and radiotherapy. The present in vitro study evaluated their antitumor synergistic effects on MDA‑MB‑231 breast cancer cells characterized by the triple‑negative phenotype (TNP). The anti-proliferative effects of these two agents were evaluated by MTT and clonogenic assays. Cell cycle progression was examined using propidium iodide staining. Apoptosis was investigated by Annexin V labeling, and by examining caspase 3 activity and DNA fragmentation. Autophagic vesicles and reactive oxygen species (ROS) levels were monitored by flow cytometry. Western blot analysis was performed to evaluate molecular targets. Our results revealed that when used alone, PTX and SIM exerted antitumor effects. Nevertheless, used in combination, the inhibition of cell proliferation was synergistically superior (80% vs 42%) than that observed following treatment with each agent alone after 48 h. PTX alone (0.5 mM) induced both apoptosis (25%) and autophagy (25%); however, when used in combination with SIM (0.5 µM), the balance between these processes was disrupted and the cells underwent apoptosis (>65%) as opposed to autophagy (<13%). This imbalance was associated with an increase in ERK1/2 and AKT activation, but not with an increase in mTOR phosphorylation, and with the suppression of the NF-κB pathway. In addition, in the cells treated with both agents, almost 78% of the cells were arrested at the G0/G1 phase and lost their colony-forming ability (38±5%) compared to the cells treated with PTX alone (115±5%). On the whole, these results suggest that the induction of autophagy may be a protective mechanism preventing MDA‑MB‑231 cancer cell death. The combined use of PTX and SIM may drive dormant autophagic cancer cells to undergo apoptosis and thus this may be a novel treatment strategy for breast cancer characterized by the TNP.
Collapse
Affiliation(s)
- Yessica Cristina Castellanos-Esparza
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Shuang Wu
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Limin Huang
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Catherine Buquet
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Rong Shen
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Berenice Sanchez-Gonzalez
- Immunochemistry Laboratory I, Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Ethel Awilda García Latorre
- Immunochemistry Laboratory I, Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Olivier Boyer
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Remi Varin
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Luis Antonio Jiménez-Zamudio
- Immunochemistry Laboratory I, Immunology Department, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Anne Janin
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Jean-Pierre Vannier
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - Hong Li
- National Institute of Health and Medical Research, Unit 1234/Rouen University, Faculty of Medicine and Pharmacy, 76183 Rouen, France
| | - He Lu
- National Institute of Health and Medical Research, Medical Research Unit S-1165/Paris Diderot University, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| |
Collapse
|
18
|
Szeiffová Bačová B, Egan Beňová T, Viczenczová C, Soukup T, Rauchová H, Pavelka S, Knezl V, Barančík M, Tribulová N. Cardiac connexin-43 and PKC signaling in rats with altered thyroid status without and with omega-3 fatty acids intake. Physiol Res 2017; 65 Suppl 1:S77-90. [PMID: 27643942 DOI: 10.33549/physiolres.933413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones are powerful modulators of heart function and susceptibility to arrhythmias via both genomic and non-genomic actions. We aimed to explore expression of electrical coupling protein connexin-43 (Cx43) in the heart of rats with altered thyroid status and impact of omega-3 polyunsaturated fatty acids (omega-3) supplementation. Adult male Lewis rats were divided into following six groups: euthyroid controls, hyperthyroid (treated with T(3)) and hypothyroid (treated with methimazol) with or without six-weeks lasting supplementation with omega-3 (20 mg/100 g/day). Left and right ventricles, septum and atria were used for immunoblotting of Cx43 and protein kinase C (PKC). Total expression of Cx43 and its phosphorylated forms were significantly increased in all heart regions of hypothyroid rats compared to euthyroid controls. In contrast, the total levels of Cx43 and its functional phosphorylated forms were decreased in atria and left ventricle of hyperthyroid rats. In parallel, the expression of PKC epsilon that phosphorylates Cx43, at serine 368, was increased in hypothyroid but decreased in hyperthyroid rat hearts. Omega-3 intake did not significantly affect either Cx43 or PKC epsilon alterations. In conclusion, there is an inverse relationship between expression of cardiac Cx43 and the levels of circulating thyroid hormones. It appears that increased propensity of hyperthyroid while decreased of hypothyroid individuals to malignant arrhythmias may be in part attributed to the changes in myocardial Cx43.
