1
|
Xu Z, Miao L, Meng X, Sui J, Chen M, Zheng Z, Huo S, Liu S, Zhang H. Strontium-doped bioactive glass-functionalized polyetheretherketone enhances osseointegration by facilitating cell adhesion. Colloids Surf B Biointerfaces 2024; 241:114042. [PMID: 38924850 DOI: 10.1016/j.colsurfb.2024.114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
In the field of orthopedics, surgeons have long been facing the challenge of loosening of external fixation screws due to inherent material characteristics. Despite Polyetheretherketone (PEEK) being employed as an orthopedic implant material for many years, its bio-inert nature often hinders bone healing due to the limited bioactivity, which restricts its clinical applications. Herein, a new type of orthopedic implant (Sr-SPK) was developed by introducing strontium (Sr)-doped mesoporous bioactive glass (Sr-MBG) onto the surface of PEEK implants through a simple and feasible method. In vitro experiments revealed that Sr-SPK effectively promotes osteogenic differentiation while concurrently suppressing the formation of osteoclasts. The same results were validated in vivo with Sr-SPK significantly improving bone integration. Upon investigation, it was found that Sr-SPK promotes adhesion among bone marrow mesenchymal stem cells (BMSCs) thereby promoting osteogenesis by activating the regulation of actin cytoskeletal and focal adhesion pathways, as identified via transcriptome analysis. In essence, these findings suggest that the newly constructed Sr-doped biofunctionalized PEEK implant developed in this research can promote osteoblast differentiation and suppress osteoclast activity by enhancing cell adhesion processes. These results underline the immense potential of such an implant for wide-ranging clinical applications in orthopedics.
Collapse
Affiliation(s)
- Zihao Xu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Licai Miao
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Xiangyu Meng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Junhao Sui
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Mengchen Chen
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Zhong Zheng
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China
| | - Shicheng Huo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, Shanghai 200003, China.
| | - Shu Liu
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China.
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Jahangirnezhad M, Mahmoudinezhad SS, Moradi M, Moradi K, Rohani A, Tayebi L. Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Curr Stem Cell Res Ther 2024; 19:449-460. [PMID: 36578254 DOI: 10.2174/1574888x18666221227142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Periodontium is an important tooth-supporting tissue composed of both hard (alveolar bone and cementum) and soft (gingival and periodontal ligament) sections. Due to the multi-tissue architecture of periodontium, reconstruction of each part can be influenced by others. This review focuses on the bone section of the periodontium and presents the materials used in tissue engineering scaffolds for its reconstruction. MATERIALS AND METHODS The following databases (2015 to 2021) were electronically searched: ProQuest, EMBASE, SciFinder, MRS Online Proceedings Library, Medline, and Compendex. The search was limited to English-language publications and in vivo studies. RESULTS Eighty-three articles were found in primary searching. After applying the inclusion criteria, seventeen articles were incorporated into this study. CONCLUSION In complex periodontal defects, various types of scaffolds, including multilayered ones, have been used for the functional reconstruction of different parts of periodontium. While there are some multilayered scaffolds designed to regenerate alveolar bone/periodontal ligament/cementum tissues of periodontium in a hierarchically organized construct, no scaffold could so far consider all four tissues involved in a complete periodontal defect. The progress and material considerations in the regeneration of the bony part of periodontium are presented in this work to help investigators develop tissue engineering scaffolds suitable for complete periodontal regeneration.
Collapse
Affiliation(s)
- Mahmood Jahangirnezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadaf Sadat Mahmoudinezhad
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kooshan Moradi
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Rohani
- Department of Periodontics, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, 53233, USA
| |
Collapse
|
3
|
Belabbes K, Simon M, Leon-Valdivieso CY, Massonié M, Bethry A, Subra G, Garric X, Pinese C. Development of hybrid bioactive nanofibers composed of star Poly(lactic acid) and gelatin by sol-gel crosslinking during the electrospinning process. NANOTECHNOLOGY 2023; 34:485701. [PMID: 37647881 DOI: 10.1088/1361-6528/acf501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
The design of a biomimetic scaffold is a major challenge in tissue engineering to promote tissue reconstruction. The use of synthetic polymer nanofibers is widely described as they provide biocompatible matrices whose topography mimics natural extracellular matrix (ECM). To closely match the biochemical composition of the ECM, bioactive molecules such as gelatin are added to the nanofibers to enhance cell adhesion and proliferation. To overcome the rapid solubilization of gelatin in biological fluids and to allow a lasting biological effect, the covalent crosslinking of this macromolecule in the network is crucial. The sol-gel route offers the possibility of gentle crosslinking during shaping but is rarely combined with electrospinning. In this study, we present the creation of Poly(lactic acid)/Gelatin hybrid nanofibers by sol-gel route during electrospinning. To enable sol-gel crosslinking, we synthesized star-shaped PLA and functionalized it with silane groups; then we functionalized gelatin with the same groups for their subsequent reaction with the polymer and thus the creation of the hybrid nanonetwork. We evaluated the impact of the presence of gelatin in Poly(lactic acid)/Gelatin hybrid nanofibers at different percentages on the mechanical properties, nanonetwork crosslinking, degradation and biological properties of the hybrid nanofibers. The addition of gelatin modulated nanonetwork crosslinking that impacted the stiffness of the nanofibers, resulting in softer materials for the cells. Moreover, these hybrid nanofibers also showed a significant improvement in fibroblast proliferation and present a degradation rate suitable for tissue reconstruction. Finally, the bioactive hybrid nanofibers possess versatile properties, interesting for various potential applications in tissue reconstruction.
Collapse
Affiliation(s)
- Karima Belabbes
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Matthieu Simon
- IBMM peptide, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Mathilde Massonié
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Gilles Subra
- IBMM peptide, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, Nimes, France
| |
Collapse
|
4
|
Radwan-Pragłowska J, Janus Ł, Galek T, Szajna E, Sierakowska A, Łysiak K, Tupaj M, Bogdał D. Evaluation of Physiochemical and Biological Properties of Biofunctionalized Mg-Based Implants Obtained via Large-Scale PEO Process for Dentistry Applications. J Funct Biomater 2023; 14:338. [PMID: 37504833 PMCID: PMC10381468 DOI: 10.3390/jfb14070338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
An increasing number of tooth replacement procedures ending with implant failure generates a great need for the delivery of novel biomedical solutions with appropriate mechanical characteristics that would mimic natural tissue and undergo biodegradation. This phenomenon constitutes a significant difficulty for scientists, since currently applied biomaterials dedicated for this purpose are based on stainless steel, Ti, and Ti and CoCr alloys. One of the most promising raw materials is magnesium, which has been proven to promote bone regeneration and accelerate the tissue healing process. Nevertheless, its high reactivity with body fluid components is associated with fast and difficult-to-control biocorrosion, which strongly limits the application of Mg implants as medical devices. The achievement of appropriate functionality, both physiochemical and biological, to enable the commercial use of Mg biomaterials is possible only after their superficial modification. Therefore, the obtainment of uniform, reproducible coatings increasing resistance to the aqueous environment of the human body combined with a nanostructured surface that enhances implant-cell behaviors is an extremely important issue. Herein, we present a successful strategy for the modification of Mg implants via the PEO process, resulting in the obtainment of biomaterials with lower corrosion rates and superior biological properties, such as the promotion of extracellular matrix formation and a positive impact on the proliferation of MG-63 cells. The implants were investigated regarding their chemical composition using the FT-IR and XRD methods, which revealed that MgO layer formation, as well as the incorporation of electrolyte components such as fluorine and silica, were responsible for the increased microhardness of the samples. An extensive study of the biomaterials' morphology confirmed that successful surface modification led to a microporous structure suitable for the attachment and proliferation of cells. The three-layer nature of the newly-formed coatings, typical for PEO modification, was confirmed via cross-section analysis. A biocorrosion and biodegradation study proved that applied modification increased their resistance to body fluids. The cell culture study performed herein confirmed that the correct adjustment of modification parameters results in a lack of cytotoxicity of the magnesium implants, cell proliferation enhancement, and improvement in extracellular matrix formation.
Collapse
Affiliation(s)
- Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Tomasz Galek
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Ernest Szajna
- WEA Techlab Sp. z o. o., Perla 10, 41-301 Dabrowa Gornicza, Poland
| | - Aleksandra Sierakowska
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| | - Karol Łysiak
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Mirosław Tupaj
- Faculty of Mechanics and Technology, Rzeszow University of Technology, Kwiatkowskiego 4 Street, 37-450 Stalowa Wola, Poland
| | - Dariusz Bogdał
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 Street, 31-155 Cracow, Poland
| |
Collapse
|
5
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
6
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
7
|
Mohammed EEA, Beherei HH, El-Zawahry M, Farrag ARH, Kholoussi N, Helwa I, Mabrouk M, Abdel Aleem AK. Osteogenic enhancement of modular ceramic nanocomposites impregnated with human dental pulp stem cells: an approach for bone repair and regenerative medicine. J Genet Eng Biotechnol 2022; 20:123. [PMID: 35976537 PMCID: PMC9385929 DOI: 10.1186/s43141-022-00387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Background/aim Human dental pulp-derived mesenchymal stem cells (hDP-MSCs) are a promising source of progenitor cells for bone tissue engineering. Nanocomposites made of calcium phosphate especially hydroxyapatite (HA) offer an impressive solution for orthopedic and dental implants. The combination of hDP-MSCs and ceramic nanocomposites has a promising therapeutic potential in regenerative medicine. Despite the calcium phosphate hydroxyapatite (HA)-based nanocomposites offer a good solution for orthopedic and dental implants, the heavy load-bearing clinical applications require higher mechanical strength, which is not of the HA’ properties that have low mechanical strength. Herein, the outcomes of using fabricated ceramic nanocomposites of hydroxyapatite/titania/calcium silicate mixed at different ratios (C1, C2, and C3) and impregnated with hDP-MSCs both in in vitro cultures and rabbit model of induced tibial bone defect were investigated. Our aim is to find out a new approach that would largely enhance the osteogenic differentiation of hDP-MSCs and has a therapeutic potential in bone regeneration. Subjects and methods Human DP-MSCs were isolated from the dental pulp of the third molar and cultured in vitro. Alizarin Red staining was performed at different time points to assess the osteogenic differentiation. Flow cytometer was used to quantify the expression of hDP-MSCs unique surface markers. Rabbits were used as animal models to evaluate the therapeutic potential of osteogenically differentiated hDP-MSCs impregnated with ceramic nanocomposites of hydroxyapatite/tatiana/calcium silicate (C1, C2, and C3). Histopathological examination and scanning electron microscopy (SEM) were performed to evaluate bone healing potential in the rabbit induced tibial defects three weeks post-transplantation. Results The hDP-MSCs showed high proliferative and osteogenic potential in vitro culture. Their osteogenic differentiation was accelerated by the ceramic nanocomposites’ scaffold and revealed bone defect’s healing in transplanted rabbit groups compared to control groups. Histopathological and SEM analysis of the transplanted hDP-MSCs/ceramic nanocomposites showed the formation of new bone filling in the defect area 3 weeks post-implantation. Accelerate osseointegration and enhancement of the bone-bonding ability of the prepared nanocomposites were also confirmed by SEM. Conclusions The results strongly suggested that ceramic nanocomposites of hydroxyapatite/ titania /calcium silicate (C1, C2, and C3) associated with hDP-MSCs have a therapeutic potential in bone healing in a rabbit model. Hence, the combined osteogenic system presented here is recommended for application in bone tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eman E A Mohammed
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt. .,Refractoriness, Ceramics and Building Materials Department, Inorganic Chemical Industries and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt.
| | - Hanan H Beherei
- Fixed and Removable Prosthodontics Department, Oral and Dental Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed El-Zawahry
- Pathology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Razik H Farrag
- Stem Cell Research Group, Medical Research Center of Excellence, National Research Centre, Cairo, Egypt
| | - Naglaa Kholoussi
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, National Research Centre, Cairo, Egypt
| | - Iman Helwa
- Immunogenetics Department, Human Genetics and Genome Research Institute, National Research Centre, National Research Centre, Cairo, Egypt
| | - Mostafa Mabrouk
- Fixed and Removable Prosthodontics Department, Oral and Dental Research Institute, National Research Centre, Cairo, Egypt
| | - Alice K Abdel Aleem
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.,Refractoriness, Ceramics and Building Materials Department, Inorganic Chemical Industries and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
8
|
Basanth A, Mayilswamy N, Kandasubramanian B. Bone regeneration by biodegradable polymers. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2029886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Abina Basanth
- Biopolymer Science, Cipet: Ipt, Hil Colony, Kochi, India
| | - Neelaambhigai Mayilswamy
- Department Of Metallurgical And Materials Engineering, Diat(D.U.), Ministry Of Defence, Girinagar, Pune, India
| | | |
Collapse
|
9
|
Raza S, Li X, Soyekwo F, Liao D, Xiang Y, Liu C. A comprehensive overview of common conducting polymer-based nanocomposites; Recent advances in design and applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Guo Y, Wang X, Shen Y, Dong K, Shen L, Alzalab AAA. Research progress, models and simulation of electrospinning technology: a review. JOURNAL OF MATERIALS SCIENCE 2021; 57:58-104. [PMID: 34658418 PMCID: PMC8513391 DOI: 10.1007/s10853-021-06575-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/29/2021] [Indexed: 05/09/2023]
Abstract
In recent years, nanomaterials have aroused extensive research interest in the world's material science community. Electrospinning has the advantages of wide range of available raw materials, simple process, small fiber diameter and high porosity. Electrospinning as a nanomaterial preparation technology with obvious advantages has been studied, such as its influencing parameters, physical models and computer simulation. In this review, the influencing parameters, simulation and models of electrospinning technology are summarized. In addition, the progresses in applications of the technology in biomedicine, energy and catalysis are reported. This technology has many applications in many fields, such as electrospun polymers in various aspects of biomedical engineering. The latest achievements in recent years are summarized, and the existing problems and development trends are analyzed and discussed.
Collapse
Affiliation(s)
- Yajin Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200 People’s Republic of China
| | - Ying Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Kuo Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Linyi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Asmaa Ahmed Abdullah Alzalab
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
- Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
11
|
Liu Z, Wan X, Wang ZL, Li L. Electroactive Biomaterials and Systems for Cell Fate Determination and Tissue Regeneration: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007429. [PMID: 34117803 DOI: 10.1002/adma.202007429] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
During natural tissue regeneration, tissue microenvironment and stem cell niche including cell-cell interaction, soluble factors, and extracellular matrix (ECM) provide a train of biochemical and biophysical cues for modulation of cell behaviors and tissue functions. Design of functional biomaterials to mimic the tissue/cell microenvironment have great potentials for tissue regeneration applications. Recently, electroactive biomaterials have drawn increasing attentions not only as scaffolds for cell adhesion and structural support, but also as modulators to regulate cell/tissue behaviors and function, especially for electrically excitable cells and tissues. More importantly, electrostimulation can further modulate a myriad of biological processes, from cell cycle, migration, proliferation and differentiation to neural conduction, muscle contraction, embryogenesis, and tissue regeneration. In this review, endogenous bioelectricity and piezoelectricity are introduced. Then, design rationale of electroactive biomaterials is discussed for imitating dynamic cell microenvironment, as well as their mediated electrostimulation and the applying pathways. Recent advances in electroactive biomaterials are systematically overviewed for modulation of stem cell fate and tissue regeneration, mainly including nerve regeneration, bone tissue engineering, and cardiac tissue engineering. Finally, the significance for simulating the native tissue microenvironment is emphasized and the open challenges and future perspectives of electroactive biomaterials are concluded.