Collapse
Affiliation(s)
- B Szeiffová Bačová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pentoxifylline triggers autophagy via ER stress response that interferes with Pentoxifylline induced apoptosis in human melanoma cells. Biochem Pharmacol 2016; 103:17-28. [PMID: 26793997 DOI: 10.1016/j.bcp.2015.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022]
Abstract
Pentoxifylline (PTX), a non-specific phosphodiesterase inhibitor is known to inhibit the growth of various cancer cells including melanoma. Here in this study, we have found that PTX induces autophagy in human melanoma cell lines (A375 and MeWo). Induction of autophagy is associated with the increase in Atg5 expression as knockdown of Atg5 effectively inhibited PTX mediated autophagy. A decrease in mTOR activation was also observed after PTX treatment. We observed that autophagy was activated as a downstream effector mechanism of ER stress induced by PTX. ER stress response was confirmed by upregulation of IRE-1α, GRP78 and CHOP expression. PTX treatment also resulted in an increase in intracellular calcium (Ca(2+)) level. Ca(2+) is the central player as blocking Ca(2+) by intracellular calcium chelator (BAPTA-AM) effectively inhibited the PTX induced ER stress response as well as autophagy. Moreover, silencing of CHOP also resulted in autophagy inhibition with a decrease in Atg5 expression. Collectively, PTX triggers ER stress response followed by induction of autophagy via involvement of Ca(2+)→CHOP→Atg5 signalling cascade. Interestingly, inhibition of intracellular calcium level by BAPTA-AM significantly increased PTX mediated cell death by augmenting intrinsic apoptotic pathway. Inhibition of autophagy by the ATG5 siRNA and pharmacological inhibitor, chloroquine also enhances PTX induced cell death. Taken together, our results clearly indicate that activation of ER stress response and autophagy provides resistance to PTX mediated apoptosis, and thus, interferes with the anticancer activity of PTX in human melanoma cells.
Collapse
|
20
|
Pentoxifylline during steroid window phase at induction to remission increases apoptosis in childhood with acute lymphoblastic leukemia. Clin Transl Oncol 2015; 18:369-74. [PMID: 26329293 DOI: 10.1007/s12094-015-1376-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/04/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Pentoxifylline (PTX) has been shown to increase chemotherapy-induced apoptosis. A clinical trial was developed to evaluate the effect of the addition of PTX to the induction steroid window phase in children with acute lymphoblastic leukemia (ALL). METHODS Thirty-two children were enrolled on this study. Children with a new diagnosis of ALL were randomly assigned to receive prednisone (PRD) 40 mg/m(2)/day only during the 7-day treatment pre-phase (PRD group, 11 patients) or to receive PRD with PTX (10 mg/kg/day) (PTX group, 11 patients); the control group included children with normal bone marrow (10 patients). Bone marrow aspiration (BMA) was performed at diagnosis (day -7) in all groups, and at day 0 (end of PRD window) for patients with ALL (PRD and PTX groups). Apoptosis was evaluated by flow cytometry (FC) using Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) stains. Statistical analysis was performed using the Mann-Whitney U test. RESULTS Apoptotic index at day -7 was similar in all groups. However, at day 0 post-treatment, apoptosis was significantly higher in the PTX group than in the PRD group (p < 0.001). There were no serious adverse effects associated with PTX. CONCLUSIONS PTX potentiates blast apoptosis induced by PRD in children with ALL during steroid window phase.