Collapse
Affiliation(s)
- Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyi Wan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
A Paradigm Shift in Tissue Engineering: From a Top–Down to a Bottom–Up Strategy. Processes (Basel) 2021. [DOI: 10.3390/pr9060935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tissue engineering (TE) was initially designed to tackle clinical organ shortage problems. Although some engineered tissues have been successfully used for non-clinical applications, very few (e.g., reconstructed human skin) have been used for clinical purposes. As the current TE approach has not achieved much success regarding more broad and general clinical applications, organ shortage still remains a challenging issue. This very limited clinical application of TE can be attributed to the constraints in manufacturing fully functional tissues via the traditional top–down approach, where very limited cell types are seeded and cultured in scaffolds with equivalent sizes and morphologies as the target tissues. The newly proposed developmental engineering (DE) strategy towards the manufacture of fully functional tissues utilises a bottom–up approach to mimic developmental biology processes by implementing gradual tissue assembly alongside the growth of multiple cell types in modular scaffolds. This approach may overcome the constraints of the traditional top–down strategy as it can imitate in vivo-like tissue development processes. However, several essential issues must be considered, and more mechanistic insights of the fundamental, underpinning biological processes, such as cell–cell and cell–material interactions, are necessary. The aim of this review is to firstly introduce and compare the number of cell types, the size and morphology of the scaffolds, and the generic tissue reconstruction procedures utilised in the top–down and the bottom–up strategies; then, it will analyse their advantages, disadvantages, and challenges; and finally, it will briefly discuss the possible technologies that may overcome some of the inherent limitations of the bottom–up strategy.
Collapse
|
13
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
14
|
Katti KS, Jasuja H, Kar S, Katti DR. Nanostructured Biomaterials for In Vitro Models of Bone Metastasis Cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100254. [PMID: 33718691 PMCID: PMC7948119 DOI: 10.1016/j.cobme.2020.100254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, tissue engineering approaches have attracted substantial attention owing to their ability to create physiologically relevant in vitro disease models that closely mimic in vivo conditions. Here, we review nanocomposite materials and scaffolds used for the design of in vitro models of cancer, including metastatic sites. We discuss the role of material properties in modulating cellular phenotype in 3D disease models. Also, we highlight the application of tissue-engineered bone as a tool for faithful recapitulation of the microenvironment of metastatic prostate and breast cancer, since these two types of cancer have the propensity to metastasize to bone. Overall, we summarize recent efforts on developing 3D in vitro models of bone metastatic cancers that provide a platform to study tumor progression and facilitate high-throughput drug screening.
Collapse
Affiliation(s)
- Kalpana S. Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Haneesh Jasuja
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Sumanta Kar
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| | - Dinesh R. Katti
- Center for Engineered Cancer Test Beds, Department of Civil and Environmental Engineering North Dakota State University, Fargo ND 58108, USA
| |
Collapse
|
15
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
16
|
Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020; 15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.
Collapse
Affiliation(s)
- Guo Ye
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Bao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianzhu Zhang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhe Song
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Youguo Liao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yang Fei
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Varitsara Bunpetch
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Weiliang Shen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hua Liu
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Jing Zhou
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| |
Collapse
|
17
|
Lara-Rico R, Claudio-Rizo JA, Múzquiz-Ramos EM, Lopez-Badillo CM. Hidrogeles de colágeno acoplados con hidroxiapatita para aplicaciones en ingeniería tisular. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Los hidrogeles basados en colágeno son redes tridimensionales (3D) con la capacidad de absorber agua y una alta biocompatibilidad para utilizarlos en la reparación de tejidos dañados. Estos materiales presentan pobres propiedades mecánicas y velocidades de degradación rápidas, limitando su aplicación a estrategias de ingeniería tisular y biomedicina; por ésto, la incorporación de fases inorgánicas en la matriz 3D del colágeno como la hidroxiapatita ha contribuido en la mejora de sus propiedades, incrementado la eficiencia de los hidrogeles híbridos obtenidos. Este trabajo, presenta las contribuciones más relevantes relacionadas con los sistemas de hidrogeles basados en colágeno y partículas de hidroxiapatita dispersas dentro de la matriz colagénica, lo que evidencia que la combinación de los materiales no altera la biocompatibilidad y biodegradabilidad típicas del colágeno, permitiendo la adhesión, proliferación, crecimiento celular y control del metabolismo de las células implicadas en los procesos de una reparación ósea, presentando a los hidrogeles como una estrategia para su uso potencial en la ingeniería tisular.
Collapse
|
18
|
Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8:474. [PMID: 32509754 PMCID: PMC7253672 DOI: 10.3389/fbioe.2020.00474] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Valente KP, Brolo A, Suleman A. From Dermal Patch to Implants-Applications of Biocomposites in Living Tissues. Molecules 2020; 25:E507. [PMID: 31991641 PMCID: PMC7037691 DOI: 10.3390/molecules25030507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 01/21/2023] Open
Abstract
Composites are composed of two or more materials, displaying enhanced performance and superior mechanical properties when compared to their individual components. The use of biocompatible materials has created a new category of biocomposites. Biocomposites can be applied to living tissues due to low toxicity, biodegradability and high biocompatibility. This review summarizes recent applications of biocomposite materials in the field of biomedical engineering, focusing on four areas-bone regeneration, orthopedic/dental implants, wound healing and tissue engineering.
Collapse
Affiliation(s)
| | - Alexandre Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Afzal Suleman
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| |
Collapse
|
20
|
Lowe B, Hardy JG, Walsh LJ. Optimizing Nanohydroxyapatite Nanocomposites for Bone Tissue Engineering. ACS OMEGA 2020; 5:1-9. [PMID: 31956745 PMCID: PMC6963893 DOI: 10.1021/acsomega.9b02917] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Bone tissue engineering involves the combined use of materials with functional properties to regenerate bone. Nanohydroxyapatite (nHA) can influence the behavior of cells. The functional and structural properties of nHA can be controlled during nanoparticle synthesis. This review defines the relationship between the attributes of nHA nanoparticles and their biological effects, focusing on biocompatibility, surface-area-to-volume ratio, bonding chemistry, and substrate functionality. The paper explores how these aspects have been applied in the development of scaffolds for the repair of damaged bone or regeneration of missing bone.
Collapse
Affiliation(s)
- Baboucarr Lowe
- School
of Dentistry, The University of Queensland, Brisbane QLD 4006, Australia
| | - John G. Hardy
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K.
- Materials
Science Institute, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Laurence J. Walsh
- School
of Dentistry, The University of Queensland, Brisbane QLD 4006, Australia
| |
Collapse
|
21
|
A Multicentre Study: The Use of Micrografts in the Reconstruction of Full-Thickness Posttraumatic Skin Defects of the Limbs-A Whole Innovative Concept in Regenerative Surgery. Stem Cells Int 2019; 2019:5043518. [PMID: 31885613 PMCID: PMC6915006 DOI: 10.1155/2019/5043518] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022] Open
Abstract
The skin graft is a surgical technique commonly used in the reconstructive surgery of the limbs, in order to repair skin loss, as well as to repair the donor area of the flaps and cover the dermal substitutes after engraftment. The unavoidable side effect of this technique consists of unaesthetic scars. In order to achieve the healing of posttraumatic ulcers by means of tissue regeneration and to avoid excessive scarring, a new innovative technology based on the application of autologous micrografts, obtained by Rigenera technology, was reported. This technology was able to induce tissue repair by highly viable skin micrografts of 80 micron size achieved by a mechanical disaggregation method. The specific cell population of these micrografts includes progenitor cells, which in association with the fragment of the Extracellular Matrix (ECM) and growth factors derived by patients' own tissue initiate biological processes of regeneration enhancing the wound healing process. We have used this technique in 70 cases of traumatic wounds of the lower and upper limbs, characterized by extensive loss of skin substance and soft tissue. In all cases, we have applied the Rigenera protocol using skin micrografts, achieving in 69 cases the complete healing of wounds in a period between 35 and 84 days. For each patient, the reconstructive outcome was evaluated weekly to assess the efficacy of this technique and any arising complication. A visual analogue scale (VAS) was administered to assess the amount of pain felt after the micrografts' application, whereas we evaluated the scars according to the Vancouver scale and the wound prognosis according to Wound Bed Score. We have thus been able to demonstrate that Rigenera procedure is very effective in stimulating skin regeneration, while reducing the outcome scar.
Collapse
|
22
|
Resende RFB, Sartoretto SC, Uzeda MJ, Alves ATNN, Calasans-Maia JA, Rossi AM, Granjeiro JM, Calasans-Maia MD. Randomized Controlled Clinical Trial of Nanostructured Carbonated Hydroxyapatite for Alveolar Bone Repair. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3645. [PMID: 31698693 PMCID: PMC6887796 DOI: 10.3390/ma12223645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
The properties of the biodegradation of bone substitutes in the dental socket after extraction is one of the goals of regenerative medicine. This double-blind, randomized, controlled clinical trial aimed to compare the effects of a new bioabsorbable nanostructured carbonated hydroxyapatite (CHA) with a commercially available bovine xenograft (Bio-Oss®) and clot (control group) in alveolar preservation. Thirty participants who required tooth extraction and implant placement were enrolled in this study. After 90 days, a sample of the grafted area was obtained for histological and histomorphometric evaluation and an implant was installed at the site. All surgical procedures were successfully carried out without complications and none of the patients were excluded. The samples revealed a statistically significant increase of new bone formation (NFB) in the CHA group compared with Bio-Oss® after 90 days from surgery (p < 0.05). However, the clot group presented no differences of NFB compared to CHA and Bio-Oss®. The CHA group presented less amount of reminiscent biomaterial compared to Bio-Oss®. Both biomaterials were considered osteoconductors, easy to handle, biocompatible, and suitable for alveolar filling. Nanostructured carbonated hydroxyapatite spheres promoted a higher biodegradation rate and is a promising biomaterial for alveolar socket preservation before implant treatment.
Collapse
Affiliation(s)
- Rodrigo F. B. Resende
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro CEP 4020-140, Brazil; (R.F.B.R.); (M.J.U.)
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Nova Iguaçu, Rio de Janeiro 26260-045, Brazil;
| | - Suelen C. Sartoretto
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Nova Iguaçu, Rio de Janeiro 26260-045, Brazil;
| | - Marcelo J. Uzeda
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro CEP 4020-140, Brazil; (R.F.B.R.); (M.J.U.)
- Oral Surgery Department, Dentistry School, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Nova Iguaçu, Rio de Janeiro 26260-045, Brazil;
| | - Adriana T. N. N. Alves
- Department of Oral Diagnosis, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro 24020-140, Brazil
| | - José A. Calasans-Maia
- Department of Orthodontics, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 30/sala 214, Niterói, Rio de Janeiro 24020-140, Brazil
| | - Alexandre M. Rossi
- Department of Condsensed Matter, Applied Physics and Nanoscience, Centro Brasileiro de Pesquisas Físicas CBPF, Rua Doutor Xavier Sigaud, 150 Urca, Rio de Janeiro, Rio de Janeiro 22290-180, Brazil;
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro 24020-140, Brazil;
- Directory of Life Sciences Applied Metrology, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rua Nossa Senhora das Graças, 50-Xerém, Duque de Caxias, Rio de Janeiro 25250-020, Brazil
| | - Mônica D. Calasans-Maia
- Oral Surgery Department, Dentistry School, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro CEP 4020-140, Brazil; (R.F.B.R.); (M.J.U.)
- Clinical Research Laboratory in Dentistry, Universidade Federal Fluminense, Rua Mario Santos Braga, 28/4º andar, Niterói, Rio de Janeiro 24020-140, Brazil;
| |
Collapse
|
23
|
Daltin AL, Beaufils S, Rouillon T, Millet P, Chopart JP. Calcium phosphate powder synthesis by out-of-phase pulsed sonoelectrochemistry. ULTRASONICS SONOCHEMISTRY 2019; 58:104662. [PMID: 31450292 DOI: 10.1016/j.ultsonch.2019.104662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
High aspect ratio calcium phosphate (CaP) nanorods were achieved by out-of-phase pulsed sonoelectrodeposition from electrolytic aqueous bath composed of calcium nitrate, ammonium dihydrogenophosphate and surfactant at pH of 4.9. The nature of CaP phases was determined by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). The results reveal the predominantly presence of calcium deficient hydroxyapatite (CDHA). The transmission electron microscopy (TEM) analyzes highlighted that the nanorods are polycristalline and have an aspect ratio up to 30.
Collapse
Affiliation(s)
- A L Daltin
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France.
| | - S Beaufils
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France; Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France
| | - T Rouillon
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes F-44042, France; Université de Nantes, UFR Odontologie, Nantes F-44042, France
| | - P Millet
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France; Centre Hospitalo-Universitaire de Reims, 51100 Reims, France
| | - J P Chopart
- Laboratoire d'Ingénierie et Sciences des Matériaux (LISM), EA 4695, URCA, B.P. 1039, 51687 Reims Cedex 02, France
| |
Collapse
|
24
|
Kuang Z, Dai G, Wan R, Zhang D, Zhao C, Chen C, Li J, Gu H, Huang W. Osteogenic and antibacterial dual functions of a novel levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold. Genes Dis 2019; 8:193-202. [PMID: 33997166 PMCID: PMC8099691 DOI: 10.1016/j.gendis.2019.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/16/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022] Open
Abstract
Lev/MSNs/n-HA/PU has been proved to be a novel scaffold material to treat bone defect caused by chronic osteomyelitis. We have previously identified that this material can effectively treat chronic osteomyelitis caused by Staphylococcus aureusin vivo. However, the potential mechanisms of antibacterial and osteogenic induction properties remain unclear. Thus, for osteogenesis property, immunohistochemistry, PCR, and Western blot were performed to detect the expression of osteogenic markers. Furthermore, flow cytometry and TUNEL were applied to analyze MC3T3-E1 proliferation and apoptosis. For antibacterial property, the material was co-cultivated with bacteria, bacterial colony forming units was counted and the release time of the effective levofloxacin was assayed by agar disc-diffusion test. Moreover, scanning electron microscope was applied to observe adhesion of bacteria. In terms of osteogenic induction, we found BMSCs adherently grew more prominently on Lev/MSNs/n-HA/PU. Lev/MSNs/n-HA/PU also enhanced the expression of osteogenic markers including OCN and COL1α1, as well as effectively promoted the transition from G1 phase to G2 phase. Furthermore, Lev/MSNs/n-HA/PU could reduce apoptosis of MC3T3-E1. Besides, both Lev/MSNs/n-HA/PU and n-HA/PU materials could inhibit bacterial colonies, while Lev/MSNs/n-HA/PU possessed a stronger antibacterial activities, and lower bacterial adhesion than n-HA/PU. These results illustrated that Lev/MSNs/n-HA/PU composite scaffold possess favorable compatibility in vitro, which induce osteogenic differentiation of MSCs, promote proliferation and differentiation of MC3T3-E1, and inhibit apoptosis. Moreover, clear in vitro antibacterial effect of Lev/MSNs/n-HA/PU was also observed. In summary, this study replenishes the potential of Lev/MSNs/n-HA/PU composite scaffold possess dual functions of anti-infection and enhanced osteogenesis for future clinical application.