Collapse
|
21
|
Nidhyanandan S, Boreddy TS, Chandrasekhar KB, Reddy ND, Kulkarni NM, Narayanan S. Phosphodiesterase inhibitor, pentoxifylline enhances anticancer activity of histone deacetylase inhibitor, MS-275 in human breast cancer in vitro and in vivo. Eur J Pharmacol 2015. [PMID: 26209365 DOI: 10.1016/j.ejphar.2015.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MS-275, a histone deacetylase inhibitor (HDACi), is undergoing clinical trials for treatment of various cancers. Pentoxifylline, a nonselective phosphodiesterase (PDE) inhibitor, has been shown to increase the effectiveness of antitumor chemotherapy. In the present study, the potential anti-cancer activity of MS-275 in combination with pentoxifylline in panel of cell lines and human breast cancer xenograft model were examined. A Panel of cancer cell lines were treated with MS-275 and pentoxifylline to determine their impact on cellular proliferation, cell cycle regulation, apoptosis, anti-angiogenesis. The in vivo activities of MS-275 and pentoxifylline were assessed in a Matrigel plug angiogenesis model and human breast cancer (MDA-MB-231) xenograft model. Combination of MS-275 with pentoxifylline showed enhanced anti-proliferative activity in a panel of cancer cell lines (HCT 116, MCF-7, PC3 and MDA-MB-231). Apoptotic studies performed using, Hoechst staining and cell cycle analysis reveal that this combination at the lower concentrations induces apoptosis downstream of the HDAC inhibition and PDE regulation. Further, combination showed enhanced antiangiogenic activity in Matrigel tube formation assay using HUVECs and in Matrigel plug assay in vivo. A significant inhibition (P<0.001) of tumor growth was observed in mice bearing MDA-MB-231 breast cancer xenograft treated with the combination of MS-275 (5mg/kg p.o.) and pentoxifylline (60 mg/kg i.p.) than treatments alone, without much signs of toxicity. Taken together, our study demonstrated enhanced anticancer activity of MS-275 and pentoxifylline combination both in vitro and in vivo with reduced toxicity. However, further studies are required to understand the mechanism for this combination effect.
Collapse
Affiliation(s)
- Saranya Nidhyanandan
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Ltd., Old Mahabalipuram Road, Sozhanganallur, Chennai 600119, Tamil Nadu, India; Jawaharlal Nehru Technological University Anantapur, Anantapur, 515 002 Andhra Pradesh, India.
| | - Thippeswamy S Boreddy
- Department of Biomedical Science, College of Pharmacy, Shaqra University, Al-Dawadmi, Kingdom of Saudi Arabia
| | | | - Neetinkumar D Reddy
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Ltd., Old Mahabalipuram Road, Sozhanganallur, Chennai 600119, Tamil Nadu, India
| | - Nagaraj M Kulkarni
- Department of Biology, Drug Discovery Research, Orchid Chemicals and Pharmaceuticals Ltd., Old Mahabalipuram Road, Sozhanganallur, Chennai 600119, Tamil Nadu, India
| | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Sir M Visvesvaraya Institute of Technology, International Airport Road, Yelahanka, Bangaluru 562157, India
| |
Collapse
|
22
|
Cancer multidrug resistance-targeted therapy in both cancer and cardiovascular system with cardiovascular drugs. Int J Cardiol 2014; 176:1306-8. [PMID: 25131921 DOI: 10.1016/j.ijcard.2014.07.158] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/27/2014] [Indexed: 02/06/2023]
|
23
|
Bravo-Cuellar A, Hernández-Flores G, Lerma-Díaz JM, Domínguez-Rodríguez JR, Jave-Suárez LF, De Célis-Carrillo R, Aguilar-Lemarroy A, Gómez-Lomeli P, Ortiz-Lazareno PC. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65. J Biomed Sci 2013; 20:13. [PMID: 23445492 PMCID: PMC3618339 DOI: 10.1186/1423-0127-20-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/18/2013] [Indexed: 12/31/2022] Open
Abstract
Background In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. Results The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. Conclusions The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm antileukemic potential.