Collapse
Affiliation(s)
- Zhiping Kuang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China
| | - Guangming Dai
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Ruijie Wan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China.,Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China
| | - Dongli Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Chen Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Cheng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jidong Li
- Research Center for Nano-Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan Province, 610065, PR China
| | - Hongchen Gu
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiaotong University, Shanghai, 200240, PR China
| | - Wei Huang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| |
Collapse
|
25
|
Yadav U, Mishra H, Singh V, Kashyap S, Srivastava A, Yadav S, Saxena PS. Enhanced Osteogenesis by Molybdenum Disulfide Nanosheet Reinforced Hydroxyapatite Nanocomposite Scaffolds. ACS Biomater Sci Eng 2019; 5:4511-4521. [PMID: 33438416 DOI: 10.1021/acsbiomaterials.9b00227] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The advances in the arena of biomedical engineering enable us to fabricate novel biomaterials that provide a suitable platform for rapid bone regeneration. Herein, we have investigated the in vitro and in vivo osteogenic differentiation, proliferation, and bone regeneration capability of molybdenum disulfide nanosheets (MoS2NSs) reinforced HAP nanocomposite scaffolds. The MG-63 cells were incubated with HAP and HAP/MoS2NSs nanocomposite and followed for various cellular activities. The cells incubated with HAP@2 shows higher cell adhesion, cell proliferation, and alkaline phosphatase activity (ALP) in contrast to HAP. The in vivo and in vitro results of the increased ALP level confirm that HAP@2 promotes osteogenic differentiation. This improved osteogenesis was validated with upregulation of osteogenic marker viz. transcription factor, RUNX-2 (∼34 fold), collagen-1 (∼15 fold), osteopontin (∼11 fold), osteocalcin (∼20 fold), and bone morphogenetic protein-2 (∼12 fold) after 12 week postimplantation in comparison to drilled. The X-ray imaging demonstrates that HAP@2 implants promote rapid osteogenesis and bioresorbability than HAP and drilled. The outcomes of the present study provide a promising tool for the regeneration of bone deformities, without using any external growth factor.
Collapse
|
26
|
Shitole AA, Raut PW, Sharma N, Giram P, Khandwekar AP, Garnaik B. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:51. [PMID: 31011810 DOI: 10.1007/s10856-019-6255-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/11/2019] [Indexed: 05/20/2023]
Abstract
Fabricating a bioartificial bone graft possessing structural, mechanical and biological properties mimicking the real bone matrix is a major challenge in bone tissue engineering. Moreover, the developed materials are prone to microbial invasion leading to biomaterial centered infections which might limit their clinical translation. In the present study, biomimetic nanofibrous scaffolds of Poly ɛ-caprolactone (PCL)/nano-hydroxyapatite (nHA) were electrospun with 1wt%, 5wt%, 10wt%, 15wt% and 30wt% of zinc oxide (ZnO) nanoparticles in order to understand the optimal concentration range of (ZnO) nanoparticles balancing both biocompatibility and osteoregeneration. The developed nanofibrous scaffolds were successfully characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), contact angle, fourier transform infrared spectroscopy (FTIR), wide-angle X-Ray diffraction (WAXD), brunaueremmett Teller (BET) surface area and tensile testing. Biocompatibility of the developed scaffolds at in vitro level was evaluated by culturing MG-63 cells and investigating the impact on cell viability, proliferation, protein adsorption, alkaline phosphatase (ALP) activity and biomineralization. The PCL/nHA scaffolds exhibited a 1.2-fold increase in cell viability and proliferation, while incorporation of ZnO nanoparticles to PCL/nHA imparted antimicrobial activity to the scaffolds with a progressive increase in the antimicrobial efficacy with increasing ZnO concentration. The results of cell viability were supported by ALP activity and mineralization assay, wherein, PCL/nHA/ZnO scaffolds showed higher ALP activity and better mineralization capacity as compared to pristine PCL. Although, the PCL/nHA/ZnO scaffolds with 10, 15 and 30wt% of ZnO particles exhibited superior antimicrobial efficacy against both gram-negative (E. coli) and gram-positive (S. aureus) bacteria, a significant decrease in the cell viability and mechanical properties was observed at higher concentrations of ZnO namely 15 and 30%. Amongst the various ZnO concentrations studied optimal cell viability, antimicrobial effect and mechanical strength were observed at 10wt.% ZnO concentration. Thus, the present study revealed that the biomimetic tri-component PCL/nHA/ZnO scaffolds with ZnO concentration range of ≤ 10% could be ideal for achieving optimal biocompatibility (cell proliferation, biomineralization, and antimicrobial capacity) and mechanical stability thus making it a promising biomaterial substrate for bone tissue regeneration.
Collapse
Affiliation(s)
- Ajinkya A Shitole
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram- Lavale; Taluka- Mulshi, Pune, 412115, India
| | - Piyush W Raut
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram- Lavale; Taluka- Mulshi, Pune, 412115, India
| | - Neeti Sharma
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Gram- Lavale; Taluka- Mulshi, Pune, 412115, India.
| | - Prabhanjan Giram
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Anand P Khandwekar
- School of Engineering, Ajeenkya DY Patil University (ADYPU), Pune, 412105, India
| | - Baijayantimala Garnaik
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| |
Collapse
|
27
|
Stevanović M, Đošić M, Janković A, Kojić V, Vukašinović-Sekulić M, Stojanović J, Odović J, Crevar Sakač M, Rhee KY, Mišković-Stanković V. Gentamicin-Loaded Bioactive Hydroxyapatite/Chitosan Composite Coating Electrodeposited on Titanium. ACS Biomater Sci Eng 2018; 4:3994-4007. [DOI: 10.1021/acsbiomaterials.8b00859] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Milena Stevanović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Marija Đošić
- Institute for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia
| | - Ana Janković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Vesna Kojić
- Oncology Institute of Vojvodina, Faculty of Medicine, University of Novi Sad, Put Dr Goldmana 4, 21204 Sremska Kamenica, Serbia
| | - Maja Vukašinović-Sekulić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jovica Stojanović
- Institute for Technology of Nuclear and Other Mineral Raw Materials (ITNMS), Bulevar Franš d’Eperea 86, 11000 Belgrade, Serbia
| | - Jadranka Odović
- Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe Street, 11000 Belgrade, Serbia
| | - Milkica Crevar Sakač
- Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe Street, 11000 Belgrade, Serbia
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701, South Korea
| | - Vesna Mišković-Stanković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
- Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701, South Korea
| |
Collapse
|
28
|
Effect of resveratrol release kinetic from electrospun nanofibers on osteoblast and osteoclast differentiation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Shakir M, Mirza S, Jolly R, Rauf A, Owais M. Synthesis, characterization and in vitro screening of a nano-hydroxyapatite/chitosan/Euryale ferox nanoensemble – an inimitable approach for bone tissue engineering. NEW J CHEM 2018. [DOI: 10.1039/c7nj02953e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to explore novel synthetic bone scaffolds, a biomimmetic, osteoinductive, tricomposite scaffold has been synthesized incorporating Euryale ferox (EF) with nano-hydroxyapatite and chitosan.
Collapse
Affiliation(s)
- Mohammad Shakir
- Inorganic Chemistry Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Sumbul Mirza
- Inorganic Chemistry Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Reshma Jolly
- Inorganic Chemistry Laboratory
- Department of Chemistry
- Aligarh Muslim University
- Aligarh
- India
| | - Ahmar Rauf
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| | - Mohammad Owais
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|
30
|
Tayebi L, Rasoulianboroujeni M, Moharamzadeh K, Almela TKD, Cui Z, Ye H. 3D-printed membrane for guided tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519424 DOI: 10.1016/j.msec.2017.11.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three-dimensional (3D) printing is currently being intensely studied for a diverse set of applications, including the development of bioengineered tissues, as well as the production of functional biomedical materials and devices for dental and orthopedic applications. The aim of this study was to develop and characterize a 3D-printed hybrid construct that can be potentially suitable for guided tissue regeneration (GTR). For this purpose, the rheology analyses have been performed on different bioinks and a specific solution comprising 8% gelatin, 2% elastin and 0.5% sodium hyaluronate has been selected as the most suitable composition for printing a structured membrane for GTR application. Each membrane is composed of 6 layers with strand angles from the first layer to the last layer of 45, 135, 0, 90, 0 and 90°. Confirmed by 3D Laser Measuring imaging, the membrane has small pores on one side and large pores on the other to be able to accommodate different cells like osteoblasts, fibroblasts and keratinocytes on different sides. The ultimate cross-linked product is a 150μm thick flexible and bendable membrane with easy surgical handling. Static and dynamic mechanical testing revealed static tensile modules of 1.95±0.55MPa and a dynamic tensile storage modulus of 314±50kPa. Through seeding the membranes with fibroblast and keratinocyte cells, the results of in vitro tests, including histological analysis, tissue viability examinations and DAPI staining, indicated that the membrane has desirable in vitro biocompatibility. The membrane has demonstrated the barrier function of a GTR membrane by thorough separation of the oral epithelial layer from the underlying tissues. In conclusion, we have characterized a biocompatible and bio-resorbable 3D-printed structured gelatin/elastin/sodium hyaluronate membrane with optimal biostability, mechanical strength and surgical handling characteristics in terms of suturability for potential application in GTR procedures.
Collapse
Affiliation(s)
- Lobat Tayebi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK; Marquette University School of Dentistry, Milwaukee, WI 53233, USA
| | | | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Thafar K D Almela
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
31
|
Mishra R, Sefcik RS, Bishop TJ, Montelone SM, Crouser N, Welter JF, Caplan AI, Dean D. Growth Factor Dose Tuning for Bone Progenitor Cell Proliferation and Differentiation on Resorbable Poly(propylene fumarate) Scaffolds. Tissue Eng Part C Methods 2017; 22:904-13. [PMID: 27558310 DOI: 10.1089/ten.tec.2016.0094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One approach to the development of an artificial graft material could rely on uniform coverage of a resorbable biomaterial with bone extracellular matrix (ECM). To achieve this on the surface of poly(propylene fumarate) (PPF) scaffolds, we selected a growth factor regime of basic fibroblast growth factor (FGF-2) (5 ng/mL), platelet-derived growth factor (PDGF-BB) (40 ng/mL), and epidermal growth factor (EGF) (20 ng/mL) to stimulate proliferation of bone marrow-derived human mesenchymal stem cells (BM-hMSCs). Bone morphogenetic protein (BMP) 4 (50 ng/mL), 6 (50 ng/mL), and 7 (27 ng/mL) in the presence of the following osteogenic substances: dexamethasone (10(-7) M), β-glycerophosphate (10 mM), and ascorbic acid (50 μg/mL) were chosen to induce differentiation of BM-hMSCs into ECM-secreting osteoblasts. These growth factors were also studied at 10× concentration to determine dose effect. Proliferation was analyzed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, scanning electron microscopy (SEM), and toluidine blue staining, whereas differentiation was analyzed through alizarin red S staining and assay, alkaline phosphatase (ALP) staining and assay, and SEM. The proliferation study suggests that a combination of EGF, PDGF-BB, and FGF-2 growth factors at optimal concentration over a period of 1 week exhibits significantly (p = 0.001) higher number of cells (116,024 ± 5165) than these cytokines without EGF (91,706 ± 11,965). Increasing the dosage does not show any significant effect. The BM-hMSC differentiation study results show that ALP enzyme production and mineral deposition increase from day 14 to day 21 in all groups containing BMPs and osteogenic medium. However, mineralization is significantly higher in the BMP-7 group. Furthermore, the feasibility of translating the results from two dimensional thin films to three dimensional-printed PPF scaffolds was determined through uniform initial seeding and spreading of BM-hMSCs. Therefore, we have determined the optimum dose of growth factors for proliferation and differentiation of BM-hMSCs on the surface of PPF scaffolds, which can be used to produce ECM-coated implants for the treatment of bone defects.
Collapse
Affiliation(s)
- Ruchi Mishra
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| | - Ryan S Sefcik
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| | - Tyler J Bishop
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| | | | - Nisha Crouser
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| | - Jean F Welter
- 2 Skeletal Research Center, Department of Biology, Case Western Reserve University , Cleveland, Ohio
| | - Arnold I Caplan
- 2 Skeletal Research Center, Department of Biology, Case Western Reserve University , Cleveland, Ohio
| | - David Dean
- 1 Department of Plastic Surgery, The Ohio State University , Columbus, Ohio
| |
Collapse
|
32
|
Mijiritsky E, Ferroni L, Gardin C, Bressan E, Zanette G, Piattelli A, Zavan B. Porcine Bone Scaffolds Adsorb Growth Factors Secreted by MSCs and Improve Bone Tissue Repair. MATERIALS 2017; 10:ma10091054. [PMID: 28885576 PMCID: PMC5615709 DOI: 10.3390/ma10091054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/30/2023]
Abstract
An ideal tissue-engineered bone graft should have both excellent pro-osteogenesis and pro-angiogenesis properties to rapidly realize the bone regeneration in vivo. To meet this goal, in this work a porcine bone scaffold was successfully used as a Trojan horse to store growth factors produced by mesenchymal stem cells (MSCs). This new scaffold showed a time-dependent release of bioactive growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), in vitro. The biological effect of the growth factors-adsorbed scaffold on the in vitro commitment of MSCs into osteogenic and endothelial cell phenotypes has been evaluated. In addition, we have investigated the activity of growth factor-impregnated granules in the repair of critical-size defects in rat calvaria by means of histological, immunohistochemical, and molecular biology analyses. Based on the results of our work bone tissue formation and markers for bone and vascularization were significantly increased by the growth factor-enriched bone granules after implantation. This suggests that the controlled release of active growth factors from porcine bone granules can enhance and promote bone regeneration.
Collapse
Affiliation(s)
- Eitan Mijiritsky
- Department of Otolaryngology, Head and Neck and Maxillofacial Surgery, Sackler Faculty of Medicine, Tel-Aviv Sourasky Medical Center, Tel Aviv University, 6 Weitzman Street, 64239 Tel Aviv, Israel.
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, via G. Colombo 3, 35100 Padova, Italy.
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, via G. Colombo 3, 35100 Padova, Italy.
| | - Eriberto Bressan
- Department of Neurosciences, University of Padova, via Giustiniani 5, 35100 Padova, Italy.
| | - Gastone Zanette
- Department of Neurosciences, University of Padova, via Giustiniani 5, 35100 Padova, Italy.
| | - Adriano Piattelli
- Department of Medical, Oral, and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy.
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, via G. Colombo 3, 35100 Padova, Italy.
- Maria Cecilia Hospital, GVM & Research, Cotignola, 48033 Ravenna, Italy.
| |
Collapse
|
33
|
Mi FL, Burnouf T, Lu SY, Lu YJ, Lu KY, Ho YC, Kuo CY, Chuang EY. Self-Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy. Adv Healthc Mater 2017; 6. [PMID: 28722819 DOI: 10.1002/adhm.201700181] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/07/2017] [Indexed: 11/07/2022]
Abstract
Cancer cells exhibit specific physiological differences compared to normal cells. Most surface membranes of cancer cells are characterized by high expression of given protein receptors, such as albumin, transferrin, and growth factors that are also present in the plasma of patients themselves, but are lacking on the surface of normal cells. These distinct features between cancer and normal cells can serve as a niche for developing specific treatment strategies. Near-infrared (NIR)-light-triggered therapy platforms are an interesting novel avenue for use in clinical nanomedicine. As a photothermal agent, conducting polymer nanoparticles, such as polypyrrole (PPy), of great NIR light photothermal effects and good biocompatibility, show promising applications in cancer treatments through the hyperthermia mechanism. Autologous plasma proteins coated PPy nanoparticles for hyperthermia therapy as a novel core technology platform to treat cancers through secreted protein acid and rich in cysteine targeting are developed here. This approach can provide unique features of specific targeting toward cancer cell surface markers and immune transparency to avoid recognition and attack by defense cells and achieve prolonged circulation half-life. This technology platform unveils new clinical options for treatment of cancer patients, supporting the emergence of innovative clinical products.