Collapse
Affiliation(s)
- Alejandro Bravo-Cuellar
- División de Inmunología, Centro de Investigación Biomédica de Occidente CIBO, Instituto Mexicano del Seguro Social IMSS, Sierra Mojada 800, Col, Independencia, Guadalajara, Jalisco 44340, México
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bubencíkova T, Cholujová D, Messingerová L, Mislovicova D, Seres M, Breier A, Sulova Z. Detection of glycomic alterations induced by overexpression of p-glycoprotein on the surfaces of L1210 cells using sialic acid binding lectins. Int J Mol Sci 2012. [PMID: 23203118 PMCID: PMC3509634 DOI: 10.3390/ijms131115177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
P-glycoprotein (P-gp) overexpression is the most frequently observed cause of multidrug resistance in neoplastic cells. In our experiments, P-gp was expressed in L1210 mice leukemia cells (S cells) by selection with vincristine (R cells) or transfection with the gene encoding human P-gp (T cells). Remodeling of cell surface sugars is associated with P-gp expression in L1210 cells as a secondary cellular response. In this study, we monitored the alteration of cell surface saccharides by Sambucus nigra agglutinin (SNA), wheat germ agglutinin (WGA) and Maackia amurensis agglutinin (MAA). Sialic acid is predominantly linked to the surface of S, R and T cells via α-2,6 branched sugars that tightly bind SNA. The presence of sialic acid linked to the cell surface via α-2,3 branched sugars was negligible, and the binding of MAA (recognizing this branch) was much less pronounced than SNA. WGA induced greater cell death than SNA, which was bound to the cell surface and agglutinated all three L1210 cell-variants more effectively than WGA. Thus, the ability of lectins to induce cell death did not correlate with their binding efficiency and agglutination potency. Compared to S cells, P-gp positive R and T cells contain a higher amount of N-acetyl-glucosamine on their cell surface, which is associated with improved WGA binding. Both P-gp positive variants of L1210 cells are strongly resistant to vincristine as P-gp prototypical drug. This resistance could not be altered by liberalization of terminal sialyl residues from the cell surface by sialidase.
Collapse
Affiliation(s)
- Tatiana Bubencíkova
- Institute of Molecular Physiology and Genetics, Center of Excellence of the Slovak Research and Development Agency “BIOMEMBRANES2008”, Slovak Academy of Sciences, Vlarska 5, Bratislava 83334, Slovakia; E-Mails: (T.B.); (L.M.); (M.S.)
| | - Dana Cholujová
- Cancer Research Institute, Slovak Academy of Sciences, Vlarska 7, Bratislava 83391, Slovakia; E-Mail:dana.cholujova @savba.sk
| | - Lucia Messingerová
- Institute of Molecular Physiology and Genetics, Center of Excellence of the Slovak Research and Development Agency “BIOMEMBRANES2008”, Slovak Academy of Sciences, Vlarska 5, Bratislava 83334, Slovakia; E-Mails: (T.B.); (L.M.); (M.S.)
| | - Danica Mislovicova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84538, Slovakia; E-Mail:
| | - Mario Seres
- Institute of Molecular Physiology and Genetics, Center of Excellence of the Slovak Research and Development Agency “BIOMEMBRANES2008”, Slovak Academy of Sciences, Vlarska 5, Bratislava 83334, Slovakia; E-Mails: (T.B.); (L.M.); (M.S.)
| | - Albert Breier
- Institute of Molecular Physiology and Genetics, Center of Excellence of the Slovak Research and Development Agency “BIOMEMBRANES2008”, Slovak Academy of Sciences, Vlarska 5, Bratislava 83334, Slovakia; E-Mails: (T.B.); (L.M.); (M.S.)
- Authors to whom correspondence should be addressed: E-Mails: (A.B.); (Z.S.); Tel.: +421-903-472606 (A.B.); +421-903-246360 (Z.S.); Fax: +421-2-54773666 (A.B.); +421-2-54773666 (Z.S.)
| | - Zdena Sulova
- Institute of Molecular Physiology and Genetics, Center of Excellence of the Slovak Research and Development Agency “BIOMEMBRANES2008”, Slovak Academy of Sciences, Vlarska 5, Bratislava 83334, Slovakia; E-Mails: (T.B.); (L.M.); (M.S.)
- Authors to whom correspondence should be addressed: E-Mails: (A.B.); (Z.S.); Tel.: +421-903-472606 (A.B.); +421-903-246360 (Z.S.); Fax: +421-2-54773666 (A.B.); +421-2-54773666 (Z.S.)
| |
Collapse
|