Collapse
Affiliation(s)
- Fwu-Long Mi
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Shih-Yuan Lu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, Republic of China
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Tao-Yuan, 33302, Taiwan, Republic of China
| | - Kun-Ying Lu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Graduate Institute of Biomedical Materials and Tissue Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| | - Yi-Cheng Ho
- Department of BioAgricultural Science, National Chiayi University, Chiayi, 60004, Taiwan, Republic of China
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University and International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan, Republic of China
| |
Collapse
|
34
|
Sethu SN, Namashivayam S, Devendran S, Nagarajan S, Tsai WB, Narashiman S, Ramachandran M, Ambigapathi M. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int J Biol Macromol 2017; 98:67-74. [DOI: 10.1016/j.ijbiomac.2017.01.089] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/11/2017] [Accepted: 01/18/2017] [Indexed: 01/24/2023]
|
35
|
Novel potential scaffold for periodontal tissue engineering. Clin Oral Investig 2017; 21:2695-2707. [PMID: 28214952 DOI: 10.1007/s00784-017-2072-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/07/2017] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The objective of the study is characterization of novel calcium and zinc-loaded electrospun matrices to be used for periodontal regeneration. MATERIALS AND METHODS A polymethylmetacrylate-based membrane was calcium or zinc loaded. Matrices were characterized morphologically by atomic force and scanning electron microscopy and mechanically probed by a nanoindenter. Biomimetic calcium phosphate precipitation on polymeric tissues was assessed. Cell viability tests were performed using oral mucosa fibroblasts. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests or by ANOVA and Student-Newman-Keuls multiple comparisons. RESULTS Zinc and calcium loading on matrices did not modify their morphology but increased nanomechanical properties and decreased nanoroughness. Precipitation of calcium and phosphate on the matrix surfaces was observed in zinc-loaded specimens. Matrices were found to be non-toxic to cells in all the assays. Calcium- and zinc-loaded scaffolds presented a very low cytotoxic effect. CONCLUSIONS Zinc-loaded membranes permit cell viability and promoted mineral precipitation in physiological conditions. Based on the tested nanomechanical properties and scaffold architecture, the proposed membranes may be suitable for cell proliferation. CLINICAL RELEVANCE The ability of zinc-loaded matrices to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity and its surface chemistry allowing covalent binding of proteins, may offer new strategies for periodontal regeneration.
Collapse
|
36
|
Salmasi S, Nayyer L, Seifalian AM, Blunn GW. Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds. Open Orthop J 2016; 10:900-919. [PMID: 28217213 PMCID: PMC5299581 DOI: 10.2174/1874325001610010900] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/12/2016] [Accepted: 05/31/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Statistical reports show that every year around the world approximately 15 million bone fractures occur; of which up to 10% fail to heal completely and hence lead to complications of non-union healing. In the past, autografts or allografts were used as the “gold standard” of treating such defects. However, due to various limitations and risks associated with these sources of bone grafts, other avenues have been extensively investigated through which bone tissue engineering; in particular engineering of synthetic bone graft substitutes, has been recognised as a promising alternative to the traditional methods. METHODS A selective literature search was performed. RESULTS Bone tissue engineering offers unlimited supply, eliminated risk of disease transmission and relatively low cost. It could also lead to patient specific design and manufacture of implants, prosthesis and bone related devices. A potentially promising building block for a suitable scaffold is synthetic nanohydroxyapatite incorporated into synthetic polymers. Incorporation of nanohydroxyapatite into synthetic polymers has shown promising bioactivity, osteoconductivity, mechanical properties and degradation profile compared to other techniques previously considered. CONCLUSION Scientific research, through extensive physiochemical characterisation, in vitro and in vivo assessment has brought together the optimum characteristics of nanohydroxyapatite and various types of synthetic polymers in order to develop nanocomposites of suitable nature for bone tissue engineering. The aim of the present article is to review and update various aspects involved in incorporation of synthetic nanohydroxyapatite into synthetic polymers, in terms of their potentials to promote bone growth and regeneration in vitro, in vivo and consequently in clinical applications.
Collapse
Affiliation(s)
- Shima Salmasi
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Leila Nayyer
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Alexander M Seifalian
- UCL Division of Surgery and Interventional Science, Centre for Nanotechnology and Regenerative Medicine, University College London, London NW3 2PF, United Kingdom
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, United Kingdom
| |
Collapse
|
37
|
Osorio R, Alfonso-Rodríguez CA, Medina-Castillo AL, Alaminos M, Toledano M. Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS One 2016; 11:e0166217. [PMID: 27820866 PMCID: PMC5098795 DOI: 10.1371/journal.pone.0166217] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/25/2016] [Indexed: 11/19/2022] Open
Abstract
Aims to design calcium and zinc-loaded bioactive and cytocompatible nanoparticles for the treatment of periodontal disease. Methods PolymP-nActive nanoparticles were zinc or calcium loaded. Biomimetic calcium phosphate precipitation on polymeric particles was assessed after 7 days immersion in simulated body fluid, by scanning electron microscopy attached to an energy dispersive analysis system. Amorphous mineral deposition was probed by X-ray diffraction. Cell viability analysis was performed using oral mucosa fibroblasts by: 1) quantifying the liberated deoxyribonucleic acid from dead cells, 2) detecting the amount of lactate dehydrogenase enzyme released by cells with damaged membranes, and 3) by examining the cytoplasmic esterase function and cell membranes integrity with a fluorescence-based method using the Live/Dead commercial kit. Data were analyzed by Kruskal-Wallis and Mann-Whitney tests. Results Precipitation of calcium and phosphate on the nanoparticles surfaces was observed in calcium-loaded nanoparticles. Non-loaded nanoparticles were found to be non-toxic in all the assays, calcium and zinc-loaded particles presented a dose dependent but very low cytotoxic effect. Conclusions The ability of calcium-loaded nanoparticles to promote precipitation of calcium phosphate deposits, together with their observed non-toxicity may offer new strategies for periodontal disease treatment.
Collapse
Affiliation(s)
- Raquel Osorio
- Dental School. University of Granada. Colegio Máximo, Campus de Cartuja s/n. 18017 Granada, Spain
- * E-mail:
| | | | - Antonio L. Medina-Castillo
- NanoMyP. Spin-Off Enterprise from University of Granada. Edificio BIC-Granada. Av. Innovación 1. 18016 Armilla, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada, 18012, Granada, Spain
| | - Manuel Toledano
- Dental School. University of Granada. Colegio Máximo, Campus de Cartuja s/n. 18017 Granada, Spain
| |
Collapse
|
38
|
Patel S, Gualtieri AP, Lu HH, Levine WN. Advances in biologic augmentation for rotator cuff repair. Ann N Y Acad Sci 2016; 1383:97-114. [PMID: 27750374 DOI: 10.1111/nyas.13267] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon-bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue are discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing are covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon-bone interface and improve delivery of biological factors for enhanced integrative repair.
Collapse
Affiliation(s)
- Sahishnu Patel
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Anthony P Gualtieri
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - William N Levine
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| |
Collapse
|
39
|
Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL. Silk-Hydroxyapatite Nanoscale Scaffolds with Programmable Growth Factor Delivery for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24463-70. [PMID: 27579921 DOI: 10.1021/acsami.6b08180] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Osteoinductive biomaterials are attractive for repairing a variety of bone defects, and biomimetic strategies are useful toward developing bone scaffolds with such capacity. Here, a multiple biomimetic design was developed to improve the osteogenesis capacity of composite scaffolds consisting of hydroxyapatite nanoparticles (HA) and silk fibroin (SF). SF nanofibers and water-dispersible HA nanoparticles were blended to prepare the nanoscaled composite scaffolds with a uniform distribution of HA with a high HA content (40%), imitating the extracellular matrix (ECM) of bone. Bone morphogenetic protein-2 (BMP-2) was loaded in the SF scaffolds and HA to tune BMP-2 release. In vitro studies showed the preservation of BMP-2 bioactivity in the composite scaffolds, and programmable sustained release was achieved through adjusting the ratio of BMP-2 loaded on SF and HA. In vitro and in vivo osteogenesis studies demonstrated that the composite scaffolds showed improved osteogenesis capacity under suitable BMP-2 release conditions, significantly better than that of BMP-2 loaded SF-HA composite scaffolds reported previously. Therefore, these biomimetic SF-HA nanoscaled scaffolds with tunable BMP-2 delivery provide preferable microenvironments for bone regeneration.
Collapse
Affiliation(s)
- Zhaozhao Ding
- School of Biology and Basic Medical Sciences & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Xiaowei Huang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Qiang Lu
- School of Biology and Basic Medical Sciences & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Weian Xu
- School of Biology and Basic Medical Sciences & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
40
|
Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016; 34:740-753. [DOI: 10.1016/j.biotechadv.2016.03.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/20/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
41
|
Fradique R, Correia TR, Miguel SP, de Sá KD, Figueira DR, Mendonça AG, Correia IJ. Production of new 3D scaffolds for bone tissue regeneration by rapid prototyping. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:69. [PMID: 26886817 DOI: 10.1007/s10856-016-5681-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
The incidence of bone disorders, whether due to trauma or pathology, has been trending upward with the aging of the worldwide population. The currently available treatments for bone injuries are rather limited, involving mainly bone grafts and implants. A particularly promising approach for bone regeneration uses rapid prototyping (RP) technologies to produce 3D scaffolds with highly controlled structure and orientation, based on computer-aided design models or medical data. Herein, tricalcium phosphate (TCP)/alginate scaffolds were produced using RP and subsequently their physicochemical, mechanical and biological properties were characterized. The results showed that 60/40 of TCP and alginate formulation was able to match the compression and present a similar Young modulus to that of trabecular bone while presenting an adequate biocompatibility. Moreover, the biomineralization ability, roughness and macro and microporosity of scaffolds allowed cell anchoring and proliferation at their surface, as well as cell migration to its interior, processes that are fundamental for osteointegration and bone regeneration.
Collapse
Affiliation(s)
- R Fradique
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - T R Correia
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - S P Miguel
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - K D de Sá
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - D R Figueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - A G Mendonça
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- Department of Chemistry, University of Beira Interior, R. Marquês d'Ávila e Bolama, 6201-001, Covilhã, Portugal
| | - I J Correia
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
42
|
Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:592-604. [DOI: 10.1016/j.msec.2015.05.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 02/01/2023]
|
43
|
Zhu Y, Zhu R, Ma J, Weng Z, Wang Y, Shi X, Li Y, Yan X, Dong Z, Xu J, Tang C, Jin L. In vitro
cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed Mater 2015; 10:055009. [DOI: 10.1088/1748-6041/10/5/055009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Cattalini JP, Hoppe A, Pishbin F, Roether J, Boccaccini AR, Lucangioli S, Mouriño V. Novel nanocomposite biomaterials with controlled copper/calcium release capability for bone tissue engineering multifunctional scaffolds. J R Soc Interface 2015; 12:0509. [PMID: 26269233 PMCID: PMC4614462 DOI: 10.1098/rsif.2015.0509] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 07/20/2015] [Indexed: 01/21/2023] Open
Abstract
This work aimed to develop novel composite biomaterials for bone tissue engineering (BTE) made of bioactive glass nanoparticles (Nbg) and alginate cross-linked with Cu(2+) or Ca(2+) (AlgNbgCu, AlgNbgCa, respectively). Two-dimensional scaffolds were prepared and the nanocomposite biomaterials were characterized in terms of morphology, mechanical strength, bioactivity, biodegradability, swelling capacity, release profile of the cross-linking cations and angiogenic properties. It was found that both Cu(2+) and Ca(2+) are released in a controlled and sustained manner with no burst release observed. Finally, in vitro results indicated that the bioactive ions released from both nanocomposite biomaterials were able to stimulate the differentiation of rat bone marrow-derived mesenchymal stem cells towards the osteogenic lineage. In addition, the typical endothelial cell property of forming tubes in Matrigel was observed for human umbilical vein endothelial cells when in contact with the novel biomaterials, particularly AlgNbgCu, which indicates their angiogenic properties. Hence, novel nanocomposite biomaterials made of Nbg and alginate cross-linked with Cu(2+) or Ca(2+) were developed with potential applications for preparation of multifunctional scaffolds for BTE.
Collapse
Affiliation(s)
- J P Cattalini
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín 6th floor, PC1113, Buenos Aires, Argentina
| | - A Hoppe
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - F Pishbin
- Department of Materials, Imperial College London, Prince Consort Road, London SW7 2AZ, UK
| | - J Roether
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - S Lucangioli
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín 6th floor, PC1113, Buenos Aires, Argentina National Research Council (CONICET), Buenos Aires, Argentina
| | - V Mouriño
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín 6th floor, PC1113, Buenos Aires, Argentina National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
45
|
Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applications. J Dent 2015; 43:1162-1174. [DOI: 10.1016/j.jdent.2015.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 01/06/2023] Open
|
46
|
Yunus Basha R, Sampath Kumar TS, Doble M. Design of biocomposite materials for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:452-63. [PMID: 26354284 DOI: 10.1016/j.msec.2015.07.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/24/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance.
Collapse
Affiliation(s)
- Rubaiya Yunus Basha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
47
|
Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res 2015; 56:175-94. [PMID: 25803622 DOI: 10.3109/03008207.2015.1027341] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Collapse
Affiliation(s)
- Amin Bigham-Sadegh
- Faculty of Veterinary Medicine, Department of Veterinary Surgery and Radiology, Shahrekord University , Shahrekord , Iran and
| | | |
Collapse
|
48
|
Guzman R, Fernandez-García E, Gutierrez-Gonzalez CF, Fernandez A, Lopez-Lacomba JL, Lopez-Esteban S. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets. J Biomater Appl 2015; 30:759-69. [PMID: 25956565 DOI: 10.1177/0885328215584858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements.
Collapse
Affiliation(s)
- Rodrigo Guzman
- Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, Spain
| | - Elisa Fernandez-García
- Nanomaterials & Nanotechnology Research Center (CINN), [Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA)], Asturias, Spain
| | - Carlos F Gutierrez-Gonzalez
- Nanomaterials & Nanotechnology Research Center (CINN), [Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA)], Asturias, Spain
| | - Adolfo Fernandez
- Nanomaterials & Nanotechnology Research Center (CINN), [Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Oviedo (UO), Principado de Asturias (PA)], Asturias, Spain
| | | | - Sonia Lopez-Esteban
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz, Madrid, Spain
| |
Collapse
|
49
|
Adipose-Derived Stem Cells as a Tool for Dental Implant Osseointegration: an Experimental Study in the Dog. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2015; 4:197-208. [PMID: 27014644 PMCID: PMC4769597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The biological interaction between the jaw bones and dental implant is fundamental for the long-term success of dental implant placement. Nevertheless, the insufficient bone volume remains a major clinical problem, especially in case of immediate dental implant. Using a canine model, the present study proves the regenerative potential of adipose- derived stem cells (ADSCs) to repair peri-implant bone defects occurring in immediate dental implant placement. In six labradors, all mandibular premolars and the first molars were extracted bilaterally and three months later dental implants were installed with a marginal gap. The marginal defects were filled with hydroxyapatite (HA)-based scaffolds previously seeded with ADSCs. After one month of healing, specimens were prepared for histological and histomorphometric evaluations. Histological analyses of ground sections show that ADSCs significantly increase bone regeneration. Several new vessels, osteoblasts and new bone matrix were detected. By contrast, no inflammatory cells have been revealed. ADSCs could be used to accelerate bone healing in peri- implant defects in case of immediate dental implant placement.
Collapse
|
50
|
Gopi D, Shinyjoy E, Karthika A, Nithiya S, Kavitha L, Rajeswari D, Tang T. Single walled carbon nanotubes reinforced mineralized hydroxyapatite composite coatings on titanium for improved biocompatible implant applications. RSC Adv 2015. [DOI: 10.1039/c5ra04382d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon nanotubes reinforced mineralized hydroxyapatite (CNT/M-HAP) composite coating on titanium by pulsed electrodeposition is a promising approach to produce bioimplants with better osseointegration capacity and improved mechanical property.
Collapse
Affiliation(s)
- D. Gopi
- Department of Chemistry
- Periyar University
- Salem 636011
- India
- Centre for Nanoscience and Nanotechnology
| | - E. Shinyjoy
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - A. Karthika
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - S. Nithiya
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - L. Kavitha
- Department of Physics
- School of Basic and Applied Sciences
- Central University of Tamilnadu
- Thiruvarur 610 101
- India
| | - D. Rajeswari
- Department of Chemistry
- Periyar University
- Salem 636011
- India
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai 20011
| |
Collapse
|